1
|
Kotton CN, Torre-Cisneros J, Yakoub-Agha I. Slaying the "Troll of Transplantation"-new frontiers in cytomegalovirus management: A report from the CMV International Symposium 2023. Transpl Infect Dis 2024; 26:e14183. [PMID: 37942955 DOI: 10.1111/tid.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
The 2023 International CMV Symposium took place in Barcelona in May 2023. During the 2-day meeting, delegates and faculty discussed the ongoing challenge of managing the risk of cytomegalovirus infection (the Troll of Transplantation) after solid organ or hematopoietic cell transplantation. Opportunities to improve outcomes of transplant recipients by applying advances in antiviral prophylaxis or pre-emptive therapy, immunotherapy, and monitoring of cell-mediated immunity to routine clinical practice were debated and relevant educational clinical cases presented. This review summarizes the presentations, cases, and discussions from the meeting and describes how further advances are needed before the Troll of Transplantation is slain.
Collapse
Affiliation(s)
- Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Torre-Cisneros
- Maimónides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
2
|
Kumari S, Zemek RM, Palendira U, Ebert LM. Celebrating 100 years of Immunology & Cell Biology - a special focus on the field of tumor immunology in Australia. Immunol Cell Biol 2023; 101:783-788. [PMID: 37694341 DOI: 10.1111/imcb.12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In this Commentary article, as part of the 100-year celebrations of the journal, we reflect on the contribution of articles published in ICB in the field of tumor immunology. A highlight is a series of interviews conducted with three Australian-based ICB authors who have contributed key papers over the years: Rajiv Khanna, Delia Nelson and Ian Frazer.
Collapse
Affiliation(s)
- Snehlata Kumari
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Umaimainthan Palendira
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Lisa M Ebert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Cai J, Zhang B, Li Y, Zhu W, Akihisa T, Li W, Kikuchi T, Liu W, Feng F, Zhang J. Prophylactic and Therapeutic EBV Vaccines: Major Scientific Obstacles, Historical Progress, and Future Direction. Vaccines (Basel) 2021; 9:vaccines9111290. [PMID: 34835222 PMCID: PMC8623587 DOI: 10.3390/vaccines9111290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is associated with various malignant tumors and immune diseases, imparting a huge disease burden on the human population. Available EBV vaccines are imminent. Prophylactic vaccines can effectively prevent the spread of infection, whereas therapeutic vaccines mainly stimulate cell-mediated immunity and kill infected cells, thus curbing the development of malignant tumors. Nevertheless, there are still no approved EBV vaccines after decades of effort. The complexity of the EBV life cycle, the lack of appropriate animal models, and the limited reports on adjuvant selection and immune responses are gravely impeding progress in EBV vaccines. The soluble gp350 vaccine could reduce the incidence of infectious mononucleosis (IM), which seemed to offer hope, but could not prevent EBV infection. Continuous research and vaccine trials provide deep insights into the structural biology of viruses, the designs for immunogenicity, and the evolving vaccine platforms. Moreover, the new vaccine candidates are expected to achieve further success via combined immunization to elicit both a dual protection of B cells and epithelial cells, and sustainable immunization against infected cells at several phases of infection.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Bodou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Wanfang Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Correspondence:
| |
Collapse
|
4
|
Çomakli S, Özdemir S. Comparative Evaluation of the Immune Responses in Cattle Mammary Tissues Naturally Infected with Bovine Parainfluenza Virus Type 3 and Bovine Alphaherpesvirus-1. Pathogens 2019; 8:pathogens8010026. [PMID: 30823555 PMCID: PMC6470764 DOI: 10.3390/pathogens8010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine parainfluenza virus type 3 (BPIV-3) and Bovine alphaherpesvirus-1 (BoHV-1) lead to severe diseases in domesticated animals, such as Bovine, sheep, and goats. One of these diseases is mastitis, whose signs may not be observable in cases of viral infection due to the dominance of other clinical symptoms. This may lead to failure to predict viral agents in subclinical Bovine cases. Since viral infections have not been substantially investigated in mastitis studies, information about immune response to BPIV-3 and BoHV-1 infected Bovine mammary tissues may be inadequate. The present study aimed to determine the presence and prevalence of BPIV-3 and BoHV-1 agents in Bovine mammary tissues, and the immune response of such tissues against BPIV-3 and BoHV-1 infection. For this purpose, we first detected these viruses with qRT-PCR in mammary tissues. Then, we determined the expression profiles of interferon-γ (IFN-γ), CD4, and CD8 genes with qRT-PCR. Lastly, we performed immunohistochemistry staining to identify the presence of IFN-γ, CD4, and CD8 proteins in the mammary tissues. We found that 26, 16, and five of the 120 samples were BPI3-, BoHV1-, and BPIV-3 + BoHV-1 infected, respectively. Moreover, the gene expression levels of IFN-γ and CD4 were strongly up-regulated in the virus-infected tissues, whereas the CD8 gene expression level was only moderately up-regulated. Immunohistochemistry staining results were consistent with qRT-PCR results. Overall, our findings showed a high prevalence of BPIV-3 and BoHV-1 and indicated that cell-mediated immune response plays an important role against BPIV-3 and BoHV-1 infection in Bovine mammary tissues. Meanwhile, IFN-γ is an important cytokine for antiviral immunity against such infection.
