1
|
Zhang Y, Shan M, Ding X, Sun H, Qiu F, Shi L. Maternal exercise represses Nox4 via SIRT1 to prevent vascular oxidative stress and endothelial dysfunction in SHR offspring. Front Endocrinol (Lausanne) 2023; 14:1219194. [PMID: 37501791 PMCID: PMC10368947 DOI: 10.3389/fendo.2023.1219194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Maternal exercise during pregnancy has emerged as a potentially promising approach to protect offspring from cardiovascular disease, including hypertension. Although endothelial dysfunction is involved in the pathophysiology of hypertension, limited studies have characterized how maternal exercise influences endothelial function of hypertensive offspring. In this study, pregnant spontaneously hypertensive rats and Wistar-Kyoto rats were assigned either to a sedentary lifestyle or to swimming training daily, and fetal histone deacetylase-mediated epigenetic modification and offspring vascular function of mesenteric arteries were analyzed. Maternal exercise ameliorated the impairment of acetylcholine-induced vasodilation without affecting sodium nitroprusside-induced vasodilation in mesenteric arteries from the hypertensive offspring. In accordance, maternal exercise reduced NADPH oxidase-4 (Nox4) protein to prevent the loss of nitric oxide generation and increased reactive oxygen species production in mesenteric arteries of hypertensive offspring. We further found that maternal exercise during pregnancy upregulated vascular SIRT1 (sirtuin 1) expression, leading to a low level of H3K9ac (histone H3 lysine 9 acetylation), resulting in the transcriptional downregulation of Nox4 in mesenteric arteries of hypertensive fetuses. These findings show that maternal exercise alleviates oxidative stress and the impairment of endothelium-dependent vasodilatation via SIRT1-regulated deacetylation of Nox4, which might contribute to improved vascular function in hypertensive offspring.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Meiling Shan
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xiaozhen Ding
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hualing Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
2
|
Ng ML, Ang X, Yap KY, Ng JJ, Goh ECH, Khoo BBJ, Richards AM, Drum CL. Novel Oxidative Stress Biomarkers with Risk Prognosis Values in Heart Failure. Biomedicines 2023; 11:biomedicines11030917. [PMID: 36979896 PMCID: PMC10046491 DOI: 10.3390/biomedicines11030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress (OS) is mediated by reactive oxygen species (ROS), which in cardiovascular and other disease states, damage DNA, lipids, proteins, other cellular and extra-cellular components. OS is both initiated by, and triggers inflammation, cardiomyocyte apoptosis, matrix remodeling, myocardial fibrosis, and neurohumoral activation. These have been linked to the development of heart failure (HF). Circulating biomarkers generated by OS offer potential utility in patient management and therapeutic targeting. Novel OS-related biomarkers such as NADPH oxidases (sNox2-dp, Nrf2), advanced glycation end-products (AGE), and myeloperoxidase (MPO), are signaling molecules reflecting pathobiological changes in HF. This review aims to evaluate current OS-related biomarkers and their associations with clinical outcomes and to highlight those with greatest promise in diagnosis, risk stratification and therapeutic targeting in HF.
Collapse
Affiliation(s)
- Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Xu Ang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwan Yi Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Jun Jie Ng
- Vascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Eugene Chen Howe Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Benjamin Bing Jie Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Arthur Mark Richards
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Correspondence:
| |
Collapse
|
3
|
Depciuch J, Jakubczyk P, Paja W, Sarzyński J, Pancerz K, Açıkel Elmas M, Keskinöz E, Bingöl Özakpınar Ö, Arbak S, Özgün G, Altuntaş S, Guleken Z. Apocynin reduces cytotoxic effects of monosodium glutamate in the brain: A spectroscopic, oxidative load, and machine learning study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121495. [PMID: 35700610 DOI: 10.1016/j.saa.2022.121495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Herein, we examined the modulatory effects ofApocynum (APO) on Monosodium Glutamate (MSG)-induced oxidative damage on the brain tissue of rats after long-term consumption of blood serum components by biochemical assays, Fourier transform infrared spectroscopy(FTIR), and machine learning methods. Sprague-Dawley male rats were randomly divided into the Control, Control + APO, MSG, and MSG + APO groups (n = 8 per group). All administrations were made by oral gavage saline, MSG, or APO and they were repeated for 28 days of the experiments. Brain tissue and blood serum samples were collected and analyzed for measurement levels ofmalondialdehyde (MDA),glutathione (GSH),myeloperoxidase (MPO), superoxide dismutase (SOD) activity, and Spectroscopic analysis. After 29 days, the results were evaluated using machine learning (ML). The levels of MDA and MPO showed changes in the MSG and MSG + APO groups, respectively. Changes in the proteins and lipids were observed in the FTIR spectra of the MSG groups. Additionally, APO in these animals improved the FTIR spectra to be similar to those in the Control group. The accuracy of the FTIR results calculated by ML was 100%. The findings of this study demonstrate that Apocynin treatment protectsagainst MSG-induced oxidative damage by inhibitingreactive oxygen speciesand upregulatingantioxidant capacity, indicating its potential in alleviatingthe toxic effects of MSG.
