1
|
Parati G, Bilo G, Kollias A, Pengo M, Ochoa JE, Castiglioni P, Stergiou GS, Mancia G, Asayama K, Asmar R, Avolio A, Caiani EG, De La Sierra A, Dolan E, Grillo A, Guzik P, Hoshide S, Head GA, Imai Y, Juhanoja E, Kahan T, Kario K, Kotsis V, Kreutz R, Kyriakoulis KG, Li Y, Manios E, Mihailidou AS, Modesti PA, Omboni S, Palatini P, Persu A, Protogerou AD, Saladini F, Salvi P, Sarafidis P, Torlasco C, Veglio F, Vlachopoulos C, Zhang Y. Blood pressure variability: methodological aspects, clinical relevance and practical indications for management - a European Society of Hypertension position paper ∗. J Hypertens 2023; 41:527-544. [PMID: 36723481 DOI: 10.1097/hjh.0000000000003363] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Blood pressure is not a static parameter, but rather undergoes continuous fluctuations over time, as a result of the interaction between environmental and behavioural factors on one side and intrinsic cardiovascular regulatory mechanisms on the other side. Increased blood pressure variability (BPV) may indicate an impaired cardiovascular regulation and may represent a cardiovascular risk factor itself, having been associated with increased all-cause and cardiovascular mortality, stroke, coronary artery disease, heart failure, end-stage renal disease, and dementia incidence. Nonetheless, BPV was considered only a research issue in previous hypertension management guidelines, because the available evidence on its clinical relevance presents several gaps and is based on heterogeneous studies with limited standardization of methods for BPV assessment. The aim of this position paper, with contributions from members of the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability and from a number of international experts, is to summarize the available evidence in the field of BPV assessment methodology and clinical applications and to provide practical indications on how to measure and interpret BPV in research and clinical settings based on currently available data. Pending issues and clinical and methodological recommendations supported by available evidence are also reported. The information provided by this paper should contribute to a better standardization of future studies on BPV, but should also provide clinicians with some indications on how BPV can be managed based on currently available data.
Collapse
Affiliation(s)
- Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, Milan
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Grzegorz Bilo
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, Milan
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Anastasios Kollias
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| | - Martino Pengo
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, Milan
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Juan Eugenio Ochoa
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, Milan
| | - Paolo Castiglioni
- IRCCS Fondazione Don Carlo Gnocchi, Milan
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese
| | - George S Stergiou
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| | | | - Kei Asayama
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
- Department of Cardiovascular Sciences, University of Leuven, and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven, Belgium
- Tohoku Institute for the Management of Blood Pressure, Sendai, Japan
| | - Roland Asmar
- Foundation-Medical Research Institutes, Geneva, Switzerland
| | - Alberto Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Enrico G Caiani
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, Milan
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Italy
| | - Alejandro De La Sierra
- Hypertension Unit, Department of Internal Medicine, Hospital Mútua Terrassa, University of Barcelona, Barcelona, Spain
| | | | - Andrea Grillo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Przemysław Guzik
- Department of Cardiology -Intensive Therapy, University School of Medicine in Poznan, Poznan, Poland
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne Victoria Australia
| | - Yutaka Imai
- Tohoku Institute for the Management of Blood Pressure, Sendai, Japan
| | - Eeva Juhanoja
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Turku
- Department of Oncology; Division of Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Thomas Kahan
- Karolinska Institute, Department of Clinical Sciences, Division of Cardiovascular Medicine, Department of Cardiology, Danderyd University Hospital Corporation, Stockholm, Sweden
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | | | - Konstantinos G Kyriakoulis
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension and Medical Genomics, National Research Centre for Translational Medicine
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Efstathios Manios
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra Hospital Athens, Greece
| | - Anastasia S Mihailidou
- Department of Cardiology and Kolling Institute, Royal North Shore Hospital, St Leonards; Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | | | - Stefano Omboni