Collapse
Affiliation(s)
- Selim Çomakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Yakutiye 25240, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Yakutiye 25240, Erzurum, Turkey.
| |
Collapse
|
5
|
Hart J, MacHugh ND, Sheldrake T, Nielsen M, Morrison WI. Identification of immediate early gene products of bovine herpes virus 1 (BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle. J Gen Virol 2017; 98:1843-1854. [PMID: 28671533 DOI: 10.1099/jgv.0.000823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In common with other herpes viruses, bovine herpes virus 1 (BHV-1) induces strong virus-specific CD8 T-cell responses. However, there is a paucity of information on the antigenic specificity of the responding T-cells. The development of a system to generate virus-specific CD8 T-cell lines from BHV-1-immune cattle, employing Theileria-transformed cell lines for antigen presentation, has enabled us to address this issue. Use of this system allowed the study to screen for CD8 T-cell antigens that are efficiently presented on the surface of virus-infected cells. Screening of a panel of 16 candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens were presented by two or three class I MHC alleles in each animal. Six CD8 T-cell epitopes were identified in the three IE proteins by screening of synthetic peptides. Use of an algorithm (NetMHCpan) that predicts the peptide-binding characteristics of restricting MHC alleles confirmed and, in some cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV-I-immune cattle and hence are prime-candidate antigens for the generation of a subunit vaccine.
Collapse
Affiliation(s)
- Jane Hart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Niall D MacHugh
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Tara Sheldrake
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Morten Nielsen
- Department of Bio and Health Informatics, Centre for Biological Science Sequence Analysis, The Technical University, Lyngby, Denmark
| | - W Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.,Biotechnological Research Institute, National University of San Martin, San Martin, Buenos Aires, Argentina
| |
Collapse
|
6
|
Dasari V, Bhatt KH, Smith C, Khanna R. Designing an effective vaccine to prevent Epstein-Barr virus-associated diseases: challenges and opportunities. Expert Rev Vaccines 2017; 16:377-390. [PMID: 28276306 DOI: 10.1080/14760584.2017.1293529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Epstein-Barr virus (EBV) is a ubiquitous herpesvirus associated with a number of clinical manifestations. Primary EBV infection in young adolescents often manifests as acute infectious mononucleosis and latent infection is associated with multiple lymphoid and epithelial cancers and autoimmune disorders, particularly multiple sclerosis. Areas covered: Over the last decade, our understanding of pathogenesis and immune regulation of EBV-associated diseases has provided an important platform for the development of novel vaccine formulations. In this review, we discuss developmental strategies for prophylactic and therapeutic EBV vaccines which have been assessed in preclinical and clinical settings. Expert commentary: Major roadblocks in EBV vaccine development include no precise understanding of the clinical correlates of protection, uncertainty about adjuvant selection and the unavailability of appropriate animal models. Recent development of new EBV vaccine formulations provides exciting opportunities for the formal clinical assessment of novel formulations.
Collapse
Affiliation(s)
- Vijayendra Dasari
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Kunal H Bhatt
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Corey Smith
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Rajiv Khanna
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| |
Collapse
|
7
|
Abstract
Over the last century, the development of effective vaccine approaches to treat a number of viral infections has provided the impetus for the continual development of vaccine platforms for other viral infections, including Epstein-Barr virus (EBV). The clinical manifestations associated with EBV infection occur either following primary infection, such as infectious mononucleosis, or following an extended period of latency, primarily the EBV-associated malignancies and potentially including a number of autoimmune disorders, such as multiple sclerosis. As a consequence, two independent vaccine approaches are under development to prevent or control EBV-associated diseases. The first approach, which has been widely successful against other viral infections, is aimed at inducing a viral neutralisation antibody response to prevent primary infection. The second approach focuses upon the induction of cell-mediated immunity to control latent infected cells in persistently infected individuals. Early clinical studies have offered some insight into the potential efficacy of both of these approaches.
