1
|
Li GQ, Xia J, Zeng W, Luo W, Liu L, Zeng X, Cao D. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol 2023; 14:1206299. [PMID: 37398661 PMCID: PMC10311558 DOI: 10.3389/fimmu.2023.1206299] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Liu Z, Zhou J, Yang X, Liu Y, Zou C, Lv W, Chen C, Cheng KKY, Chen T, Chang LJ, Wu D, Mao J. Safety and antitumor activity of GD2-Specific 4SCAR-T cells in patients with glioblastoma. Mol Cancer 2023; 22:3. [PMID: 36617554 PMCID: PMC9827625 DOI: 10.1186/s12943-022-01711-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND This study aimed to validate whether infusion of GD2-specific fourth-generation safety-designed chimeric antigen receptor (4SCAR)-T cells is safe and whether CAR-T cells exert anti-glioblastoma (GBM) activity. METHODS A total of eight patients with GD2-positive GBM were enrolled and infused with autologous GD2-specific 4SCAR-T cells, either through intravenous administration alone or intravenous combined with intracavitary administration. RESULTS 4SCAR-T cells expanded for 1-3 weeks and persisted at a low frequency in peripheral blood. Of the eight evaluable patients, four showed a partial response for 3 to 24 months, three had progressive disease for 6 to 23 months, and one had stable disease for 4 months after infusion. For the entire cohort, the median overall survival was 10 months from the infusion. GD2 antigen loss and infiltrated T cells were observed in the tumor resected after infusion. CONCLUSION Both single and combined infusions of GD2-specific 4SCAR-T cells in targeting GBM were safe and well tolerated, with no severe adverse events. In addition, GD2-specific 4SCAR-T cells partially mediate antigen loss and activate immune responses in the tumor microenvironment. Validation of our findings in a larger prospective trial is warranted. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03170141 . Registered 30 May 2017.
Collapse
Affiliation(s)
- Zhuohao Liu
- grid.488521.2Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong China ,grid.440218.b0000 0004 1759 7210Present Address: Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong China
| | - Jiayi Zhou
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong China
| | - Xinzhi Yang
- grid.488521.2Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong China ,grid.440218.b0000 0004 1759 7210Present Address: Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong China
| | - Yuchen Liu
- grid.489184.8Shenzhen Geno-Immune Medical Institute, Shenzhen, Guangdong China
| | - Chang Zou
- grid.10784.3a0000 0004 1937 0482School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong China
| | - Wen Lv
- grid.440218.b0000 0004 1759 7210Present Address: Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong China
| | - Cheng Chen
- grid.440218.b0000 0004 1759 7210Present Address: Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong China
| | - Kenneth King-yip Cheng
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Tao Chen
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong China
| | - Lung-Ji Chang
- grid.489184.8Shenzhen Geno-Immune Medical Institute, Shenzhen, Guangdong China
| | - Dinglan Wu
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong China
| | - Jie Mao
- grid.440218.b0000 0004 1759 7210Present Address: Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong China
| |
Collapse
|
3
|
GD2-specific chimeric antigen receptor-modified T cells for the treatment of refractory and/or recurrent neuroblastoma in pediatric patients. J Cancer Res Clin Oncol 2021; 148:2643-2652. [PMID: 34724115 PMCID: PMC9470713 DOI: 10.1007/s00432-021-03839-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
Purpose This study aimed to evaluate the safety and efficacy of chimeric antigen receptor (CAR) disialoganglioside 2 (GD2)-specific (4SCAR-GD2) T cells for treatment of refractory and/or recurrent neuroblastoma (NB) in pediatric patients. Experimental design A phase I clinical study using 4SCAR-GD2 T cells for the treatment of NB in pediatric patients was conducted. This study was registered at www.clinicaltrials.gov (NCT02765243). A lentiviral CAR with the signaling domains of CD28/4-1BB/CD3ζ-iCasp9 was transduced into activated T cells. The response to 4SCAR-GD2 T-cell treatment, and 4SCAR-GD2 T-cell expansion and persistence in patients were evaluated. Toxicities were determined based on the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v4.03. Results Twelve patients were enrolled and finally ten patients were included in this clinical trial which started from January 1, 2016, to August 1, 2017. These patients had progressive disease (PD) before CAR T-cell infusion. After 4SCAR-GD2 T-cell treatment, 6 (6/10) had stable disease (SD) at 6 months, and 4 (4/10) remained SD at 1 year and alive after 3–4 years of follow-up. Six patients died due to disease progression by the end of July 1, 2020. The median overall survival (OS) time was 25 months (95% CI, 0.00–59.43), and the median progression-free survival (PFS) time was 8 months (95% CI, 0.25–15.75). Grade 3 or 4 hematological toxicities were the common adverse events frequently occurred after fludarabine and cyclophosphamide (Flu/cy) chemotherapy. Grade 1–2 toxicities such as cytokine release syndrome (CRS) and neuropathic pain were common, but were transient and mild. Conclusions The 4SCAR-GD2 T-cell therapy demonstrated antitumor effect and manageable toxicities, indicating its potential to benefit children with refractory and/or recurrent NB. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03839-5.