Collapse
Affiliation(s)
- Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Science, 31-342 Krakow, Poland.
| | | | - Wiesław Paja
- Institute of Computer Science, University of Rzeszów, Poland
| | | | - Krzysztof Pancerz
- Institute of Technology and Computer Science, Academy of Zamosc, Poland
| | - Merve Açıkel Elmas
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Elif Keskinöz
- Department of Anatomy, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | | | - Serap Arbak
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Gökçe Özgün
- Department of Medical Biotechnology, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Sevde Altuntaş
- Tissue Engineering Department, University of Health Sciences Turkey, Istanbul 34662, Turkey; Experimental Medicine Research and Application Center, Validebag Research Park, University of Health Sciences, Istanbul 34662, Turkey
| | - Zozan Guleken
- Department of Physiology, Uskudar University, Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
4
|
Tanyeli A, Guzel Erdogan D, Comakli S, Polat E, Guler MC, Eraslan E, Doganay S. Therapeutic effects of apocynin on ovarian ischemia-reperfusion induced lung injury. Biotech Histochem 2022; 97:536-545. [PMID: 35152781 DOI: 10.1080/10520295.2022.2036368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Ovarian ischemia-reperfusion (I-R) injury may damage remote organs, including the lungs. We investigated whether apocynin, a NADPH oxidase inhibitor, might protect against ovarian I-R induced apoptosis in the lungs of rats. Bilateral ovarian I-R was induced for 3 h, then apocynin was applied at two concentrations. Lung tissue was evaluated using spectrophotometric and immunohistochemical methods. We found that I-R increased total oxidant status (TOS), oxidative stress index (OSI) and myeloperoxidase (MPO) levels, and immunostaining of nuclear factor kappa-B (NF-κB), light chain 3B (LC3B), interleukin 1-beta (IL-1β), caspase-3 and tumor necrosis factor-alpha (TNF-α), but decreased superoxide dismutase (SOD) values. Apocynin application to I-R injured rats enhanced recovery of lung tissue oxidants and improved both histology and frequency of apoptosis.
Collapse
Affiliation(s)
- Ayhan Tanyeli
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Derya Guzel Erdogan
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Selim Comakli
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Elif Polat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Mustafa Can Guler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ersen Eraslan
- Department of Physiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Songul Doganay
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
5
|
Souza-Paula E, Polonio LCC, Zochio GP, da Silva KP, Kushima H, Dias-Junior CA. Anticontractile Effect of Perivascular Adipose Tissue But Not of Endothelium Is Enhanced by Hydrogen Sulfide Stimulation in Hypertensive Pregnant Rat Aortae. J Cardiovasc Pharmacol 2021; 76:715-729. [PMID: 32976209 DOI: 10.1097/fjc.0000000000000917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perivascular adipose tissue (PVAT) modulates the vascular tone. Hydrogen sulfide (H2S) is synthetized by cystathionine gamma-lyase (CSE) in brown PVAT. Modulation of vascular contractility by H2S is, in part, adenosine triphosphate (ATP)-sensitive potassium channels dependent. However, the role of PVAT-derived H2S in hypertensive pregnancy (HTN-Preg) is unclear. Therefore, we aimed to examine the involvement of H2S in the anticontractile effect of PVAT in aortae from normotensive and hypertensive pregnant rats. To this end, phenylephrine-induced contractions in the presence and absence of PVAT and endothelium in aortae from normotensive pregnant (Norm-Preg) and HTN-Preg rats were investigated. Maternal blood pressure, fetal-placental parameters, angiogenesis-related biomarkers, and H2S levels were also assessed. We found that circulating H2S is elevated in hypertensive pregnancy associated with angiogenic imbalance, fetal and placental growth restrictions, which revealed that there is H2S pathway activation. Moreover, under stimulated H2S formation PVAT, but not endothelium, reduced phenylephrine-induced contractions in aortae from HTN-Preg rats. Also, H2S synthesis inhibitor abolished anticontractile effects of PVAT and endothelium. Furthermore, anticontractile effect of PVAT, but not of endothelium, was eliminated by ATP-sensitive potassium channels blocker. In accordance, increases in H2S levels in PVAT and placenta, but not in aortae without PVAT, were also observed. In conclusion, anticontractile effect of PVAT is lost, at least in part, in HTN-Preg aortae and PVAT effect is ATP-sensitive potassium channels dependent in normotensive and hypertensive pregnant rat aortae. PVAT but not endothelium is responsive to the H2S stimulation in hypertensive pregnant rat aortae, implying a key role for PVAT-derived H2S under endothelial dysfunction.