Collapse
Affiliation(s)
- Corey Smith
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia. .,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane, 4006, Australia.
| |
Collapse
|
8
|
Tellam JT, Zhong J, Lekieffre L, Bhat P, Martinez M, Croft NP, Kaplan W, Tellam RL, Khanna R. mRNA Structural constraints on EBNA1 synthesis impact on in vivo antigen presentation and early priming of CD8+ T cells. PLoS Pathog 2014; 10:e1004423. [PMID: 25299404 PMCID: PMC4192603 DOI: 10.1371/journal.ppat.1004423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that virally encoded mRNA sequences of genome maintenance proteins from herpesviruses contain clusters of unusual structural elements, G-quadruplexes, which modulate viral protein synthesis. Destabilization of these G-quadruplexes can override the inhibitory effect on self-synthesis of these proteins. Here we show that the purine-rich repetitive mRNA sequence of Epstein-Barr virus encoded nuclear antigen 1 (EBNA1) comprising G-quadruplex structures, limits both the presentation of MHC class I-restricted CD8+ T cell epitopes by CD11c+ dendritic cells in draining lymph nodes and early priming of antigen-specific CD8+ T-cells. Destabilization of the G-quadruplex structures through codon-modification significantly enhanced in vivo antigen presentation and activation of virus-specific T cells. Ex vivo imaging of draining lymph nodes by confocal microscopy revealed enhanced antigen-specific T-cell trafficking and APC-CD8+ T-cell interactions in mice primed with viral vectors encoding a codon-modified EBNA1 protein. More importantly, these antigen-specific T cells displayed enhanced expression of the T-box transcription factor and superior polyfunctionality consistent with the qualitative impact of translation efficiency. These results provide an important insight into how viruses exploit mRNA structure to down regulate synthesis of their viral maintenance proteins and delay priming of antigen-specific T cells, thereby establishing a successful latent infection in vivo. Furthermore, targeting EBNA1 mRNA rather than protein by small molecules or antisense oligonucleotides will enhance EBNA1 synthesis and the early priming of effector T cells, to establish a more rapid immune response and prevent persistent infection. Maintenance proteins of viruses establishing latent infections regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The Epstein-Barr virus maintenance protein, EBNA1, has recently been shown to contain unusual G-quadruplex structures within its repeat mRNA that reduces its translational efficiency. In this study we assess how modification of the EBNA1 mRNA repeat sequence to destabilize the native G-quadruplex structures and thereby increase translation, impacts on the activation of EBNA1-specific T cells in vivo. Mice primed with viral vectors encoding a more efficiently translated EBNA1 mRNA revealed increased trafficking of EBNA1-specific T cells, an enhanced functional profile and increased expression of transcription factors providing evidence for a potential link between mRNA translational efficiency and antigen presentation in vivo and the resultant impact on the functional programming of effector T cells. These findings suggest a novel approach to therapeutic development through the use of antisense strategies or small molecules targeting EBNA1 mRNA structure.