Collapse
|
4
|
Song H, Xu F, Pang X, Xiao Q, Wei Q, Lei B, Li X, Fan X, Tan G. STAT3-Dependent Gene TRIM5γ Interacts With HBx Through a Zinc Binding Site on the BBox Domain. Front Microbiol 2021; 12:663534. [PMID: 34276596 PMCID: PMC8283784 DOI: 10.3389/fmicb.2021.663534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
Owing to its broad-spectrum antivirus activities, interferon (IFN) is an important alternative agent for use in the treatment of hepatitis B virus (HBV)-infected patients; however, the mechanism involved in the inhibition of HBV infection and replication by IFN remains unclear. We previously reported that the induction of TRIM5γ is important in the IFN treatment of HBV patients as it promotes the degradation of the HBx protein, while the manner in which TRIM5γ is induced by IFN and how TRIM5γ interacts with HBx remain unestablished until date. Our present findings confirmed the TRIM5γ-HBx-DDB1 interactions in the HBV-infected Primary human hepatocytes (PHH), and we further found that STAT3, and not STAT1, was responsible for the induction of TRIM5γ upon IFN stimulation and that the zinc binding site His123 on the BBOX domain was a decisive site in the interaction between TRIM5γ BBOX and HBx. In addition, based on the BBOX domain, we detected a 7-amino acid peptide with the potential of promoting HBx degradation and inhibiting HBV replication. On the other hand, we noted that the TRIM5γ expression was inhibited by HBV in chronically HBV infected patients. Thus, our study identified the crucial role of STAT3 in the induction of TRIM5γ, as well as proposed a 7-amino acid, small peptide as a potential candidate for the development of therapeutic agents targeting HBx.
Collapse
Affiliation(s)
- Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaoli Pang
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Qingfei Xiao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Qi Wei
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Bingxin Lei
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Xiaolu Li
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xixi Fan
- Department of Clinical Specialty of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Zhang H, Wang P, Li Z, He Y, Gan W, Jiang H. Anti-CLL1 Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed/Refractory Acute Myeloid Leukemia. Clin Cancer Res 2021; 27:3549-3555. [PMID: 33832948 DOI: 10.1158/1078-0432.ccr-20-4543] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen receptor T cells (CAR T) has emerged as a novel therapy to improve malignancies treatment. C-type lectin-like molecule 1 (CLL1) is highly expressed on AML stem cells, blast cells, and monocytes, but not on normal hematopoietic stem cells, indicating the therapeutic potential of anti-CLL1 CAR T in AML treatment. This study aimed to test the safety and efficacy of CAR T-cell therapy in R/R-AML. PATIENTS AND METHODS Four pediatric patients with R/R-AML were enrolled in the ongoing phase I/II anti-CLL1 CAR T-cell therapy trial. The CAR design was based on an apoptosis-inducing gene, FKBP-caspase 9, to establish a safer CAR (4SCAR) application. Anti-CLL1 CAR was transduced into peripheral blood mononuclear cells of the patients via lentivector 4SCAR, followed by infusion into the recipients after lymphodepletion chemotherapy. Cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other adverse events were documented. Treatment response was evaluated by morphology and flow cytometry-based minimal residual disease assays. RESULTS Three patients with R/R-AML achieved complete remission and minimal residual disease negativity, while the other patient remained alive for 5 months. All these patients experienced low-grade and manageable adverse events. CONCLUSIONS On the basis of our single-institution experience, autologous anti-CLL1 CAR T-cell therapy has the potential to be a safe and efficient alternative treatment for children with R/R-AML, and therefore requires further investigation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China.
| | - Pengfei Wang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Zhuoyan Li
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Wenting Gan
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China.
