1
|
Pilat JM, Jacobse J, Buendia MA, Choksi YA. Animal models of eosinophilic esophagitis. J Leukoc Biol 2024; 116:349-356. [PMID: 38507307 PMCID: PMC11518583 DOI: 10.1093/jleuko/qiae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Eosinophilic esophagitis is a chronic inflammatory disorder of the esophagus. Over the past 25 yr, great strides have been made toward understanding its pathogenesis, in part due to studies in several types of animal models. The vast majority of these models have been characterized in mice. In this review, we summarize the histopathological features of eosinophilic esophagitis recapitulated by these animal models, as well as discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Jennifer M. Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Veterans Affairs Tennessee Valley Healthcare System, 1310 24th Ave S, Nashville, TN 37232, United States
| | - Matthew A. Buendia
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children’s Way, Nashville, TN 37232, United States
| | - Yash A. Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Veterans Affairs Tennessee Valley Healthcare System, 1310 24th Ave S, Nashville, TN 37232, United States
- Program in Cancer Biology, School of Medicine, Vanderbilt University, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, 1030 Medical Research Building IV, 2215 Garland Ave, Nashville, TN 37232, United States
| |
Collapse
|
2
|
Laky K, Frischmeyer-Guerrerio PA. Development and dysfunction of structural cells in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:1485-1499. [PMID: 38849184 PMCID: PMC11626564 DOI: 10.1016/j.jaci.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Eosinophilic esophagitis (EoE) is a disorder characterized by dysfunction and chronic local inflammation of the esophagus. The incidence and prevalence of EoE are increasing worldwide. The mechanisms responsible are poorly understood, and effective treatment options are limited. From the lumen outward, the esophagus comprises stratified squamous epithelium, lamina propria, and muscle. The tissue-specific nature of EoE strongly suggests that structural cells in the esophagus are involved in the EoE diathesis. Epithelial basal cell hyperplasia and dilated intercellular spaces are cardinal features of EoE. Some patients with EoE develop lamina propria fibrosis, strictures, or esophageal muscle dysmotility. Clinical symptoms of EoE are only weakly correlated with peak eosinophil count, implying that other cell types contribute to EoE pathogenesis. Epithelial, endothelial, muscle, and fibroblast cells can each initiate inflammation and repair, regulate tissue resident immune cells, recruit peripheral leukocytes, and tailor adaptive immune cell responses. A better understanding of how structural cells maintain tissue homeostasis, respond to cell-intrinsic and cell-extrinsic stressors, and exacerbate and/or resolve inflammatory responses in the esophagus is needed. This knowledge will facilitate the development of more efficacious treatment strategies for EoE that can restore homeostasis of both hematopoietic and structural elements in the esophagus.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
3
|
Yadavalli CS, Upparahalli Venkateshaiah S, Verma AK, Kathera C, Duncan PS, Vaezi M, Paul RJ, Mishra A. Vasoactive Intestinal Peptide Receptor, CRTH2, Antagonist Treatment Improves Eosinophil and Mast Cell-Mediated Esophageal Remodeling and Motility Dysfunction in Eosinophilic Esophagitis. Cells 2024; 13:295. [PMID: 38391908 PMCID: PMC10886969 DOI: 10.3390/cells13040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND AND AIMS Ultrasonography has shown that eosinophils accumulate in each segment of the esophageal mucosa in human EoE, ultimately promoting esophageal motility dysfunction; however, no mechanistic evidence explains how or why this accumulation occurs. METHODS Quantitative PCR, ELISA, flow cytometry, immunostaining, and immunofluorescence analyses were performed using antibodies specific to the related antigens and receptors. RESULTS In deep esophageal biopsies of EoE patients, eosinophils and mast cells accumulate adjacent to nerve cell-derived VIP in each esophageal segment. qRT-PCR analysis revealed five- to sixfold increases in expression levels of VIP, CRTH2, and VAPC2 receptors and proteins in human blood- and tissue-accumulated eosinophils and mast cells. We also observed a significant correlation between mRNA CRTH2 levels and eosinophil- and nerve cell-derived VIPs in human EoE (p < 0.05). We provide evidence that eosinophil and mast cell deficiency following CRTH2 antagonist treatment improves motility dysfunction in a chronic DOX-inducible CC10-IL-13 murine model of experimental EoE. CONCLUSIONS CRTH2 antagonist treatment is a novel therapeutic strategy for inflammatory cell-induced esophageal motility dysfunction in IL-13-induced chronic experimental EoE.
