1
|
Filipović I, Marshall JM, Rašić G. Finding divergent sequences of homomorphic sex chromosomes via diploidized nanopore-based assembly from a single male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582759. [PMID: 38464271 PMCID: PMC10925256 DOI: 10.1101/2024.02.29.582759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although homomorphic sex chromosomes can have non-recombining regions with elevated sequence divergence between its complements, such divergence signals can be difficult to detect bioinformatically. If found in genomes of e.g. insect pests, these sequences could be targeted by the engineered genetic sexing and control systems. Here, we report an approach that can leverage long-read nanopore sequencing of a single XY male to identify divergent regions of homomorphic sex chromosomes. Long-read data are used for de novo genome assembly that is diploidized in a way that maximizes sex-specific differences between its haploid complements. We show that the correct assembly phasing is supported by the mapping of nanopore reads from the male's haploid Y-bearing sperm cells. The approach revealed a highly divergent region (HDR) near the centromere of the homomorphic sex chromosome of Aedes aegypti, the most important arboviral vector, for which there is a great interest in creating new genetic control tools. HDR is located ~5Mb downstream of the known male-determining locus on chromosome 1 and is significantly enriched for ovary-biased genes. While recombination in HDR ceased relatively recently (~1.4 MYA), HDR gametologs have divergent exons and introns of protein coding genes, and most lncRNA genes became X-specific. Megabases of previously invisible sex-linked sequences provide new putative targets for engineering the genetic systems to control this deadly mosquito. Broadly, our approach expands the toolbox for studying cryptic structure of sex chromosomes.
Collapse
Affiliation(s)
- Igor Filipović
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
- The University of Queensland, School of Biological Sciences, St Lucia, QLD, Australia
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
| |
Collapse
|
2
|
Lutrat C, Burckbuchler M, Olmo RP, Beugnon R, Fontaine A, Akbari OS, Argilés-Herrero R, Baldet T, Bouyer J, Marois E. Combining two genetic sexing strains allows sorting of non-transgenic males for Aedes genetic control. Commun Biol 2023; 6:646. [PMID: 37328568 PMCID: PMC10275924 DOI: 10.1038/s42003-023-05030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Chemical control of disease vectoring mosquitoes Aedes albopictus and Aedes aegypti is costly, unsustainable, and increasingly ineffective due to the spread of insecticide resistance. The Sterile Insect Technique is a valuable alternative but is limited by slow, error-prone, and wasteful sex-separation methods. Here, we present four Genetic Sexing Strains (two for each Aedes species) based on fluorescence markers linked to the m and M sex loci, allowing for the isolation of transgenic males. Furthermore, we demonstrate how combining these sexing strains enables the production of non-transgenic males. In a mass-rearing facility, 100,000 first instar male larvae could be sorted in under 1.5 h with an estimated 0.01-0.1% female contamination on a single machine. Cost-efficiency analyses revealed that using these strains could result in important savings while setting up and running a mass-rearing facility. Altogether, these Genetic Sexing Strains should enable a major upscaling in control programmes against these important vectors.
Collapse
Affiliation(s)
- Célia Lutrat
- CIRAD, UMR ASTRE, F-34398, Montpellier, France.
- ASTRE, CIRAD, INRA, Univ. Montpellier, Montpellier, France.
- Université de Montpellier, Montpellier, France.