- Clinical Research Unit, Italian Institute of Telemedicine, Varese, Italy
- Department of Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Paolo Palatini
- Department of Medicine. University of Padova, Padua, Italy
| | - Alexandre Persu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires Saint-Luc and Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Athanasios D Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Francesca Saladini
- Department of Medicine. University of Padova, Padua, Italy
- Cardiology Unit, Cittadella Town Hospital, Padova, Italy
| | - Paolo Salvi
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, Milan
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
| | - Camilla Torlasco
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, Milan
| | - Franco Veglio
- Internal Medicine Division and Hypertension Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Charalambos Vlachopoulos
- Hypertension and Cardiometabolic Syndrome Unit, 1 Department of Cardiology, Medical School, National & Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Yuqing Zhang
- Department of Cardiology, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Fares S, Bakkar NMZ, Alami R, Lakkis I, Badr K. Longitudinal study on the effect of surgical weight loss on beat-to-beat blood pressure variability in patients undergoing bariatric surgery: a study protocol. BMJ Open 2021; 11:e050957. [PMID: 34667007 PMCID: PMC8527146 DOI: 10.1136/bmjopen-2021-050957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Alterations in linear and non-linear parameters of beat-to-beat blood pressure variability (BPV) have been shown to predict disease prognosis and distinguish between risk categories in various pathological conditions, independently of average blood pressure levels. Obesity places subjects at elevated risk of vascular diseases, including hypertension, resulting in serious cardiac, respiratory and cerebral events. However, little is known about the status of vascular dynamics in obese and morbidly obese adults. METHODS AND ANALYSIS In this present quasi-experimental longitudinal study, changes in beat-to-beat BPV, using continuous, non-invasive blood pressure monitoring, in obese subjects undergoing bariatric surgery are characterised. The capacity of linear and non-linear measures of BPV to detect differences between hypertensive, prehypertensive and normotensive obese subjects prebariatric and postbariatric surgery are tested. Additionally, potential correlations between beat-to-beat BPV and age, body mass index, gender and comorbidities will be investigated. In parallel, the impact of the unsteady fluctuations of beat-to-beat blood pressure on the dynamic stresses imparted by blood flow on blood vessel walls will be explored. We expect to find altered BPV profiles in hypertensive and prehypertensive subjects as compared with normotensive subjects. We also expect to see differential normalisation in BPV profiles between hypertensive, prehypertensive and normotensive subjects over time. ETHICS AND DISSEMINATION The study has been approved by the Institutional Review Board at the American University of Beirut (IRB ID: BIO-2018-0040). Study results will be made available to the public through publications in peer-reviewed journals and conference papers and/or presentations.
Collapse
Affiliation(s)
- Souha Fares
- Rafic Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | | | - Ramzi Alami
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Issam Lakkis
- Department of Mechanical Engineering, American University of Beirut Faculty of Engineering and Architecture, Beirut, Lebanon
| | - Kamal Badr
- Department of Internal Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
3
|
Beat-to-beat blood pressure variability: an early predictor of disease and cardiovascular risk. J Hypertens 2021; 39:830-845. [PMID: 33399302 DOI: 10.1097/hjh.0000000000002733] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Blood pressure (BP) varies on the long, short and very-short term. Owing to the hidden physiological and pathological information present in BP time-series, increasing interest has been given to the study of continuous, beat-to-beat BP variability (BPV) using invasive and noninvasive methods. Different linear and nonlinear parameters of variability are employed in the characterization of BP signals in health and disease. Although linear parameters of beat-to-beat BPV are mainly measures of dispersion, such as standard deviation (SD), nonlinear parameters of BPV quantify the degree of complexity/irregularity- using measures of entropy or self-similarity/correlation. In this review, we summarize the value of linear and nonlinear parameters in reflecting different information about the pathophysiology of changes in beat-to-beat BPV independent of or superior to mean BP. We then provide a comparison of the relative power of linear and nonlinear parameters of beat-to-beat BPV in detecting early and subtle differences in various states. The practical advantage and utility of beat-to-beat BPV monitoring support its incorporation into routine clinical practices.