Collapse
Affiliation(s)
- Chandra Sekhar Yadavalli
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (C.S.Y.); (S.U.V.); (C.K.)
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (C.S.Y.); (S.U.V.); (C.K.)
| | - Alok K. Verma
- Division of Gastroenterology, Cincinnati Childrens Medical Center, Cincinnati, OH 45229, USA;
| | - Chandrasekhar Kathera
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (C.S.Y.); (S.U.V.); (C.K.)
| | - Pearce S. Duncan
- Division of Gastroenterology, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Michael Vaezi
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Richard J. Paul
- Division of Physiology, Cincinnati University, Cincinnati, OH 45220, USA;
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (C.S.Y.); (S.U.V.); (C.K.)
| |
Collapse
|
4
|
Yadavalli CS, Upparahalli Venkateshaiah S, Kumar S, Kandikattu HK, Oruganti L, Kathera CS, Mishra A. Allergen-induced NLRP3/caspase1/IL-18 signaling initiate eosinophilic esophagitis and respective inhibitors protect disease pathogenesis. Commun Biol 2023; 6:763. [PMID: 37524769 PMCID: PMC10390481 DOI: 10.1038/s42003-023-05130-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
The current report describes a stepwise mechanistic pathway of NLRP3/caspase1/IL-18-regulated immune responses operational in eosinophilic esophagitis (EoE). We show that esophageal epithelial cells and macrophage-derived NLRP3 regulated IL-18 initiate the disease and induced IL-5 facilitates eosinophil growth and survival. We also found that A. fumigatus-exposed IL-18-/- mice or IL-18-neutralized mice are protected from EoE induction. Most importantly, we present that intravascular rIL-18 delivery to ΔdblGATA mice and CD2-IL-5 mice show the development of EoE characteristics feature like degranulated and intraepithelial eosinophils, basal cell hyperplasia, remodeling and fibrosis. Similarly, we show an induced NLRP3-caspase1-regulated IL-18 pathway is also operational in human EoE. Lastly, we present the evidence that inhibitors of NLRP3 and caspase-1 (MCC950, BHB, and VX-765) protect A. fumigatus- and corn-extract-induced EoE pathogenesis. In conclusion, the current study provides a new understanding by implicating NLRP3/caspase1-regulated IL-18 pathway in EoE pathogenesis. The study has the clinical significance and novel therapeutic strategy, which depletes only IL-18-responsive pathogenic eosinophils, not naïve IL-5-generated eosinophils critical for maintaining innate immunity.
Collapse
Affiliation(s)
- Chandra Sekhar Yadavalli
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sathisha Upparahalli Venkateshaiah
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sandeep Kumar
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hemanth Kumar Kandikattu
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lokanatha Oruganti
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chandra Sekhar Kathera
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA
| | - Anil Mishra
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW This review will present what is known from recent research on the involvement of mast cells in eosinophilic esophagitis and identify questions requiring further investigation. RECENT FINDINGS In the adults and children with eosinophilic esophagitis, there is increasing evidence that mastocytosis can persist, despite resolution of eosinophilia and is associated with persistent mucosal abnormalities and symptoms. Despite, treatment mast cells have an activated transcriptome. Mast cells likely contribute to epithelial barrier dysfunction, smooth muscle hypertrophy and contraction, and subepithelial fibrosis. It remains unclear whether targeting MCs alone has therapeutic efficacy to improve tissue damage. SUMMARY Mast cells appear to play a key role in eosinophilic esophagitis and serve as a biomarker of mucosal healing in conjunction with eosinophils. Excessive mast cell activation likely contributes to tissue damage in eosinophilic esophagitis and need to be considered as a target of therapy along with eosinophils.
