1
|
Huang K, Huber G, Ritland K, Dunn DW, Li B. Performing parentage analysis for polysomic inheritances based on allelic phenotypes. G3-GENES GENOMES GENETICS 2021; 11:6080682. [PMID: 33585871 PMCID: PMC8022955 DOI: 10.1093/g3journal/jkaa064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Polyploidy poses several problems for parentage analysis. We present a new polysomic inheritance model for parentage analysis based on genotypes or allelic phenotypes to solve these problems. The effects of five factors are simultaneously accommodated in this model: (1) double-reduction, (2) null alleles, (3) negative amplification, (4) genotyping errors and (5) self-fertilization. To solve genotyping ambiguity (unknown allele dosage), we developed a new method to establish the likelihood formulas for allelic phenotype data and to simultaneously include the effects of our five chosen factors. We then evaluated and compared the performance of our new method with three established methods by using both simulated data and empirical data from the cultivated blueberry (Vaccinium corymbosum). We also developed and compared the performance of two additional estimators to estimate the genotyping error rate and the sample rate. We make our new methods freely available in the software package polygene, at http://github.com/huangkang1987/polygene.
Collapse
Affiliation(s)
- Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Gwendolyn Huber
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Kermit Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Derek W Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
2
|
Meirmans PG. genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol Ecol Resour 2020; 20:1126-1131. [PMID: 32061017 PMCID: PMC7496249 DOI: 10.1111/1755-0998.13145] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/09/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
genodive version 3.0 is a user-friendly program for the analysis of population genetic data. This version presents a major update from the previous version and now offers a wide spectrum of different types of analyses. genodive has an intuitive graphical user interface that allows direct manipulation of the data through transformation, imputation of missing data, and exclusion and inclusion of individuals, population and/or loci. Furthermore, genodive seamlessly supports 15 different file formats for importing or exporting data from or to other programs. One major feature of genodive is that it supports both diploid and polyploid data, up to octaploidy (2n = 8x) for some analyses, but up to hexadecaploidy (2n = 16x) for other analyses. The different types of analyses offered by genodive include multiple statistics for estimating population differentiation (φST , FST , F'ST , GST , G'ST , G''ST , Dest , RST , ρ), analysis of molecular variance-based K-means clustering, Hardy-Weinberg equilibrium, hybrid index, population assignment, clone assignment, Mantel test, Spatial Autocorrelation, 23 ways of calculating genetic distances, and both principal components and principal coordinates analyses. A unique feature of genodive is that it can also open data sets with nongenetic variables, for example environmental data or geographical coordinates that can be included in the analysis. In addition, genodive makes it possible to run several external programs (lfmm, structure, instruct and vegan) directly from its own user interface, avoiding the need for data reformatting and use of the command line. genodive is available for computers running Mac OS X 10.7 or higher and can be downloaded freely from: http://www.patrickmeirmans.com/software.
Collapse
Affiliation(s)
- Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Deo TG, Ferreira RCU, Lara LAC, Moraes ACL, Alves-Pereira A, de Oliveira FA, Garcia AAF, Santos MF, Jank L, de Souza AP. High-Resolution Linkage Map With Allele Dosage Allows the Identification of Regions Governing Complex Traits and Apospory in Guinea Grass ( Megathyrsus maximus). FRONTIERS IN PLANT SCIENCE 2020; 11:15. [PMID: 32161603 PMCID: PMC7054243 DOI: 10.3389/fpls.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 05/11/2023]
Abstract
Forage grasses are mainly used in animal feed to fatten cattle and dairy herds, and guinea grass (Megathyrsus maximus) is considered one of the most productive of the tropical forage crops that reproduce by seeds. Due to the recent process of domestication, this species has several genomic complexities, such as autotetraploidy and aposporous apomixis. Consequently, approaches that relate phenotypic and genotypic data are incipient. In this context, we built a linkage map with allele dosage and generated novel information of the genetic architecture of traits that are important for the breeding of M. maximus. From a full-sib progeny, a linkage map containing 858 single nucleotide polymorphism (SNP) markers with allele dosage information expected for an autotetraploid was obtained. The high genetic variability of the progeny allowed us to map 10 quantitative trait loci (QTLs) related to agronomic traits, such as regrowth capacity and total dry matter, and 36 QTLs related to nutritional quality, which were distributed among all homology groups (HGs). Various overlapping regions associated with the quantitative traits suggested QTL hotspots. In addition, we were able to map one locus that controls apospory (apo-locus) in HG II. A total of 55 different gene families involved in cellular metabolism and plant growth were identified from markers adjacent to the QTLs and APOSPORY locus using the Panicum virgatum genome as a reference in comparisons with the genomes of Arabidopsis thaliana and Oryza sativa. Our results provide a better understanding of the genetic basis of reproduction by apomixis and traits important for breeding programs that considerably influence animal productivity as well as the quality of meat and milk.
Collapse
Affiliation(s)
- Thamiris G. Deo
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Rebecca C. U. Ferreira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Letícia A. C. Lara
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Aline C. L. Moraes
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| | | | - Fernanda A. de Oliveira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Antonio A. F. Garcia
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Mateus F. Santos
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Liana Jank
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| |
Collapse
|
4
|
|
5
|
Jighly A, Lin Z, Forster JW, Spangenberg GC, Hayes BJ, Daetwyler HD. Insights into population genetics and evolution of polyploids and their ancestors. Mol Ecol Resour 2018; 18:1157-1172. [PMID: 29697892 DOI: 10.1111/1755-0998.12896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 03/13/2018] [Indexed: 01/10/2023]
Abstract
We have developed the first comprehensive simulator for polyploid genomes (PolySim) and demonstrated its value by performing large-scale simulations to examine the effect of different population parameters on the evolution of polyploids. PolySim is unlimited in terms of ploidy, population size or number of simulated loci. Our process considered the evolution of polyploids from diploid ancestors, polysomic inheritance, inbreeding, recombination rate change in polyploids and gene flow from lower to higher ploidies. We compared the number of segregating single nucleotide polymorphisms, minor allele frequency, heterozygosity, R2 and average kinship relatedness between different simulated scenarios, and to real data from polyploid species. As expected, allotetraploid populations showed no difference from their ancestral diploids when population size remained constant and there was no gene flow or multivalent (MV) pairing between subgenomes. Autotetraploid populations showed significant differences from their ancestors for most parameters and diverged from their ancestral populations faster than allotetraploids. Autotetraploids can have significantly higher heterozygosity, relatedness and extended linkage disequilibrium compared with allotetraploids. Interestingly, autotetraploids were more sensitive to increasing selfing rate and decreasing population size. MV formation can homogenize allotetraploid subgenomes, but this homogenization requires a higher MV rate than previously proposed. Our results can be considered as the first building block to understand polyploid population evolutionary dynamics. PolySim can be used to simulate a wide variety of polyploid organisms that mimic empirical populations, which, in combination with quantitative genetics tools, can be used to investigate the power of genomewide association, genomic selection or breeding programme designs in these species.
Collapse
Affiliation(s)
- Abdulqader Jighly
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Vic., Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Vic., Australia
| | - Zibei Lin
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Vic., Australia
| | - John W Forster
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Vic., Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Vic., Australia
| | - German C Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Vic., Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Vic., Australia
| | - Ben J Hayes
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Vic., Australia
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, St Lucia, Qld, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Vic., Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
6
|
Meirmans PG, Liu S, van Tienderen PH. The Analysis of Polyploid Genetic Data. J Hered 2018; 109:283-296. [DOI: 10.1093/jhered/esy006] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/20/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Shenglin Liu
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Peter H van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|