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
6
|
Allard-Chamard H, Mishra HK, Nandi M, Mayhue M, Menendez A, Ilangumaran S, Ramanathan S. Interleukin-15 in autoimmunity. Cytokine 2020; 136:155258. [PMID: 32919253 DOI: 10.1016/j.cyto.2020.155258] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Interleukin-15 (IL-15) is a member of the IL-2 family of cytokines, which use receptor complexes containing the common gamma (γc) chain for signaling. IL-15 plays important roles in innate and adaptative immune responses and is implicated in the pathogenesis of several immune diseases. The IL-15 receptor consists of 3 subunits namely, the ligand-binding IL-15Rα chain, the β chain (also used by IL-2) and the γc chain. IL-15 uses a unique signaling pathway whereby IL-15 associates with IL-15Rα during biosynthesis, and this complex is 'trans-presented' to responder cells that expresses the IL-2/15Rβγc receptor complex. IL-15 is subject to post-transcriptional and post-translational regulation, and evidence also suggests that IL-15 cis-signaling can occur under certain conditions. IL-15 has been implicated in the pathology of various autoimmune diseases such as rheumatoid arthritis, autoimmune diabetes, inflammatory bowel disease, coeliac disease and psoriasis. Studies with pre-clinical models have shown the beneficial effects of targeting IL-15 signaling in autoimmunity. Unlike therapies targeting other cytokines, anti-IL-15 therapies have not yet been successful in humans. We discuss the complexities of IL-15 signaling in autoimmunity and explore potential immunotherapeutic approaches to target the IL-15 signaling pathway.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Hemant K Mishra
- Vet & Biomedical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marian Mayhue
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
7
|
Nair S, Wang JB, Tsao ST, Liu Y, Zhu W, Slayton WB, Moreb JS, Dong L, Chang LJ. Functional Improvement of Chimeric Antigen Receptor Through Intrinsic Interleukin-15Rα Signaling. Curr Gene Ther 2020; 19:40-53. [PMID: 30444200 DOI: 10.2174/1566523218666181116093857] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Recent studies on CD19-specific chimeric antigen receptor (CAR)-modified T cells (CARTs) have demonstrated unprecedented successes in treating refractory and relapsed B cell malignancies. The key to the latest CART therapy advances can be attributed to the improved costimulatory signals in the CAR design. METHODS Here, we established several novel CARs by incorporating T cell signaling domains of CD28 in conjunction with intracellular signaling motif of 4-1BB, CD27, OX40, ICOS, and IL-15Rα. These novel CARs were functionally assessed based on a simple target cell killing assay. RESULTS The results showed that the CD28/IL-15Rα co-signaling (153z) CAR demonstrated the fastest T cell expansion potential and cytotoxic activities. IL-15 is a key cytokine that mediates immune effector activities. The 153z CARTs maintained prolonged killing activities after repetitive rounds of target cell engagement. Consistent with the enhanced target killing function, the 153z CARTs produced increased amount of effector cytokines including IFN-γ, TNFα and IL-2 upon interaction with the target cells. CONCLUSION In a follow-up clinical study, an acute lymphoblastic leukemia (ALL) patient, who experienced multiple relapses of central nervous system leukemia (CNSL) and failed all conventional therapies, was enrolled to receive the CD19-specific 153z CART treatment. The patient achieved complete remission after the 153z CART cell infusion. The translational outcome supports further investigation into the safety and enhanced therapeutic efficacy of the IL-15Rα-modified CART cells in cancer patients.