Collapse
|
6
|
Upparahalli Venkateshaiah S, Yadavalli CS, Kandikattu HK, Kumar S, Oruganti L, Mishra A. Molecules involved in the development of Barrett's esophagus phenotype in chronic eosinophilic esophagitis. Am J Physiol Gastrointest Liver Physiol 2022; 323:G31-G43. [PMID: 35437997 PMCID: PMC9190763 DOI: 10.1152/ajpgi.00321.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 01/31/2023]
Abstract
This paper aims to investigate the molecules involved in development of Barrett's esophagus (BE) in human eosinophilic esophagitis (EoE). Histopathological, immunohistochemical, real-time PCR Immuno blot, and ELISA analyses are performed to identify the signature genes and proteins involved in the progression of BE in EoE. We detected characteristic features of BE like intermediate columnar-type epithelial cells, induced BE signature genes like ErbB3, CDX1, ErbB2IP in the esophageal mucosa of patients with EoE. In addition, we had observed several BE-associated proteins such as TFF3, p53 and the progression markers like EGFR, p16, MICA, MICB, and MHC molecules in esophageal biopsies of patients with chronic EoE. Interestingly, we also detected mucin-producing columnar cells and MUC-2, MUC-4, and MUC5AC genes and proteins along with induced IL-9 in patients with chronic EoE. A strong correlation of IL-9 with mucin genes is observed that implicated a possible role for IL-9 in the transformation of esophageal squamous epithelial cells to columnar epithelial cells in patients with EoE. These findings indicate that IL-9 may have an important role in BE development in patients with chronic EoE. We also discovered that IL-9 stimulates mucin-producing and barrier cell transcripts and proteins such CK8/18, GATA4, SOX9, TFF1, MUC5AC, and tight junction proteins in primary esophageal epithelial cells when exposed to IL-9. Taken together, these findings provide evidence that indeed IL-9 has a role in the initiation and progression of BE characteristics like development of mucin-producing columnar epithelial cells in patients with chronic EoE.NEW & NOTEWORTHY Intermediate columnar-type epithelial cells are observed in biopsies of patients with EoE. Induced BE signature genes (CK8/18, CDX1 GATA4, SOX9, and Occludin) were observed in patients with chronic EoE. Induction of IL-9 and its correlation with eosinophils mucin-producing genes and proteins was observed in patients with EoE. Induced IL-9 may be responsible for the development of BE in patients with chronic EoE.
Collapse
Affiliation(s)
- Sathisha Upparahalli Venkateshaiah
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Chandra Sekhar Yadavalli
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Hemanth Kumar Kandikattu
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Sandeep Kumar
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Lokanatha Oruganti
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Anil Mishra
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
7
|
Mishra A, Majid D, Kandikattu HK, Yadavalli CS, Upparahalli Venkateshaiah S. Role of IL-18-transformed CD274-expressing eosinophils in promoting airway obstruction in experimental asthma. Allergy 2022; 77:1165-1179. [PMID: 34800294 DOI: 10.1111/all.15180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND IL-5-dependent residential and IL-18-transformed pathogenic eosinophils have been reported; however, the role of IL-18-transformed CD274-expressing pathogenic eosinophils compared to IL-5-generated eosinophils in promoting airway obstruction in asthma has not yet been examined. METHODS Eosinophils are detected by tissue anti-MBP and anti-EPX immunostaining, CD274 expression by flow cytometry, and airway resistance using the Buxco FinePointe RC system. RESULTS We show that A. fumigatus-challenged wild-type mice, and different gene-deficient mice including naïve CC10-IL-18-transgenic mice, accumulate mostly peribronchial and perivascular CD274-expressing eosinophils except naïve CD2-IL-5-transgenic mice. Additionally, we show that CD2-IL-5 transgenic mice following rIL-18 treatment accumulate high number of CD274-expressing perivascular and peribronchial eosinophils with induced collagen, goblet cell hyperplasia and airway resistance compared to saline-challenged CD2-IL5 transgenic mice. Furthermore, we also show that even A. fumigatus-challenged IL-5 -/- mice and rIL-18 given ΔdblGATA mice accumulate CD274-expressing eosinophil-associated asthma pathogenesis including airway obstruction. Most importantly, we provide evidence that neutralization of CD274 and IL-18 in A. fumigatus-challenged mice ameliorate experimental asthma. Taken together, the data presented are clinically significant in establishing that anti-IL-18 neutralization is a novel immunotherapy to restrict asthma pathogenesis. CONCLUSIONS We demonstrate that IL-18 is critical for inducing asthma pathogenesis, and neutralization of CD274 is a potential immunotherapeutic strategy for asthma.