Collapse
Affiliation(s)
- Edileia Souza-Paula
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Izumi T, Terauchi M. The Diverse Efficacy of Food-Derived Proanthocyanidins for Middle-Aged and Elderly Women. Nutrients 2020; 12:nu12123833. [PMID: 33334009 PMCID: PMC7765374 DOI: 10.3390/nu12123833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022] Open
Abstract
Middle-aged and elderly women are affected by various symptoms and diseases induced by estrogen deficiency. Proanthocyanidins, widely present in many kinds of fruits and berries, have many beneficial effects, such as antioxidative, anti-inflammatory, and antimicrobial activities. We researched the effects of proanthocyanidins for middle-aged and elderly women, finding that it has been revealed in many clinical trials and cohort studies that proanthocyanidins contribute to the prevention of cardiovascular disease, hypertension, obesity, cancer, osteoporosis, and urinary tract infection, as well as the improvement of menopausal symptoms, renal function, and skin damage. Thus, proanthocyanidins can be considered one of the potent representatives of complementary alternative therapy.
Collapse
Affiliation(s)
- Toru Izumi
- Department of Production and Quality Control, Kikkoman Nutricare Japan Incorporation, Nihonbashikoamicho 3-11, Chuo, Tokyo 103-0016, Japan
- Correspondence: ; Tel.: +81-3-5521-5138; Fax: +81-3-3660-9222
| | - Masakazu Terauchi
- Department of Women’s Health, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo, Tokyo 113-8510, Japan;
| |
Collapse
|
7
|
Odai T, Terauchi M, Kato K, Hirose A, Miyasaka N. Effects of Grape Seed Proanthocyanidin Extract on Vascular Endothelial Function in Participants with Prehypertension: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019; 11:E2844. [PMID: 31757033 PMCID: PMC6950399 DOI: 10.3390/nu11122844] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the effects of grape seed proanthocyanidin extract (GSPE) on blood pressure and vascular endothelial function in middle-aged Japanese adults with prehypertension. We conducted a randomized, double-blind, placebo-controlled study on 6 men and 24 women aged 40-64 years old. The participants were randomized to receive tablets containing either low-dose (200 mg/day) or high-dose (400 mg/day) GSPE, or placebo, for 12 weeks. Systolic and diastolic blood pressures (SBP and DBP, respectively), brachial flow-mediated dilation (FMD), and other cardiovascular parameters were measured before and after 4, 8, and 12 weeks of treatment. The mean SBP in the high-dose group significantly decreased by 13 mmHg after 12 weeks (P = 0.028), although FMD did not change. In an ad hoc analysis of non-smoking participants (n = 21), the mean SBP, DBP, stiffness parameter β, distensibility, incremental elastic modulus (Einc), and pulse wave velocity (PWV) also significantly improved in the high-dose group after 12 weeks. Changes in Einc and PWV from baseline to 12 weeks were significantly greater in the high-dose group than in the placebo group (Einc, P = 0.023; PWV, P = 0.03). GSPE consumption could help maintain vascular elasticity and normal blood pressure in this population.
Collapse
Affiliation(s)
- Tamami Odai
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (T.O.); (A.H.); (N.M.)
| | - Masakazu Terauchi
- Department of Women’s Health, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
| | - Kiyoko Kato
- Department of Women’s Health, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
| | - Asuka Hirose
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (T.O.); (A.H.); (N.M.)