Collapse
Affiliation(s)
- Sushmita Nair
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, United States.,Department of Pediatrics and Division of Hematology Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, United States
| | - Jing-Bo Wang
- Department of Hematology, Beijing Aerospace General Hospital, Beijing, China
| | - Shih-Ting Tsao
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, United States.,Geno-immune Medical Institute, Shenzhen, China
| | - Yuchen Liu
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, United States.,Geno-immune Medical Institute, Shenzhen, China
| | - Wei Zhu
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, United States
| | - William B Slayton
- Department of Pediatrics and Division of Hematology Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, United States
| | - Jan S Moreb
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, United States
| | - Lujia Dong
- Geno-immune Medical Institute, Shenzhen, China
| | - Lung-Ji Chang
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, United States.,Geno-immune Medical Institute, Shenzhen, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Chulanetra M, Morchang A, Sayour E, Eldjerou L, Milner R, Lagmay J, Cascio M, Stover B, Slayton W, Chaicumpa W, Yenchitsomanus PT, Chang LJ. GD2 chimeric antigen receptor modified T cells in synergy with sub-toxic level of doxorubicin targeting osteosarcomas. Am J Cancer Res 2020; 10:674-687. [PMID: 32195035 PMCID: PMC7061749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023] Open
Abstract
Since the prognosis for children with high-risk osteosarcoma (OS) remains suboptimal despite intensive multi-modality therapies, there is a clear and urgent need for the development of targeted therapeutics against these refractory malignancies. Chimeric antigen receptor (CAR) modified T cells can meet this need by utilizing the immune system's potent cytotoxic mechanisms against tumor specific antigen targets with exquisite specificity. Since OS highly expresses the GD2 antigen, a viable immunotherapeutic target, we sought to assess if CAR modified T cells targeting GD2 could induce cytotoxicity against OS tumor cells. We demonstrated that the GD2 CAR modified T cells were highly efficacious for inducing OS tumor cell death. Interestingly, the OS cells were induced to up-regulate expression of PD-L1 upon interaction with GD2 CAR modified T cells, and the specific interaction induced CAR T cells to overexpress the exhaustion marker PD-1 along with increased CAR T cell apoptosis. To further potentiate CAR T cell killing activity against OS, we demonstrated that suboptimal chemotherapeutic treatment with doxorubicin can synergize with CAR T cells to effectively kill OS tumor cells.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Department of Molecular Genetics and Microbiology, University of FloridaGainesville, FL 32610, USA
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Atthapan Morchang
- Department of Molecular Genetics and Microbiology, University of FloridaGainesville, FL 32610, USA
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Siriraj Medical Research Center, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Elias Sayour
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
- Brain Tumor Immunotherapy Program, Department of NeurosurgerySichuan, China
| | - Lamis Eldjerou
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - Rowan Milner
- Department of Small Animal Clinical Sciences, University of FloridaSichuan, China
| | - Joanne Lagmay
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - Matt Cascio
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - Brian Stover
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - William Slayton
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Siriraj Medical Research Center, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Lung-Ji Chang
- Department of Molecular Genetics and Microbiology, University of FloridaGainesville, FL 32610, USA
- University of Electronic Science and Technology of ChinaSichuan, China
- Shenzhen Geno-Immune Medical InstituteShenzhen, China
| |
Collapse
|
9
|
Sequential allogeneic and autologous CAR-T-cell therapy to treat an immune-compromised leukemic patient. Blood Adv 2019; 2:1691-1695. [PMID: 30026294 DOI: 10.1182/bloodadvances.2018017004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
Key Points
CAR-T–cell therapy normally requires the patient’s own healthy T cells. An allogeneic CAR-T bridging therapy could rescue lymphopenic patients.