Collapse
Affiliation(s)
- Judy T. Tellam
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (JTT); (RK)
| | - Jie Zhong
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lea Lekieffre
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Purnima Bhat
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michelle Martinez
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nathan P. Croft
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Warren Kaplan
- Peter Wills Bioinformatic Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ross L. Tellam
- CSIRO Agriculture Flagship, Commonwealth Scientific and Industrial Research Organization, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (JTT); (RK)
| |
Collapse
|
9
|
Murat P, Tellam J. Effects of messenger RNA structure and other translational control mechanisms on major histocompatibility complex-I mediated antigen presentation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:157-71. [PMID: 25264139 PMCID: PMC4359683 DOI: 10.1002/wrna.1262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Effective T‐cell surveillance of antigen‐presenting cells is dependent on the expression of an array of antigenic peptides bound to major histocompatibility complex (MHC) class I (MHC‐I) or class II (MHC‐II) molecules. Pathogens co‐evolving with their hosts exploit crucial translational regulatory mechanisms in order to evade host immune recognition and thereby sustain their infection. Evasion strategies that downregulate viral protein synthesis and thereby restrict antigen presentation to cytotoxic T‐cells through the endogenous MHC‐I pathway have been implicated in the pathogenesis of viral‐associated malignancies. An understanding of the mechanisms by which messenger RNA (mRNA) structure modulates both viral mRNA translation and the antigen processing machinery to escape immune surveillance, will stimulate the development of alternative therapeutic strategies focused on RNA‐directed drugs designed to enhance immune responses against infected cells. In this review, we discuss regulatory aspects of the MHC‐I pathway and summarize current knowledge of the role attributed by mRNA structure and other translational regulatory mechanisms in immune evasion. In particular we highlight the impact of recently identified G‐quadruplex structures within virally encoded transcripts as unique regulatory signals for translational control and antigen presentation. WIREs RNA 2015, 6:157–171. doi: 10.1002/wrna.1262 This article is categorized under:
RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation
Collapse
Affiliation(s)
- Pierre Murat
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
10
|
Dasari V, Smith C, Schuessler A, Zhong J, Khanna R. Induction of innate immune signatures following polyepitope protein-glycoprotein B-TLR4&9 agonist immunization generates multifunctional CMV-specific cellular and humoral immunity. Hum Vaccin Immunother 2014; 10:1064-77. [PMID: 24463331 PMCID: PMC4896525 DOI: 10.4161/hv.27675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have suggested that a successful subunit human cytomegalovirus (CMV) vaccine requires improved formulation to generate broad-based anti-viral immunity following immunization. Here we report the development of a non-live protein-based vaccine strategy for CMV based on a polyepitope protein and CMV glycoprotein B (gB) adjuvanted with TLR4 and/or TLR9 agonists. The polyepitope protein includes contiguous multiple MHC class I-restricted epitopes with an aim to induce CD8+ T cell immunity, while gB is an important target for CD4+ T cell immunity and neutralizing antibodies. Optimal immunogenicity of this bivalent non-live protein vaccine formulation was dependent upon the co-administration of both the TLR4 and TLR9 agonist, which was associated with the activation of innate immune signatures and the influx of different DC subsets including plasmacytoid DCs and migratory CD8-DEC205+CD103-CD326- langerin-negative dermal DCs into the draining lymph nodes. Furthermore these professional antigen presenting cells also expressed IL-6, IL-12p70, TNFα, and IFNα which play a crucial role in the activation of adaptive immunity. In summary, this study provides a novel platform technology in which broad-based anti-CMV immune responses upon vaccination can be maximized by co-delivery of viral antigens and TLR4 and 9 agonists which induce activation of innate immune signatures and promote potent antigen acquisition and cross-presentation by multiple DC subsets.
Collapse
Affiliation(s)
- Vijayendra Dasari
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory; Queensland Institute of Medical Research; Brisbane, Qld Australia
| | - Corey Smith
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory; Queensland Institute of Medical Research; Brisbane, Qld Australia
| | - Andrea Schuessler
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory; Queensland Institute of Medical Research; Brisbane, Qld Australia
| | - Jie Zhong
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory; Queensland Institute of Medical Research; Brisbane, Qld Australia
| | - Rajiv Khanna
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory; Queensland Institute of Medical Research; Brisbane, Qld Australia
| |
Collapse
|
11
|