Collapse
|
4
|
Webb AJS, Lawson A, Wartolowska K, Mazzucco S, Rothwell PM. Progression of Beat-to-Beat Blood Pressure Variability Despite Best Medical Management. Hypertension 2020; 77:193-201. [PMID: 33249860 PMCID: PMC7720874 DOI: 10.1161/hypertensionaha.120.16290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supplemental Digital Content is available in the text. Beat-to-beat variability in blood pressure (BP) is associated with recurrent stroke despite good control of hypertension. However, no study has identified rates of progression of beat-to-beat BP variability (BPV), its determinants, or which patient groups are particularly affected, limiting understanding of its potential as a treatment target. In consecutive patients one month after a transient ischaemic attack or nondisabling stroke (Oxford Vascular Study), continuous noninvasive BP was measured beat-to-beat over 5 minutes (Finometer). Arterial stiffness was measured by carotid-femoral pulse wave velocity (Sphygmocor). Repeat assessments were performed at the 5-year follow-up visit and agreement determined by intraclass correlation coefficient. Rates of progression of systolic BPV (SBPV) and diastolic BPV (DBPV) and their determinants were estimated by mixed-effect linear models, adjusted for age, sex, and cardiovascular risk factors. One hundred eighty-eight of 310 surviving, eligible patients had repeat assessments after a median of 5.8 years. Pulse wave velocity was highly reproducible but SBPV and DBPV were not (intraclass correlation coefficient: 0.71, 0.10, and 0.16, respectively), however, all 3 progressed significantly (pulse wave velocity, 2.39%, P<0.0001; SBPV, 8.36%, P<0.0001; DBPV, 9.7, P<0.0001). Rate of progression of pulse wave velocity, SBPV, and DBPV all increased significantly with age (P<0.0001), with an increasingly positive skew and were particularly associated with female sex (pulse wave velocity P=0.00035; SBPV P<0.0001; DBPV P<0.0001) and aortic mean SBP (SBPV P=0.037, DBPV P<0.0001). Beat-to-beat BP variability progresses significantly in high-risk patients, particularly in older individuals with elevated aortic systolic pressure. Beat-to-beat BPV and its progression represent potential new therapeutic targets to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Alastair J S Webb
- From the Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom
| | - Amy Lawson
- From the Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom
| | - Karolina Wartolowska
- From the Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom
| | - Sara Mazzucco
- From the Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom
| | - Peter M Rothwell
- From the Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom
| |
Collapse
|
5
|
Reduction of blood pressure variability: an additional protective cardiovascular effect of vasodilating beta-blockers? J Hypertens 2020; 38:405-407. [DOI: 10.1097/hjh.0000000000002334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Baroreflex failure and beat-to-beat blood pressure variation. Hypertens Res 2018; 41:547-552. [DOI: 10.1038/s41440-018-0056-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
7
|
Del Mauro JS, Prince PD, Donato M, Fernandez Machulsky N, Morettón MA, González GE, Bertera FM, Carranza A, Gorzalczany SB, Chiappetta DA, Berg G, Morales C, Gelpi RJ, Taira CA, Höcht C. Effects of carvedilol or amlodipine on target organ damage in L-NAME hypertensive rats: their relationship with blood pressure variability. ACTA ACUST UNITED AC 2017; 11:227-240. [PMID: 28595719 DOI: 10.1016/j.jash.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/17/2017] [Accepted: 02/14/2017] [Indexed: 01/19/2023]
Abstract
The aim of the study was to compare the effects of chronic oral treatment with carvedilol or amlodipine on blood pressure, blood pressure variability and target organ damage in N-nitro-l-arginine methyl ester (L-NAME) hypertensive rats. Wistar rats were treated with L-NAME administered in the drinking water for 8 weeks together with oral administration of carvedilol 30 mg/kg (n = 6), amlodipine 10 mg/kg (n = 6), or vehicle (n = 6). At the end of the treatment, echocardiographic evaluation, blood pressure, and short-term variability measurements were performed. Left ventricular and thoracic aortas were removed to assess activity of metalloproteinase 2 and 9 and expression levels of transforming growth factor β, tumor necrosis factor α, and interleukin 6. Histological samples were prepared from both tissues. Carvedilol and amlodipine induced a comparable reduction of systolic and mean arterial pressure and its short-term variability in L-NAME rats. The expression of transforming growth factor β, tumor necrosis factor α, and interleukin 6 decreased in both organs after carvedilol or amlodipine treatment and the activity of metalloproteinase was reduced in aortic tissue. Treatment with carvedilol or amlodipine completely prevented left ventricular collagen deposition and morphometric alterations in aorta. Oral chronic treatment with carvedilol or amlodipine significantly attenuates blood pressure variability and reduces target organ damage and biomarkers of tissue fibrosis and inflammation in L-NAME hypertensive rats.