Collapse
|
10
|
Kwon KW, Kim SJ, Kim H, Kim WS, Kang SM, Choi E, Ha SJ, Yoon JH, Shin SJ. IL-15 Generates IFN-γ-producing Cells Reciprocally Expressing Lymphoid-Myeloid Markers during Dendritic Cell Differentiation. Int J Biol Sci 2019; 15:464-480. [PMID: 30745835 PMCID: PMC6367559 DOI: 10.7150/ijbs.25743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/02/2018] [Indexed: 11/23/2022] Open
Abstract
Recently, interest in IL-15-differentiated cells has increased; however, the phenotypic definition of IL-15-differentiated bone marrow-derived cells (IL-15-DBMCs) is still under debate, particularly the generation of IFN-γ-producing innate cells such as premature NK (pre-mNK) cells, natural killer dendritic cells (NKDCs), interferon-producing killer dendritic cells (IKDCs), and type 1 innate lymphoid cells (ILC1s), all of which are IL-15-dependent. Here, we revisited the immunophenotypic characteristics of IFN-γ-producing IL-15-DBMCs and their functional role in the control of intracellular Mycobacterium tuberculosis (Mtb) infection. When comparing the cytokine levels between bone marrow-derived dendritic cells (BMDCs) and IL-15-DBMCs upon stimulation with various TLR agonists, only the CD11cint population of IL-15-DBMCs produced significant levels of IFN-γ, decreased levels of MHC-II, and increased levels of B220. Neither BMDCs nor IL-15-DBMCs were found to express DX5 or NK1.1, which are representative markers for the NK cell lineage and IKDCs. When the CD11cintB220+ population of IL-15-DBMCs was enriched, the Thy1.2+Sca-1+ population showed a marked increase in IFN-γ production. In addition, while depletion of the B220+ and Thy1.2+ populations of IL-15-DBMCs, but not the CD19+ population, inhibited IFN-γ production, enrichment of these cell populations increased IFN-γ. Ultimately, co-culture of sorted IFN-γ-producing B220+Thy1.2+ IL-15-DBMCs with Mtb-infected macrophages resulted in control of the intracellular growth of Mtb via the IFN-γ-nitric oxide axis in a donor cell number-dependent manner. Taken together, the results indicate that IFN-γ-producing IL-15-DBMCs could be redefined as CD11cintB220+Thy1.2+Sca-1+ cells, which phenotypically resemble both IKDCs and ILC1s, and may have therapeutic potential for controlling infectious intracellular bacteria such as Mtb.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Myung Kang
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, and Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Wu L, Zhang H, Jiang Y, Gallo RC, Cheng H. Induction of antitumor cytotoxic lymphocytes using engineered human primary blood dendritic cells. Proc Natl Acad Sci U S A 2018; 115:E4453-E4462. [PMID: 29674449 PMCID: PMC5948994 DOI: 10.1073/pnas.1800550115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dendritic cell (DC)-based cancer immunotherapy has achieved modest clinical benefits, but several technical hurdles in DC preparation, activation, and cancer/testis antigen (CTA) delivery limit its broad applications. Here, we report the development of immortalized and constitutively activated human primary blood dendritic cell lines (ihv-DCs). The ihv-DCs are a subset of CD11c+/CD205+ DCs that constitutively display costimulatory molecules. The ihv-DCs can be genetically modified to express human telomerase reverse transcriptase (hTERT) or the testis antigen MAGEA3 in generating CTA-specific cytotoxic T lymphocytes (CTLs). In an autologous setting, the HLA-A2+ ihv-DCs that present hTERT antigen prime autologous T cells to generate hTERT-specific CTLs, inducing cytolysis of hTERT-expressing target cells in an HLA-A2-restricted manner. Remarkably, ihv-DCs that carry two allogeneic HLA-DRB1 alleles are able to prime autologous T cells to proliferate robustly in generating HLA-A2-restricted, hTERT-specific CTLs. The ihv-DCs, which are engineered to express MAGEA3 and high levels of 4-1BBL and MICA, induce simultaneous production of both HLA-A2-restricted, MAGEA3-specific CTLs and NK cells from HLA-A2+ donor peripheral blood mononuclear cells. These cytotoxic lymphocytes suppress lung metastasis of A549/A2.1 lung cancer cells in NSG mice. Both CTLs and NK cells are found to infiltrate lung as well as lymphoid tissues, mimicking the in vivo trafficking patterns of cytotoxic lymphocytes. This approach should facilitate the development of cell-based immunotherapy for human lung cancer.