Edwards ESJ, Smith C, Khanna R. Phenotypic and transcriptional profile correlates with functional plasticity of antigen-specific CD4+ T cells. Immunol Cell Biol 2013; 92:181-90. [PMID: 24296812 DOI: 10.1038/icb.2013.88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
Abstract
The role of CD4(+) T cells in the control of infectious pathogens is highly complex with a myriad of functions but how these T cells acquire differential functional potentiality remains poorly defined. Here we show that human cytomegalovirus (CMV)-specific CD4(+) T cells directed towards different viral antigens expressed predominantly TNF-α alone or TNF-α and IFN-γ. TNF-α(+) and IFN-γ(+) CD4(+) T cells expressed significantly higher levels of T-box transcription factors T-bet with graded loss of Eomesodermin (Eomes) expression (T-bet(Hi)Eomes(Hi/Lo)) when compared with TNF-α(+) CD4(+) T cells expressing lower levels of both T-bet and Eomes (T-bet(-)Eomes(-)). Furthermore, TNF-α(+) and IFN-γ(+) CD4(+) T cells expressed significantly higher levels of perforin and interleukin (IL)-2 and displayed a terminally differentiated phenotype (CCR7(-)CD27(-)CD45RA(-)CD57(+)CD62L(-)). In contrast, TNF-α(+) alone CMV-specific CD4(+) T cells were predominantly early-memory phenotype with a proportion of these cells displaying T memory stem-cell phenotype (CD95(+)CD45RA(+)CCR7(+)CD27(+)). In vitro stimulation of CMV-specific CD4(+) T cells with viral antigen in the presence of IL-12 was sufficient to dramatically change the transcriptional and functional profile of TNF-α(+) CD4(+) T cells, whereas TNF-α(+) and IFN-γ(+) CD4(+) T cells remained unaltered. These findings illustrate an intrinsic link between cytokine expression, transcriptional regulation and cellular differentiation, and their impact on functional plasticity of virus-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Emily S J Edwards
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Corey Smith
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Dasari V, Smith C, Khanna R. Recent advances in designing an effective vaccine to prevent cytomegalovirus-associated clinical diseases. Expert Rev Vaccines 2013; 12:661-76. [PMID: 23750795 DOI: 10.1586/erv.13.46] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is now well over a decade since the US Institute of Medicine of the National Academy of Sciences assigned the highest priority for a vaccine to prevent congenital human CMV infection, which was subsequently endorsed by the US National Vaccine Program Office. In spite of extensive efforts over many years, successful licensure of a CMV vaccine formulation remains elusive. While the understanding of immune regulation of CMV infection in healthy virus carriers and diseased patients has dramatically improved, traditional vaccine development programs have failed to exploit this knowledge. Until recently, most efforts have concentrated on designing vaccine formulations that block CMV infection through neutralizing antibodies. However, studies carried out in various disease settings, especially in transplant patients, have clearly emphasized the importance of cellular immunity and it is indeed encouraging to see that recent CMV vaccine development programs have started to incorporate this arm of the immune system. A number of new vaccine candidates have been found to be effective in preclinical studies, and are able to induce CMV-specific immune responses in clinical studies, although firm evidence for long-term efficacy is not yet available. For successful implementation of these vaccines in clinical settings, it will be important to demonstrate that the vaccine can induce effective levels of immunity for prevention of transmission of viral infection from mother to unborn baby and thus reduce CMV-related pathogenesis. For transplant recipients, vaccine strategies should be aimed at the induction of immunity that restricts viral reactivation and limits development of disease.
Collapse
Affiliation(s)
- Vijayendra Dasari
- Centre for Immunotherapy and Vaccine Development, Department of Immunology, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD 4006, Australia
| | | | | |
Collapse
|
13
|
Smith C, Khanna R. Immune regulation of human herpesviruses and its implications for human transplantation. Am J Transplant 2013; 13 Suppl 3:9-23; quiz 23. [PMID: 23347211 DOI: 10.1111/ajt.12005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/03/2012] [Accepted: 07/16/2012] [Indexed: 01/25/2023]
Abstract
Human herpesviruses including cytomegalovirus, Epstein-Barr virus, HHV6, HHV7, HHV8, Herpes simplex virus (HSV)-1 and HSV-2 and varicella zoster virus (VZV) have developed an intricate relationship with the human immune system. This is characterized by the interplay between viral immune evasion mechanisms that promote the establishment of a lifelong persistent infection and the induction of a broad humoral and cellular immune response, which prevents the establishment of viral disease. Understanding the immune parameters that control herpesvirus infection, and the strategies the viruses use to evade immune recognition, has been critical in understanding why immunological dysfunction in transplant patients can lead to disease, and in the development of immunological strategies to prevent and control herpesvirus associated diseases.