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| | | | | | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, CA, 92093, USA
| | | | - Thierry Baldet
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, F-97490, Reunion, France
| | - Jérémy Bouyer
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Saint-Pierre, F-97410, Reunion, France
- Insect Pest Control Sub-Programme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Verkuijl SAN, Gonzalez E, Li M, Ang JXD, Kandul NP, Anderson MAE, Akbari OS, Bonsall MB, Alphey L. A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias. Nat Commun 2022; 13:7145. [PMID: 36414618 PMCID: PMC9681865 DOI: 10.1038/s41467-022-34739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR/Cas gene drives can bias transgene inheritance through different mechanisms. Homing drives are designed to replace a wild-type allele with a copy of a drive element on the homologous chromosome. In Aedes aegypti, the sex-determining locus is closely linked to the white gene, which was previously used as a target for a homing drive element (wGDe). Here, through an analysis using this linkage we show that in males inheritance bias of wGDe did not occur by homing, rather through increased propagation of the donor drive element. We test the same wGDe drive element with transgenes expressing Cas9 with germline regulatory elements sds3, bgcn, and nup50. We only find inheritance bias through homing, even with the identical nup50-Cas9 transgene. We propose that DNA repair outcomes may be more context dependent than anticipated and that other previously reported homing drives may, in fact, bias their inheritance through other mechanisms.
Collapse
Affiliation(s)
- Sebald A N Verkuijl
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Nikolay P Kandul
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
4
|
Chen C, Compton A, Nikolouli K, Wang A, Aryan A, Sharma A, Qi Y, Dellinger C, Hempel M, Potters M, Augustinos A, Severson DW, Bourtzis K, Tu Z. Marker-assisted mapping enables forward genetic analysis in Aedes aegypti, an arboviral vector with vast recombination deserts. Genetics 2022; 222:iyac140. [PMID: 36083009 PMCID: PMC9630976 DOI: 10.1093/genetics/iyac140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Aedes aegypti is a major vector of arboviruses that cause dengue, chikungunya, yellow fever, and Zika. Although recent success in reverse genetics has facilitated rapid progress in basic and applied research, integration of forward genetics with modern technologies remains challenging in this important species, as up to 47% of its chromosome is refractory to genetic mapping due to extremely low rate of recombination. Here, we report the development of a marker-assisted mapping strategy to readily screen for and genotype only the rare but informative recombinants, drastically increasing both the resolution and signal-to-noise ratio. Using marker-assisted mapping, we mapped a transgene that was inserted in a >100-Mb recombination desert and a sex-linked spontaneous red-eye (re) mutation just outside the region. We subsequently determined, by CRISPR/Cas9-mediated knockout, that cardinal is the causal gene of re, which is the first forward genetic identification of a causal gene in Ae. aegypti. The identification of the causal gene of the sex-linked re mutation provides the molecular foundation for using gene editing to develop versatile and stable genetic sexing methods. To facilitate genome-wide forward genetics in Ae. aegypti, we generated and compiled a number of lines with markers throughout the genome. Thus, by overcoming the challenges presented by the vast recombination deserts and the scarcity of markers, we have shown that effective forward genetic analysis is increasingly feasible in this important arboviral vector species.
Collapse
Affiliation(s)
- Chujia Chen
- Genetics Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Austin Compton
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria
| | - Aihua Wang
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Azadeh Aryan
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Atashi Sharma
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yumin Qi
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Camden Dellinger
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Melanie Hempel
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Potters
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria
| | - David W Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria
| | - Zhijian Tu
- Genetics Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Mysore K, Sun L, Li P, Roethele JB, Misenti JK, Kosmach J, Igiede J, Duman-Scheel M. A Conserved Female-Specific Requirement for the GGT Gene in Mosquito Larvae Facilitates RNAi-Mediated Sex Separation in Multiple Species of Disease Vector Mosquitoes. Pathogens 2022; 11:169. [PMID: 35215113 PMCID: PMC8879970 DOI: 10.3390/pathogens11020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