Collapse
Affiliation(s)
- Long Wu
- School of Pharmacy, Jinan University, 510632 Guangzhou, China
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Huan Zhang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yixing Jiang
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Hua Cheng
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201;
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
12
|
Jin Z, Fan J, Zhang Y, Yi Y, Wang L, Yin D, Deng T, Ye W. Comparison of morphology, phenotypes and function between cultured human IL‑4‑DC and IFN‑DC. Mol Med Rep 2017; 16:7345-7354. [PMID: 28944895 PMCID: PMC5865864 DOI: 10.3892/mmr.2017.7581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/05/2017] [Indexed: 11/09/2022] Open
Abstract
Dendritic cells (DCs) as professional antigen presenting cells, are important in the initiation of the primary immune response. The present study compared the morphology, phenotypes and function between monocyte‑derived human DCs produced from a conventional culturing system containing granulocyte‑macrophage colony‑stimulating factor (GM‑CSF) and IL‑4 (IL‑4‑DC) and DCs generated by the stimulation of GM‑CSF and interferon (IFN)‑α (IFN‑DC). When compared with IL‑4‑DC in morphology, IFN‑DC contained more organelles, including endoplasmic reticulum and myelin figures, whereas mature (m)IL‑4‑DC contained more vacuoles in the cells. The spikes of IFN‑DC were shorter and thicker. The expression of phenotypes between immature IFN‑DC and IL‑4‑DC were diverse. Following maturation with tumor necrosis factor‑α, IFN‑DC and IL‑4‑DC upregulated the expression of cluster of differentiation (CD) 11c and CD83. Conversely, immature IFN‑DC and IL‑4‑DC secreted few inflammatory cytokines including interleukin (IL)‑18, IL‑23, IL‑12p70, IL‑1β and anti‑inflammatory IL‑10. Following maturation, large amounts of the cytokines were secreted by these two DCs and mIFN‑DC secreted more cytokines compared with mIL‑4‑DC in general. Furthermore, immature IFN‑DC and IL‑4‑DC loaded with cytomegalovirus (CMV)‑pp65 protein were unable to induce the priming of T cells, as evaluated by the intracellular staining with IFN‑γ. Notably, mature DCs exhibited the ability to present CMV‑pp65 protein and activate T cells. The mIFN‑DC activated a greater proportion of autologous CD4+ T cells (0.91 vs. 0.31%, P<0.001) and CD8+ T cells (0.90 vs. 0.48%, P<0.001) to secret IFN‑γ compared with mIL‑4‑DC. The results suggested that the morphology, phenotypes and cytokine secretion of IFN‑DC and IL‑4‑DC were diverse. The mIFN‑DC were more effective in priming and cross‑priming T cells when compared with IL‑4‑DC.
Collapse
Affiliation(s)
- Zhiliang Jin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Jing Fan
- Cancer Research and Biotherapy Center, The Second Hospital of Nanjing, Medical School, Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Yajuan Zhang
- Health Management Center, Danyang People's Hospital, Zhenjiang, Jiangsu 210003, P.R. China
| | - Yongxiang Yi
- Cancer Research and Biotherapy Center, The Second Hospital of Nanjing, Medical School, Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Lili Wang
- Cancer Research and Biotherapy Center, The Second Hospital of Nanjing, Medical School, Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Dandan Yin
- Cancer Research and Biotherapy Center, The Second Hospital of Nanjing, Medical School, Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Tao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Wei Ye
- Cancer Research and Biotherapy Center, The Second Hospital of Nanjing, Medical School, Southeast University, Nanjing, Jiangsu 210003, P.R. China
- Liver Disease Department, The Second Hospital of Nanjing, Medical School, Southeast University, Nanjing, Jiangsu 210003, P.R. China
| |
Collapse
|
13
|
Van Acker HH, Beretta O, Anguille S, De Caluwé L, Papagna A, Van den Bergh JM, Willemen Y, Goossens H, Berneman ZN, Van Tendeloo VF, Smits EL, Foti M, Lion E. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget 2017; 8:13652-13665. [PMID: 28099143 PMCID: PMC5355127 DOI: 10.18632/oncotarget.14622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022] Open
Abstract
Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Ottavio Beretta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Lien De Caluwé
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Angela Papagna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Johan M Van den Bergh
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Maria Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eva Lion
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
14
|