Collapse
Affiliation(s)
- Julieta S Del Mauro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina.
| | - Paula D Prince
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Físicoquímica, Instituto de Bioquímica y Medicina Molecular-Consejo Nacional de Investigaciones Científicas y Técnicas (IBIMOL-CONICET), Buenos Aires, Argentina
| | - Martín Donato
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Buenos Aires, Argentina
| | - Nahuel Fernandez Machulsky
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Lípidos y Aterosclerosis, Departamiento de Bioquímica Clínica, INFIBIOC, Buenos Aires, Argentina
| | - Marcela A Morettón
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Germán E González
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Buenos Aires, Argentina
| | - Facundo M Bertera
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina
| | - Susana B Gorzalczany
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina
| | - Diego A Chiappetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriela Berg
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Lípidos y Aterosclerosis, Departamiento de Bioquímica Clínica, INFIBIOC, Buenos Aires, Argentina
| | - Celina Morales
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Buenos Aires, Argentina
| | - Ricardo J Gelpi
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Buenos Aires, Argentina
| | - Carlos A Taira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Buenos Aires, Argentina
| |
Collapse
|
8
|
Igreja B, Pires NM, Bonifácio MJ, Loureiro AI, Fernandes-Lopes C, Wright LC, Soares-da-Silva P. Blood pressure-decreasing effect of etamicastat alone and in combination with antihypertensive drugs in the spontaneously hypertensive rat. Hypertens Res 2014; 38:30-8. [DOI: 10.1038/hr.2014.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/15/2014] [Accepted: 08/02/2014] [Indexed: 12/13/2022]
|
9
|
Kékes E, Kiss I. Measurement of blood pressure variability and the clinical value. Orv Hetil 2014; 155:1661-72. [DOI: 10.1556/oh.2014.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Authors have collected and analyzed literature data on blood pressure variability. They present the methods of blood pressure variability measurement, clinical value and relationships with target organ damages and risk of presence of cardiovascular events. They collect data about the prognostic value of blood pressure variability and the effects of different antihypertensive drugs on blood pressure variability. They underline that in addition to reduction of blood pressure to target value, it is essential to influence blood pressure fluctuation and decrease blood pressure variability, because blood pressure fluctuation presents a major threat for the hypertensive subjects. Data from national studies are also presented. They welcome that measurement of blood pressure variability has been included in international guidelines. Orv. Hetil., 2014, 155(42), 1661–1672.