- Department of Women’s Health, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
| | - Naoyuki Miyasaka
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (T.O.); (A.H.); (N.M.)
| |
Collapse
|
8
|
Ximenes CF, Rodrigues SML, Podratz PL, Merlo E, de Araújo JFP, Rodrigues LCM, Coitinho JB, Vassallo DV, Graceli JB, Stefanon I. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24509-24520. [PMID: 28900851 DOI: 10.1007/s11356-017-0061-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g-1. The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration-response curves were generated by exposing endothelium-intact samples to NG-nitro-L-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5 μg/kg) for 15 days induced vascular dysfunction due to oxidative stress and morphological damage and should be considered an important cardiovascular risk factor.
Collapse
Affiliation(s)
- Carolina Falcão Ximenes
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Samya Mere Lima Rodrigues
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Priscila Lang Podratz
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil
| | - Eduardo Merlo
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil
| | - Julia Fernandez Puñal de Araújo
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil
| | - Lívia Carla Melo Rodrigues
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Juliana Barbosa Coitinho
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Jones Bernardes Graceli
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil.
| | - Ivanita Stefanon
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil.
| |
Collapse
|
9
|
Barangi S, Hayes AW, Karimi G. The more effective treatment of atrial fibrillation applying the natural compounds; as NADPH oxidase and ion channel inhibitors. Crit Rev Food Sci Nutr 2017; 58:1230-1241. [PMID: 28925721 DOI: 10.1080/10408398.2017.1379000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia that occurs because of several different risk factors, e.g., valvular heart disease, coronary artery disease, age ≥75 years, hypertension and diabetes mellitus. One key risk factor that results in AF, is oxidative stress. Evidence suggests that there is a correlation between oxidative processes and the genesis of AF. Oxidative stress occurs when the generation of reactive oxygen species (ROS) increase due to excessive activity of enzymes including NADPH oxidase (NOX) and xanthine oxidase; or its degradation decrease by dysfunctional antioxidant enzyme systems, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Afterwards, elevated ROS may shift ion channel activity to increase AF susceptibility. The outbreak of AF continues to grow. Unfortunately, current treatment strategies may have limited efficacy or adverse effects. On the other hand, the inhibition of ROS formation and alteration of ion channel activity could be important therapeutic targets for prevention or treatments of AF. Additionally, many studies have been shown that several natural compounds have the ability to inhibit NADPH oxidases directly. This review focuses on natural compounds which specially inhibit NOX isoforms and have direct effects on ion channels, suggesting these compounds can be helpful in AF treatment.
Collapse
Affiliation(s)
- Samira Barangi
- a Department of Pharmacodynamics and Toxicology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - A Wallace Hayes
- b Harvard University, Cambridge, MA, USA; Michigan State University , East Lansing , MI , USA
| | - Gholamreza Karimi
- a Department of Pharmacodynamics and Toxicology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran.,c Pharmaceutical Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
10
|
Martínez-Revelles S, García-Redondo AB, Avendaño MS, Varona S, Palao T, Orriols M, Roque FR, Fortuño A, Touyz RM, Martínez-González J, Salaices M, Rodríguez C, Briones AM. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK. Antioxid Redox Signal 2017; 27:379-397. [PMID: 28010122 PMCID: PMC5563924 DOI: 10.1089/ars.2016.6642] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022]
Abstract
AIMS Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H2O2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. RESULTS Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H2O2 and O2.- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H2O2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. INNOVATION We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. CONCLUSION LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27, 379-397.
Collapse
Affiliation(s)
- Sonia Martínez-Revelles
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Spain
| | - Ana B. García-Redondo
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Spain
| | - María S. Avendaño
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Saray Varona
- CIBER de Enfermedades Cardiovasculares, Spain
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Teresa Palao
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mar Orriols
- CIBER de Enfermedades Cardiovasculares, Spain
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Fernanda R. Roque
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Ana Fortuño
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jose Martínez-González
- CIBER de Enfermedades Cardiovasculares, Spain
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Spain
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Ana M. Briones
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Spain
| |
Collapse
|
11
|
Liang Y, Gao H, Wang J, Wang Q, Zhao S, Zhang J, Qiu J. Alleviative effect of grape seed proanthocyanidin extract on small artery vascular remodeling in spontaneous hypertensive rats via inhibition of collagen hyperplasia. Mol Med Rep 2017; 15:2643-2652. [PMID: 28447711 DOI: 10.3892/mmr.2017.6292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 10/06/2016] [Indexed: 11/05/2022] Open
Abstract
Vascular remodeling is a primary contributor to the initiation and development of hypertension, which has a pathological association with subsequent multi-organ damage. Grape seed proanthocyanidin extracts (GSPE) exhibit protective cardiovascular effects, resulting from their anti‑oxidant and anti‑inflammatory properties. However, the function and mechanism underlying the effect of GSPE on small artery remodeling remain to be elucidated. The present study investigated the effect of GSPE on vascular remodeling in the mesenteric small arteries of spontaneous hypertensive rats (SHR). Parameters associated with hypertension, including systolic blood pressure, oxidative stress, morphological and ultrastructural alteration of vessels, deposition of collagen and transforming growth factor (TGF)-β1, were analyzed. The results revealed that GSPE alleviated hypertension-induced hypertrophic vascular remodeling in the small arteries of SHR, which was independent of blood pressure. GSPE decreased oxidative stress associated with hypertension in SHR and suppressed the increased expression of TGF‑β1, which blocked the translocation and differentiation of adventitia fibroblasts and eventually inhibited collagen hyperplasia in the blood vessel. The inhibitory effect of GSPE on small artery remodeling was achieved via its suppressive effect on oxidant production and the subsequent intercellular and intracellular cascades. The findings of the present study supported the potential therapeutic value of GSPE for the treatment of hypertension.