Although several emerging mosquito control technologies are dependent on mass releases of adult males, methods of sex-sorting that can be implemented globally have not yet been established. RNAi screens led to the discovery of siRNA, which targets gamma-glutamyl transpeptidase (GGT), a gene which is well conserved in multiple species of mosquitoes and located at the sex-determining M locus region in Aedes aegypti. Silencing the A. aegypti, Aedes albopictus, Anopheles gambiae, Culex pipiens, and Culex quinquefasciatus GGT genes resulted in female larval death, with no significant impact on male survival. Generation of yeast strains that permitted affordable expression and oral delivery of shRNA corresponding to mosquito GGT genes facilitated larval target gene silencing and generated significantly increased 5 males:1 female adult ratios in each species. Yeast targeting a conserved sequence in Culex GGT genes was incorporated into a larval mass-rearing diet, permitting the generation of fit adult male C. pipiens and C. quinquefasciatus, two species for which labor-intensive manual sex separation had previously been utilized. The results of this study indicate that female-specific yeast-based RNAi larvicides may facilitate global implementation of population-based control strategies that require releases of sterile or genetically modified adult males, and that yeast RNAi strategies can be utilized in various species of mosquitoes that have progressed to different stages of sex chromosome evolution.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph B. Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joi K. Misenti
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Kosmach
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jessica Igiede
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
Belmonte-Tebar A, San Martin Perez E, Nam Cha S, Soler Valls AJ, Singh ND, de la Casa-Esperon E. Diet effects on mouse meiotic recombination: a warning for recombination studies. Genetics 2022; 220:iyab190. [PMID: 34791205 PMCID: PMC8733447 DOI: 10.1093/genetics/iyab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination is a critical process for sexually reproducing organisms. This exchange of genetic information between homologous chromosomes during meiosis is important not only because it generates genetic diversity, but also because it is often required for proper chromosome segregation. Consequently, the frequency and distribution of crossovers are tightly controlled to ensure fertility and offspring viability. However, in many systems, it has been shown that environmental factors can alter the frequency of crossover events. Two studies in flies and yeast point to nutritional status affecting the frequency of crossing over. However, this question remains unexplored in mammals. Here, we test how crossover frequency varies in response to diet in Mus musculus males. We use immunohistochemistry to estimate crossover frequency in multiple genotypes under two diet treatments. Our results indicate that while crossover frequency was unaffected by diet in some strains, other strains were sensitive even to small composition changes between two common laboratory chows. Therefore, recombination is both resistant and sensitive to certain dietary changes in a strain-dependent manner and, hence, this response is genetically determined. Our study is the first to report a nutrition effect on genome-wide levels of recombination. Moreover, our work highlights the importance of controlling diet in recombination studies and may point to diet as a potential source of variability among studies, which is relevant for reproducibility.
Collapse
Affiliation(s)
- Angela Belmonte-Tebar
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Estefania San Martin Perez
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Syonghyun Nam Cha
- Pathology Department and Biobank of Albacete, University Hospital Complex of Albacete, Albacete 02006, Spain
| | | | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Elena de la Casa-Esperon
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Pharmacy, University of Castilla-La Mancha, Albacete 02071, Spain
| |
Collapse
|
7
|
Mysore K, Sun L, Roethele JB, Li P, Igiede J, Misenti JK, Duman-Scheel M. A conserved female-specific larval requirement for MtnB function facilitates sex separation in multiple species of disease vector mosquitoes. Parasit Vectors 2021; 14:338. [PMID: 34174948 PMCID: PMC8234664 DOI: 10.1186/s13071-021-04844-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022] Open
Abstract
Background Clusters of sex-specific loci are predicted to shape the boundaries of the M/m sex-determination locus of the dengue vector mosquito Aedes aegypti, but the identities of these genes are not known. Identification and characterization of these loci could promote a better understanding of mosquito sex chromosome evolution and lead to the elucidation of new strategies for male mosquito sex separation, a requirement for several emerging mosquito population control strategies that are dependent on the mass rearing and release of male mosquitoes. This investigation revealed that the methylthioribulose-1-phosphate dehydratase (MtnB) gene, which resides adjacent to the M/m locus and encodes an evolutionarily conserved component of the methionine salvage pathway, is required for survival of female larvae. Results Larval consumption of Saccharomyces cerevisiae (yeast) strains engineered to express interfering RNA corresponding to MtnB resulted in target gene silencing and significant female death, yet had no impact on A. aegypti male survival or fitness. Integration of the yeast larvicides into mass culturing protocols permitted scaled production of fit adult male mosquitoes. Moreover, silencing MtnB orthologs in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus revealed a conserved female-specific larval requirement for MtnB among different species of mosquitoes. Conclusions The results of this investigation, which may have important implications for the study of mosquito sex chromosome evolution, indicate that silencing MtnB can facilitate sex separation in multiple species of disease vector insects. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04844-w.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Joseph B Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Jessica Igiede
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Joi K Misenti
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA. .,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA.