Collapse
Affiliation(s)
- Anil Mishra
- John W. Deming Department of Medicine Tulane Eosinophilic Disorders Center (TEDC) Section of Pulmonary Diseases Tulane University School of Medicine New Orleans Louisina USA
| | - Dewan Majid
- John W. Deming Department of Medicine Tulane Eosinophilic Disorders Center (TEDC) Section of Pulmonary Diseases Tulane University School of Medicine New Orleans Louisina USA
| | - Hemanth Kumar Kandikattu
- John W. Deming Department of Medicine Tulane Eosinophilic Disorders Center (TEDC) Section of Pulmonary Diseases Tulane University School of Medicine New Orleans Louisina USA
| | - Chandra Sekhar Yadavalli
- John W. Deming Department of Medicine Tulane Eosinophilic Disorders Center (TEDC) Section of Pulmonary Diseases Tulane University School of Medicine New Orleans Louisina USA
| | - Sathisha Upparahalli Venkateshaiah
- John W. Deming Department of Medicine Tulane Eosinophilic Disorders Center (TEDC) Section of Pulmonary Diseases Tulane University School of Medicine New Orleans Louisina USA
| |
Collapse
|
8
|
Manohar M, Kandikattu HK, Upparahalli Venkateshaiah S, Yadavalli CS, Mishra A. Eosinophils in the pathogenesis of pancreatic disorders. Semin Immunopathol 2021; 43:411-422. [PMID: 33783592 PMCID: PMC8249347 DOI: 10.1007/s00281-021-00853-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Eosinophils comprise approximately 1-4% of total blood leukocytes that reside in the intestine, bone marrow, mammary gland, and adipose tissues to maintain innate immunity in healthy individuals. Eosinophils have four toxic granules known as major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil peroxidase (EPO), and eosinophil-derived neurotoxin (EDN), and upon degranulation, these granules promote pathogenesis of inflammatory diseases like allergy, asthma, dermatitis, and gastrointestinal disorders. Additionally, the role of eosinophils is underscored in exocrine disorders including pancreatitis. Chronic pancreatitis (CP) is an inflammatory disorder that occurs due to the alcohol consumption, blockage of the pancreatic duct, and trypsinogen mutation. Eosinophil levels are detected in higher numbers in both CP and pancreatic cancer patients compared with healthy individuals. The mechanistic understanding of chronic inflammation-induced pancreatic malignancy has not yet been reached and requires further exploration. This review provides a comprehensive summary of the epidemiology, pathophysiology, evaluation, and management of eosinophil-associated pancreatic disorders and further summarizes current evidence regarding risk factors, pathophysiology, clinical features, diagnostic evaluation, treatment, and prognosis of eosinophilic pancreatitis (EP) and pancreatic cancer.