Collapse
Affiliation(s)
- C Smith
- Australian Centre for Vaccine Development, Tumour Immunology Laboratory, Department of Immunology, Queensland Institute of Medical Research, Brisbane, Australia
| | | |
Collapse
|
14
|
Torti N, Oxenius A. T cell memory in the context of persistent herpes viral infections. Viruses 2012; 4:1116-43. [PMID: 22852044 PMCID: PMC3407898 DOI: 10.3390/v4071116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 12/16/2022] Open
Abstract
The generation of a functional memory T cell pool upon primary encounter with an infectious pathogen is, in combination with humoral immunity, an essential process to confer protective immunity against reencounters with the same pathogen. A prerequisite for the generation and maintenance of long-lived memory T cells is the clearance of antigen after infection, which is fulfilled upon resolution of acute viral infections. Memory T cells play also a fundamental role during persistent viral infections by contributing to relative control and immuosurveillance of active replication or viral reactivation, respectively. However, the dynamics, the phenotype, the mechanisms of maintenance and the functionality of memory T cells which develop upon acute/resolved infection as opposed to chronic/latent infection differ substantially. In this review we summarize current knowledge about memory CD8 T cell responses elicited during α-, β-, and γ-herpes viral infections with major emphasis on the induction, maintenance and function of virus-specific memory CD8 T cells during viral latency and we discuss how the peculiar features of these memory CD8 T cell responses are related to the biology of these persistently infecting viruses.
Collapse
Affiliation(s)
- Nicole Torti
- Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | |
Collapse
|
15
|
Ex vivo functional analysis, expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme. Immunol Cell Biol 2012; 90:872-80. [PMID: 22508289 DOI: 10.1038/icb.2012.19] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The frequent detection of human cytomegalovirus (CMV) antigens in glioblastoma multiforme (GBM) has raised the possibility of exploiting CMV-specific T-cell immunotherapy to control this disease in CMV--seropositive patients. Here, we have conducted a comprehensive ex vivo profiling of CMV-specific CD8(+) T-cell responses in a cohort of GBM patients. Of the patients analyzed, approximately half exhibited serological evidence of past infection with CMV. Although no CMV-specific CD8(+) T-cell responses could be detected in the serologically negative GBM patients, virus-specific CD8(+) T-cell responses were detected in all seropositive GBM patients. Using major histocompatibility complex-peptide multimers, the frequency of CMV-specific T-cells in the patients detected ranged from 0.1 to 22% of CD8(+) T-cells and a high proportion of these cells were positive for the human natural killer-1 glycoprotein CD57. Furthermore, ex vivo polychromatic functional analysis of the CMV-specific T-cells from GBM patients revealed that large proportions of these cells were unable to produce multiple cytokines (macrophage inflammatory protein (MIP)-1β, tumor necrosis factor (TNF)α and interferon (IFN)γ) and displayed limited cytolytic function (CD107a mobilization) following stimulation with CMV peptide epitopes. However, in vitro stimulation with CMV peptide epitopes in the presence of γC cytokine dramatically reversed the polyfunctional profile of these antigen-specific T-cells with high levels of MIP-1β, TNFα, IFNγ and CD107a mobilization. Most importantly, adoptive transfer of these in vitro-expanded T-cells in combination with temozolomide (TMZ) therapy into a patient with recurrent GBM was coincident with a long-term disease-free survival. These studies provide an important platform for a formal assessment of combination therapies based on CMV-specific T-cells and TMZ for recurrent GBM.
Collapse
|
16
|
The company malaria keeps: how co-infection with Epstein-Barr virus leads to endemic Burkitt lymphoma. Curr Opin Infect Dis 2011; 24:435-41. [PMID: 21885920 DOI: 10.1097/qco.0b013e328349ac4f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Co-infection with Plasmodium falciparum malaria and Epstein-Barr virus (EBV) are implicated in the cause of endemic Burkitt lymphoma (eBL), the most prevalent pediatric cancer in equatorial Africa. Although the causal association between EBV and eBL has been established, P. falciparum malaria's role is not as clearly defined. This review focuses on how malaria may disrupt EBV persistence and immunity. RECENT FINDINGS Two mutually compatible theories have been proposed. One suggests that P. falciparum malaria induces polyclonal B-cell expansion and lytic EBV reactivation, leading to the expansion of latently infected B cells and the likelihood of a c-myc translocation, a hallmark of Burkitt lymphoma tumors. The other advocates that EBV-specific T-cell immunity is impaired during P. falciparum malaria co-infection, either as a cause or consequence of enhanced EBV replication, leading to loss of viral control. Advancements in our ability to query the complexity of human responses to infectious diseases have stimulated interest in eBL pathogenesis. SUMMARY EBV is necessary but not sufficient to cause eBL. A more dynamic model encompasses incremental contributions from both chronic and acute P. falciparum malaria leading to alterations in EBV persistence and EBV-specific immunity that culminate in eBL. A better understanding of how P. falciparum malaria modifies EBV infections in children may allow us to anticipate reductions in eBL incidence coinciding with malaria control programs.
Collapse
|
17
|
|