| |
Collapse
|
8
|
A functional requirement for sex-determination M/m locus region lncRNA genes in Aedes aegypti female larvae. Sci Rep 2021; 11:10657. [PMID: 34017069 PMCID: PMC8137943 DOI: 10.1038/s41598-021-90194-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/30/2021] [Indexed: 01/25/2023] Open
Abstract
Although many putative long non-coding RNA (lncRNA) genes have been identified in insect genomes, few of these genes have been functionally validated. A screen for female-specific larvicides that facilitate Aedes aegypti male sex separation uncovered multiple interfering RNAs with target sites in lncRNA genes located in the M/m locus region, including loci within or tightly linked to the sex determination locus. Larval consumption of a Saccharomyces cerevisiae (yeast) strain engineered to express interfering RNA corresponding to lncRNA transcripts resulted in significant female death, yet had no impact on male survival or fitness. Incorporation of the yeast larvicides into mass culturing protocols facilitated scaled production and separation of fit adult males, indicating that yeast larvicides could benefit mosquito population control strategies that rely on mass releases of male mosquitoes. These studies functionally verified a female-specific developmental requirement for M/m locus region lncRNA genes, suggesting that sexually antagonistic lncRNA genes found within this highly repetitive pericentromeric DNA sequence may be contributing to the evolution of A. aegypti sex chromosomes.
Collapse
|
9
|
Wang WH, Urbina AN, Chang MR, Assavalapsakul W, Lu PL, Chen YH, Wang SF. Dengue hemorrhagic fever - A systemic literature review of current perspectives on pathogenesis, prevention and control. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:963-978. [PMID: 32265181 DOI: 10.1016/j.jmii.2020.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dengue is an arboviral disease caused by dengue virus. Symptomatic dengue infection causes a wide range of clinical manifestations, from mild dengue fever (DF) to potentially fatal disease, such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). We conducted a literature review to analyze the risks of DHF and current perspectives for DHF prevention and control. METHODS According to the PRISMA guidelines, the references were selected from PubMed, Web of Science and Google Scholar database using search strings containing a combination of terms that included dengue hemorrhagic fever, pathogenesis, prevention and control. Quality of references were evaluated by independent reviewers. RESULTS DHF was first reported in the Philippines in 1953 and further transmitted to the countries in the region of South-East Asia and Western Pacific. Plasma leakages is the main pathophysiological hallmark that distinguishes DHF from DF. Severe plasma leakage can result in hypovolemic shock. Various factors are thought to impact disease presentation and severity. Virus virulence, preexisting dengue antibodies, immune dysregulation, lipid change and host genetic susceptibility are factors reported to be correlated with the development of DHF. However, the exact reasons and mechanisms that triggers DHF remains controversial. Currently, no specific drugs and licensed vaccines are available to treat dengue disease in any of its clinical presentations. CONCLUSION This study concludes that antibody-dependent enhancement, cytokine dysregulation and variation of lipid profiles are correlated with DHF occurrence. Prompt diagnosis, appropriate treatment, active and continuous surveillance of cases and vectors are the essential determinants for dengue prevention and control.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Aspiro Nayim Urbina
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| | - Max R Chang
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Po-Liang Lu
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
10
|
Ruzzante L, Reijnders MJ, Waterhouse RM. Of Genes and Genomes: Mosquito Evolution and Diversity. Trends Parasitol 2019; 35:32-51. [DOI: 10.1016/j.pt.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
|
11
|