Collapse
Affiliation(s)
- Murli Manohar
- School of Medicine, Gastrointestinal and Hepatology Division, Stanford University, Stanford, CA, 94304, USA
| | - Hemanth Kumar Kandikattu
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chandra Sekhar Yadavalli
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Anil Mishra
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Kandikattu HK, Venkateshaiah SU, Verma AK, Mishra A. Tacrolimus (FK506) treatment protects allergen-, IL-5- and IL-13-induced mucosal eosinophilia. Immunology 2021; 163:220-235. [PMID: 33512727 DOI: 10.1111/imm.13314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/16/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are a common clinical feature associated with chronic allergic diseases, and elemental diets, systemic steroids, anti-IL-5 and anti-IL-13 treatment have shown some therapeutic promise. Herein, we present evidence that pre- and post-intraperitoneal administration of tacrolimus (FK506) is very effective in reducing CCR3/Siglec-F+ eosinophils in Aspergillus-challenged asthma and EoE, CD2-IL-5 induced global eosinophilia, and DOX regulated IL-13-induced asthma. We used flow cytometry and anti-major basic protein (MBP) immunostaining to examine eosinophils in the spleen, bone marrow, BALF, lung, oesophagus and intestine. Additionally, we also performed ELISA and Western blot analyses to show that tacrolimus treatment also reduces the levels of eosinophil-specific cytokines IL-4, IL-5, IL-13 and TGF-β, eosinophil-specific chemokines Eotaxin-1 and Eotaxin-2, and progenitors of target RCAN1 mRNA and protein levels. Additionally, the current investigations also show that the TGF-β-mediated oesophageal and lung fibrosis is also reduced in Aspergillus-challenged, CD2-IL-5 transgenic and DOX-responsive IL-13 mice. Mechanistically, we show that tacrolimus in vitro treatment inhibited bone marrow-derived eosinophil proliferation and viability by promoting eosinophil apoptosis that may be associated with downregulation of RCAN1. Taken together, we provide in vivo and in vitro evidence that tacrolimus ameliorates eosinophil levels and associated pathogenesis in allergen-, IL-5- and IL-13-induced EoE, EG and asthma pathogenesis. Considering tacrolimus side-effects and reactivity to several other drugs, we propose the topical use of tacrolimus for paediatric and low-dose oral for adult patients as a novel therapeutic strategy for the clinical trial to reduce mucosal eosinophilia first in steroid-refractory or elemental diet non-responsive adult EoE, EG and asthma patients.
Collapse
Affiliation(s)
- Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alok Kumar Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
10
|
Venkateshaiah SU, Kandikattu HK, Yadavalli CS, Mishra A. Eosinophils and T cell surface molecule transcript levels in the blood differentiate eosinophilic esophagitis (EoE) from GERD. INTERNATIONAL JOURNAL OF BASIC AND CLINICAL IMMUNOLOGY 2021; 4:1-8. [PMID: 34557864 PMCID: PMC8457322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We recently rereported that blood mRNA levels of T cells and IgE receptors are the novel non-invasive biomarkers for eosinophilic esophagitis (EoE) with the aim to establish the panel of T cells and IgE receptor as the novel non-invasive biomarkers for EoE. In addition to earlier proposed cell surface molecules, we now added T cell receptor CXCR6 and eosinophils expressed cell surface molecules CD101 and CD274 mRNA levels. The mRNA levels of eosinophils cell surface molecule CD101 and CD274 and T cell receptor CXCR6, Vβ11, CD1d and chemokine CXCL16 levels were examined using the blood of normal, EoE and GERD patients. The analysis showed statistically significant induced mRNA levels of CD274, CD101 and reduced CXCR6 will be an additional molecule with respective 95%, 90% and 90% positive predictive value in between EoE and GERD patients. In brief, these additional data will be critical to establish a complete panel of earlier published TCRδ (95%), Jα18 (83%) and FCεRII (100%) non-invasive biomarker to monitor the EoE severity and treatment effect in EoE patients. In conclusion, we now propose both induced and reduced transcript levels of cell surface molecules of the cell surface molecules along with earlier reported molecules that will be useful for monitoring EoE status before and following treatment. Most importantly, the complete predictive non-invasive biomarker panel will also serve to differentiate EoE from GERD.
Collapse
|
11
|
Doyle AD, Masuda MY, Kita H, Wright BL. Eosinophils in Eosinophilic Esophagitis: The Road to Fibrostenosis is Paved With Good Intentions. Front Immunol 2020; 11:603295. [PMID: 33335531 PMCID: PMC7736408 DOI: 10.3389/fimmu.2020.603295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is an antigen-driven disease associated with epithelial barrier dysfunction and chronic type 2 inflammation. Eosinophils are the defining feature of EoE histopathology but relatively little is known about their role in disease onset and progression. Classically defined as destructive, end-stage effector cells, eosinophils (a resident leukocyte in most of the GI tract) are increasingly understood to play roles in local immunity, tissue homeostasis, remodeling, and repair. Indeed, asymptomatic esophageal eosinophilia is observed in IgE-mediated food allergy. Interestingly, EoE is a potential complication of oral immunotherapy (OIT) for food allergy. However, we recently found that patients with peanut allergy may have asymptomatic esophageal eosinophilia at baseline and that peanut OIT induces transient esophageal eosinophilia in most subjects. This is seemingly at odds with multiple studies which have shown that EoE disease severity correlates with tissue eosinophilia. Herein, we review the potential role of eosinophils in EoE at different stages of disease pathogenesis. Based on current literature we suggest the following: (1) eosinophils are recruited to the esophagus as a homeostatic response to epithelial barrier disruption; (2) eosinophils mediate barrier-protective activities including local antibody production, mucus production and epithelial turnover; and (3) when type 2 inflammation persists, eosinophils promote fibrosis.