Piñeros Alvarez AR, Glosson-Byers N, Brandt S, Wang S, Wong H, Sturgeon S, McCarthy BP, Territo PR, Alves-Filho JC, Serezani CH. SOCS1 is a negative regulator of metabolic reprogramming during sepsis. JCI Insight 2017; 2:92530. [PMID: 28679957 DOI: 10.1172/jci.insight.92530] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
Sepsis can induce an overwhelming systemic inflammatory response, resulting in organ damage and death. Suppressor of cytokine signaling 1 (SOCS1) negatively regulates signaling by cytokine receptors and Toll-like receptors (TLRs). However, the cellular targets and molecular mechanisms for SOCS1 activity during polymicrobial sepsis are unknown. To address this, we utilized a cecal ligation and puncture (CLP) model for sepsis; C57BL/6 mice subjected to CLP were then treated with a peptide (iKIR) that binds the SOCS1 kinase inhibitory region (KIR) and blocks its activity. Treatment with iKIR increased CLP-induced mortality, bacterial burden, and inflammatory cytokine production. Myeloid cell-specific SOCS1 deletion (Socs1Δmyel) mice were also more susceptible to sepsis, demonstrating increased mortality, higher bacterial loads, and elevated inflammatory cytokines, compared with Socs1fl littermate controls. These effects were accompanied by macrophage metabolic reprograming, as evidenced by increased lactic acid production and elevated expression of the glycolytic enzymes hexokinase, lactate dehydrogenase A, and glucose transporter 1 in septic Socs1Δmyel mice. Upregulation was dependent on the STAT3/HIF-1α/glycolysis axis, and blocking glycolysis ameliorated increased susceptibility to sepsis in iKIR-treated CLP mice. These results reveal a role of SOCS1 as a regulator of metabolic reprograming that prevents overwhelming inflammatory response and organ damage during sepsis.
Collapse
Affiliation(s)
- Annie Rocio Piñeros Alvarez
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicole Glosson-Byers
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie Brandt
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Soujuan Wang
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hector Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Sarah Sturgeon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian Paul McCarthy
- Center for In Vivo Imaging, Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul R Territo
- Center for In Vivo Imaging, Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jose Carlos Alves-Filho
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - C Henrique Serezani
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Anguille S, Van Acker HH, Van den Bergh J, Willemen Y, Goossens H, Van Tendeloo VF, Smits EL, Berneman ZN, Lion E. Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner. PLoS One 2015; 10:e0123340. [PMID: 25951230 PMCID: PMC4423923 DOI: 10.1371/journal.pone.0123340] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/02/2015] [Indexed: 01/02/2023] Open
Abstract
The contribution of natural killer (NK) cells to the treatment efficacy of dendritic cell (DC)-based cancer vaccines is being increasingly recognized. Much current efforts to optimize this form of immunotherapy are therefore geared towards harnessing the NK cell-stimulatory ability of DCs. In this study, we investigated whether generation of human monocyte-derived DCs with interleukin (IL)-15 followed by activation with a Toll-like receptor stimulus endows these DCs, commonly referred to as "IL-15 DCs", with the capacity to stimulate NK cells. In a head-to-head comparison with "IL-4 DCs" used routinely for clinical studies, IL-15 DCs were found to induce a more activated, cytotoxic effector phenotype in NK cells, in particular in the CD56bright NK cell subset. With the exception of GM-CSF, no significant enhancement of cytokine/chemokine secretion was observed following co-culture of NK cells with IL-15 DCs. IL-15 DCs, but not IL-4 DCs, promoted NK cell tumoricidal activity towards both NK-sensitive and NK-resistant targets. This effect was found to require cell-to-cell contact and to be mediated by DC surface-bound IL-15. This study shows that DCs can express a membrane-bound form of IL-15 through which they enhance NK cell cytotoxic function. The observed lack of membrane-bound IL-15 on "gold-standard" IL-4 DCs and their consequent inability to effectively promote NK cell cytotoxicity may have important implications for the future design of DC-based cancer vaccine studies.
Collapse
Affiliation(s)
- Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Heleen H. Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Johan Van den Bergh
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Viggo F. Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L. Smits
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Zwi N. Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|