Collapse
Affiliation(s)
- Ying Liang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiqing Gao
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Quanzhen Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaohua Zhao
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jun Zhang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Qiu
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 2016; 114:110-120. [PMID: 27773825 DOI: 10.1016/j.phrs.2016.10.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are key signaling molecules that regulate vascular function and structure in physiological conditions. A misbalance between the production and detoxification of ROS increases oxidative stress that is involved in the vascular remodeling associated with cardiovascular diseases such as hypertension by affecting inflammation, hypertrophy, migration, growth/apoptosis and extracellular matrix protein turnover. The major and more specific source of ROS in the cardiovascular system is the NADPH oxidase (NOX) family of enzymes composed of seven members (NOX1-5, DUOX 1/2). Vascular cells express several NOXs being NOX-1 and NOX-4 the most abundant NOXs present in vascular smooth muscle cells. This review focuses on specific aspects of NOX-1 and NOX-4 isoforms including information on regulation, function and their role in vascular remodeling. In order to obtain a more integrated view about the role of the different NOX isoforms in different types of vascular remodeling, we discuss the available literature not only on hypertension but also in atherosclerosis, restenosis and aortic dilation.
Collapse
Affiliation(s)
- Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain
| | - Andrea Aguado
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain.
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain.
| |
Collapse
|
13
|
Virdis A, Gesi M, Taddei S. Impact of apocynin on vascular disease in hypertension. Vascul Pharmacol 2016; 87:1-5. [PMID: 27569106 DOI: 10.1016/j.vph.2016.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 07/25/2016] [Accepted: 08/20/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are generated by cell metabolism of oxygen and represent signaling molecules playing an active role in vascular biology. In pathological conditions, including hypertension, a ROS excess, together with reduced endogenous antioxidant defenses, occurs, determining a state of oxidative stress. NAD(P)H oxidase (Nox) is a major ROS source within the vasculature. A large body of literature has demonstrated that hypertension-associated vascular functional and structural changes are attributable to Nox-driven intravascular ROS generation. Apocynin is a methoxy-catechol discovered as an inhibitor of superoxide. It has been utilized in several laboratories and in different models of hypertension as an inhibitor of Nox. Recent evidence proposes that apocynin predominantly acts as an antioxidant. The present review will discuss the role of ROS in vascular disease in hypertension and the impact of apocynin on these vascular changes.