Collapse
Affiliation(s)
- Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
12
|
Ryu S, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Effenberger M, Shin JI, Kronbichler A. Pathogenesis of Eosinophilic Esophagitis: A Comprehensive Review of the Genetic and Molecular Aspects. Int J Mol Sci 2020; 21:ijms21197253. [PMID: 33008138 PMCID: PMC7582808 DOI: 10.3390/ijms21197253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/21/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is a relatively new condition described as an allergic-mediated disease of the esophagus. Clinically, it is characterized by dysphagia, food impaction, and reflux-like symptoms. Multiple genome-wide association studies (GWAS) have been conducted to identify genetic loci associated with EoE. The integration of numerous studies investigating the genetic polymorphisms in EoE and the Mendelian diseases associated with EoE are discussed to provide insights into the genetic risk of EoE, notably focusing on CCL26 and CAPN14. We focus on the genetic loci investigated thus far, and their classification according to whether the function near the loci is known. The pathophysiology of EoE is described by separately presenting the known function of each cell and molecule, with the major contributors being eosinophils, Th2 cells, thymic stromal lymphopoietin (TSLP), transforming growth factor (TGF)-β1, and interleukin (IL)-13. This review aims to provide detailed descriptions of the genetics and the comprehensive pathophysiology of EoE.
Collapse
Affiliation(s)
- Seohyun Ryu
- Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Kalthoum Tizaoui
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, 1068 Tunis, Tunisia;
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100 Novara, Italy; (S.T.); (S.C.)
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100 Novara, Italy; (S.T.); (S.C.)
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-2050
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
13
|
Li Z, Yu X, Werner J, Bazhin AV, D'Haese JG. The role of interleukin-18 in pancreatitis and pancreatic cancer. Cytokine Growth Factor Rev 2019; 50:1-12. [PMID: 31753718 DOI: 10.1016/j.cytogfr.2019.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Originally described as an interferon (IFN)-γ-inducing factor, interleukin (IL)-18 has been reported to be involved in Th1 and Th2 immune responses, as well as in activation of NK cells and macrophages. There is convincing evidence that IL-18 plays an important role in various pathologies (i.e. inflammatory diseases, cancer, chronic obstructive pulmonary disease, Crohn's disease and others). Recently, IL-18 has also been shown to execute specific effects in pancreatic diseases, including acute and chronic pancreatitis, as well as pancreatic cancer. The aim of this study was to give a profound review of recent data on the role of IL-18 and its potential as a therapeutic target in pancreatic diseases. The existing data on this topic are in part controversial and will be discussed in detail. Future studies should aim to confirm and clarify the role of IL-18 in pancreatic diseases and unravel their molecular mechanisms.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; Department of Hepatopancreatobiliary Surgery, The third Xiangya hospital, Central south university, Changsha 410013, Hunan, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The third Xiangya hospital, Central south university, Changsha 410013, Hunan, China
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany.