Collapse
Affiliation(s)
- Ede Kékes
- Óbuda Hypertonia Centrum Budapest Vörösvári út 9., II. 8. 1035
| | - István Kiss
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika, Geriátriai Tanszéki Csoport Budapest
- Szent Imre Egyetemi Oktatókórház Nephrologia-Hypertonia Profil és Aktív Geriátria Részleg Budapest
- B.Braun Avitum Dialízis Hálózat 1. sz. Dialízisközpont Budapest
| |
Collapse
|
10
|
|
11
|
Höcht C, Bertera FM, Del Mauro JS, Taira CA. Models for evaluating the pharmacokinetics and pharmacodynamics for β-blockers. Expert Opin Drug Metab Toxicol 2014; 10:525-41. [DOI: 10.1517/17425255.2014.885951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Bertera FM, Del Mauro JS, Lovera V, Chiappetta D, Polizio AH, Taira CA, Höcht C. Enantioselective pharmacokinetics and cardiovascular effects of nebivolol in L-NAME hypertensive rats. Hypertens Res 2013; 37:194-201. [DOI: 10.1038/hr.2013.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/22/2022]
|
13
|
Bertera FM, Santa-Cruz DM, Balestrasse KB, Gorzalczany SB, Höcht C, Taira CA, Polizio AH. Tempol-nebivolol therapy potentiates hypotensive effect increasing NO bioavailability and signaling pathway. Free Radic Res 2013; 48:109-18. [PMID: 24074298 DOI: 10.3109/10715762.2013.845294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nebivolol is a third generation beta blocker with endothelial nitric oxide synthase (eNOS) agonist properties. Considering the role of reactive oxygen species (ROS) in the uncoupling of eNOS, we hypothesized that the preadministration of an antioxidant as tempol, could improve the hypotensive response of nebivolol in normotensive animals increasing the nitric oxide (NO) bioavailability by a reduction of superoxide (O2(•-)) basal level production in the vascular tissue. Male Sprague Dawley rats were given tap water to drink (control group) or tempol (an antioxidant scavenger of superoxide) for 1 week. After 1 week, Nebivolol, at a dose of 3 mg/kg, was injected intravenously to the control group or to the tempol-treated group. Mean arterial pressure, heart rate, and blood pressure variability were evaluated in the control, tempol, nebivolol, and tempol nebivolol groups, as well as, the effect of different inhibitor as Nβ-nitro-l-arginine methyl ester (L-NAME, a Nitric oxide synthase blocker) or glybenclamide, a KATP channel inhibitor. Also, the expression of α,β soluble guanylate cyclase (sGC), phospho-eNOS, and phospho-vasodilator-stimulated phosphoprotein (P-VASP) were evaluated by Western Blot and cyclic guanosine monophosphate (cGMP) levels by an enzyme-linked immunosorbent assay (ELISA) commercial kit assay. We showed that pretreatment with tempol in normotensive rats produces a hypotensive response after nebivolol administration through an increase in the NO bioavailability and sGC, improving the NO/cGMP/protein kinase G (PKG) pathway compared to that of the nebivolol group. We demonstrated that tempol preadministration beneficiates the response of a third-generation beta blocker with eNOS stimulation properties, decreasing the basal uncoupling of eNOS, and improving NO bioavailability. Our results clearly open a possible new strategy therapeutic for treating hypertension.
Collapse
Affiliation(s)
- F M Bertera
- Department of Pharmacology, University of Buenos Aires , Buenos Aires , Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Höcht C. Blood Pressure Variability: Prognostic Value and Therapeutic Implications. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/398485] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Blood pressure variability (BPV) is considered nowadays a novel risk factor for cardiovascular disease. Early findings in sinoaortic denervated rats have clearly shown that enhanced fluctuation of blood pressure induced left ventricular hypertrophy, vascular stiffness, and renal lesion. A large number of clinical trials confirm that short-term and long-term blood pressure variability independently contributes to target organ damage, cardiovascular events, and mortality not only in hypertensive patients but also in subjects with diabetes mellitus and chronic kidney disease. Therefore, amelioration of BPV has been suggested as an additional target of the treatment of cardiovascular diseases. Preliminary evidence obtained from meta-analysis and controlled clinical trials has shown that antihypertensive classes differ in their ability to control excessive BP fluctuations with an impact in the prevention of cardiovascular events. Calcium channel blockers seem to be more effective than other blood pressure lowering drugs for the reduction of short-term and long-term BPV. In order to increase actual knowledge regarding the prognostic value and therapeutic significance of BPV in cardiovascular disease, there is a need for additional clinical studies specifically designed for the study of the relevance of short-term and long-term BPV control by antihypertensive drugs.
Collapse
Affiliation(s)
- Christian Höcht
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| |
Collapse
|