Collapse
Affiliation(s)
- Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Marco Gesi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
14
|
Hayashi K, Shimizu E. Composition of connective tissues and morphometry of vascular smooth muscle in arterial wall of DOCA-salt hypertensive rats – In relation with arterial remodeling. J Biomech 2016; 49:1225-1229. [DOI: 10.1016/j.jbiomech.2016.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 11/16/2022]
|
15
|
Consistent antioxidant and antihypertensive effects of oral sodium nitrite in DOCA-salt hypertension. Redox Biol 2015; 5:340-346. [PMID: 26119848 PMCID: PMC4491646 DOI: 10.1016/j.redox.2015.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 02/01/2023] Open
Abstract
Hypertension is a common disease that includes oxidative stress as a major feature, and oxidative stress impairs physiological nitric oxide (NO) activity promoting cardiovascular pathophysiological mechanisms. While inorganic nitrite and nitrate are now recognized as relevant sources of NO after their bioactivation by enzymatic and non-enzymatic pathways, thus lowering blood pressure, mounting evidence suggests that sodium nitrite also exerts antioxidant effects. Here we show for the first time that sodium nitrite exerts consistent systemic and vascular antioxidant and antihypertensive effects in the deoxycorticosterone-salt (DOCA-salt) hypertension model. This is particularly important because increased oxidative stress plays a major role in the DOCA-salt hypertension model, which is less dependent on activation of the renin-angiotensin system than other hypertension models. Indeed, antihypertensive effects of oral nitrite were associated with increased plasma nitrite and nitrate concentrations, and completely blunted hypertension-induced increases in plasma 8-isoprostane and lipid peroxide levels, in vascular reactive oxygen species, in vascular NADPH oxidase activity, and in vascular xanthine oxidoreductase activity. Together, these findings provide evidence that the oral administration of sodium nitrite consistently decreases the blood pressure in association with major antioxidant effects in experimental hypertension. Nitrite is known to recycle back to NO under specific conditions. Antihypertensive effects have been shown for sodium nitrite in some animal models. The DOCA-salt hypertension model includes oxidative stress as a major pathogenetic mechanism. This study shows antihypertensive effects of nitrite in the DOCA-salt hypertension model. Reduction in arterial blood pressure was associated with important antioxidant effects of sodium nitrite.
Collapse
|
16
|
Renal tubulointerstitial damage and salt-sensitive hypertension in chronic kidney disease: is the tubulointerstitium relevant beyond the glomerulus? Hypertens Res 2014; 38:102-3. [PMID: 25427684 DOI: 10.1038/hr.2014.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Mechanisms of improved aortic stiffness by arotinolol in spontaneously hypertensive rats. PLoS One 2014; 9:e88722. [PMID: 24533142 PMCID: PMC3923047 DOI: 10.1371/journal.pone.0088722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/09/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study investigates the effects on aortic stiffness and vasodilation by arotinolol and the underlying mechanisms in spontaneously hypertensive rats (SHR). METHODS The vasodilations of rat aortas, renal and mesenteric arteries were evaluated by isometric force recording. Nitric oxide (NO) was measured in human aortic endothelial cells (HAECs) by fluorescent probes. Sixteen-week old SHRs were treated with metoprolol (200 mg·kg-1·d⁻¹), arotinolol (30 mg·kg-1·d⁻¹) for 8 weeks. Central arterial pressure (CAP) and pulse wave velocity (PWV) were evaluated via catheter pressure transducers. Collagen was assessed by immunohistochemistry and biochemistry assay, while endothelial nitric oxide synthase (eNOS) and eNOS phosphorylation (p-eNOS) of HAECs or aortas were analyzed by western blotting. RESULTS Arotinolol relaxed vascular rings and the relaxations were attenuated by Nω-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor) and the absence of endothelium. Furthermore, arotinolol-induced relaxations were attenuated by 4-aminopyridine (4-AP, Kv channels blocker). Arotinolol produced more nitric oxide compared to metoprolol and increased the expression of p-eNOS in HAECs. These results indicated that arotinolol-induced vasodilation involves endothelium-derived NO and Kv channels. The treatement with arotinolol in 8 weeks, but not metoprolol, markedly decreased CAP and PWV. Biochemistry assay and immunohistochemistry showed that aortic collagen depositions in the arotinolol groups were reduced compared with SHRs with metoprolol. Moreover, eNOS phosphorylation was significantly increased in aortinolol-treated SHR compared with SHRs with metoprolol. CONCLUSIONS Arotinolol improves arterial stiffness in SHR, which involved in increasing NO and decreasing collagen contents in large arteries.
Collapse
|
18
|
Petrônio MS, Zeraik ML, da Fonseca LM, Ximenes VF. Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor. Molecules 2013; 18:2821-39. [PMID: 23455672 PMCID: PMC6269682 DOI: 10.3390/molecules18032821] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022] Open
Abstract
Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M-1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.
Collapse
Affiliation(s)
- Maicon S. Petrônio
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Unesp-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil; E-Mails: ;
| | - Maria Luiza Zeraik
- Departamento de Química Orgânica, Instituto de Química, Unesp-Univ Estadual Paulista, Araraquara, SP, 14800-900, Brazil; E-Mail:
| | - Luiz Marcos da Fonseca
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Unesp-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil; E-Mails: ;
| | - Valdecir F. Ximenes
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Unesp-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil; E-Mails: ;
- Departamento de Química, Faculdade de Ciências, Unesp-Univ Estadual Paulista, Bauru, SP 17033-360, Brazil
| |
Collapse
|