Oliva LO, La Corte R, Santana MO, Albuquerque CMRD. Quiescence in Aedes aegypti: Interpopulation Differences Contribute to Population Dynamics and Vectorial Capacity. INSECTS 2018; 9:insects9030111. [PMID: 30200417 PMCID: PMC6164356 DOI: 10.3390/insects9030111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 12/03/2022]
Abstract
The strategy of Aedes aegypti to prolong embryonic viability by quiescence has severe implications for geographic expansion and maintenance of mosquito populations in areas under control measures. We evaluated the effects of quiescence on biological parameters directly or indirectly associated with population dynamics and vectorial capacity in populations of this mosquito species from two Brazilian municipalities characterized as dengue, chikungunya, and Zika transmission areas. Egg viability, initial hatching time, post-embryonic development time, adult emergence rate, sexual proportion, adult size, fecundity, and fertility were analyzed using eggs stored for 10, 40, 70, 100, 130, and 160 d. Quiescence time reduced overall egg viability and post-embryonic development time in both municipalities but was more costly in Aracaju (100 d, 8 d) than in Recife (130 d, 7.5 d). Emergence rates increased in Recife when the eggs were older, but not in Aracaju. Significant deviations in sexual proportion, with male predominance, were observed in both populations. Initial hatch, fecundity, fertility, and adult size did not significantly influence egg quiescence time. These results indicate intrinsic and differential characteristics for each A. aegypti population, suggesting a differential cost of quiescence for population dynamics parameters that can indirectly affect vectorial capacity and control measures.
Collapse
Affiliation(s)
- Luciana O Oliva
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Brazil.
- Departamento de Morfologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe (UFS), São Cristóvão 49100-000, Brazil.
| | - Roseli La Corte
- Departamento de Morfologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe (UFS), São Cristóvão 49100-000, Brazil.
| | - Marcelo O Santana
- Departamento de Educação em Saúde, Universidade Federal de Sergipe (UFS), Lagarto 49400-000, Brazil.
| | - Cleide M R de Albuquerque
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Brazil.
| |
Collapse
|
12
|
Campbell CL, Dickson LB, Lozano-Fuentes S, Juneja P, Jiggins FM, Black WC. Alternative patterns of sex chromosome differentiation in Aedes aegypti (L). BMC Genomics 2017; 18:943. [PMID: 29202694 PMCID: PMC5716240 DOI: 10.1186/s12864-017-4348-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
Background Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings. Results Intersex standardized variance (FST) of single nucleotide polymorphisms (SNPs) was characterized from genomic exome capture libraries of both sexes in representative natural populations of Aaa and SenAae. Our goal was to identify SNPs that varied in frequency between males and females, and most were expected to occur on chromosome 1. Use of the assembled AaegL4 reference alleviated the previous problem of unmapped genes. Because the M locus gene nix was not captured and not present in AaegL4, the male-determining locus, per se, was not explored. Sex-associated genes were those with FST values ≥ 0.100 and/or with increased expected heterozygosity (Hexp, one-sided T-test, p < 0.05) in males. There were 85 genes common to both collections with high inter-sex FST values; all genes but one were located on chromosome 1. Aaa showed the expected cluster of high inter-sex FST genes proximal to the M locus, whereas SenAae had inter-sex FST genes along the length of chromosome 1. In addition, the Aaa M-locus proximal region showed increased Hexp levels in males, whereas SenAae did not. In SenAae, chromosomal rearrangements and subsequent suppressed recombination may have accelerated X-Y differentiation. Conclusions The evidence presented here is consistent with differential evolution of proto-Y chromosomes in Aaa and SenAae. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4348-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA.
| | - Laura B Dickson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| | - Punita Juneja
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| |
Collapse
|