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
14
|
Kandikattu HK, Upparahalli Venkateshaiah S, Mishra A. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev 2019; 47:83-98. [PMID: 31126874 PMCID: PMC6781864 DOI: 10.1016/j.cytogfr.2019.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Eosinophils are circulating granulocytes that have pleiotropic effects in response to inflammatory signals in the body. In response to allergens or pathogens, exposure eosinophils are recruited in various organs that execute pathological immune responses. IL-5 plays a key role in the differentiation, development, and survival of eosinophils. Eosinophils are involved in a variety of allergic diseases including asthma, dermatitis and various gastrointestinal disorders (EGID). IL-5 signal transduction involves JAK-STAT-p38MAPK-NFκB activation and executes extracellular matrix remodeling, EMT transition and immune responses in allergic diseases. IL-18 is a classical cytokine also involved in immune responses and has a critical role in inflammasome pathway. We recently identified the IL-18 role in the generation, transformation, and maturation of (CD101+CD274+) pathogenic eosinophils. In, addition, several other cytokines like IL-2, IL-4, IL-13, IL-21, and IL-33 also contribute in advancing eosinophils associated immune responses in innate and adaptive immunity. This review discusses with a major focus (1) Eosinophils and its constituents, (2) Role of IL-5 and IL-18 in eosinophils development, transformation, maturation, signal transduction of IL-5 and IL-18, (3) The role of eosinophils in allergic disorders and (4) The role of several other associated cytokines in promoting eosinophils mediated allergic diseases.
Collapse
Affiliation(s)
- Hemanth Kumar Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States.
| |
Collapse
|
15
|
Verma AK, Kandikattu HK, Manohar M, Shukla A, Upparahalli Venkateshaiah S, Zhu X, Mishra A. Intestinal overexpression of IL-18 promotes eosinophils-mediated allergic disorders. Immunology 2019; 157:110-121. [PMID: 30779114 DOI: 10.1111/imm.13051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
Baseline eosinophils reside in the gastrointestinal tract; however, in several allergic disorders, excessive eosinophils accumulate in the blood as well in the tissues. Recently, we showed in vitro that interleukin (IL)-18 matures and transforms IL-5-generated eosinophils into the pathogenic eosinophils that are detected in human allergic diseases. To examine the role of local induction of IL-18 in promoting eosinophil-associated intestinal disorders, we generated enterocyte IL-18-overexpressing mice using the rat intestinal fatty acid-binding promoter (Fabpi) and analysed tissue IL-18 overexpression and eosinophilia by performing real-time polymerase chain reaction, Enzyme-Linked Immunosorbent Assay and anti-major basic protein immunostaining. Herein we show that Fabpi-IL-18 mice display highly induced IL-18 mRNA and protein in the jejunum. IL-18 overexpression in enterocytes promotes marked increases of eosinophils in the blood and jejunum. Our analysis shows IL-18 overexpression in the jejunum induces a specific population of CD101+ CD274+ tissue eosinophils. Additionally, we observed comparable tissue eosinophilia in IL-13-deficient-Fabpi-IL-18 mice, and reduced numbers of tissue eosinophils in eotaxin-deficient-Fabpi-IL-18 and IL-5-deficient-Fabpi-IL-18 mice compared with Fabpi-IL-18 transgenic mice. Notably, jejunum eosinophilia in IL-5-deficient-Fabpi-IL-18 mice is significantly induced compared with wild-type mice, which indicates the direct role of induced IL-18 in the tissue accumulation of eosinophils and mast cells. Furthermore, we also found that overexpression of IL-18 in the intestine promotes eosinophil-associated peanut-induced allergic responses in mice. Taken together, we provide direct in vivo evidence that induced expression of IL-18 in the enterocytes promotes eotaxin-1, IL-5 and IL-13 independent intestinal eosinophilia, which signifies the clinical relevance of induced IL-18 in eosinophil-associated gastrointestinal disorders (EGIDs) to food allergens.
Collapse
Affiliation(s)
- Alok K Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Anshi Shukla
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiang Zhu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
16
|
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus associated with an atopic predisposition which appears to be increasing in prevalence over the last few decades. Symptoms stem from fibrosis, swelling, and smooth muscle dysfunction. In the past two decades, the etiology of EoE has been and is continuing to be revealed. This review provides an overview of the effects of genetics, environment, and immune function including discussions that touch on microbiome, the role of diet, food allergy, and aeroallergy. The review further concentrates on the pathophysiology of the disease with particular focus on the important concepts of the molecular etiology of EoE including barrier dysfunction and allergic hypersensitivity.
Collapse
Affiliation(s)
- Benjamin P Davis
- Department of Internal Medicine, Division of Immunology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52246, USA.
| |
Collapse
|
17
|
Sandersa NL, Venkateshaiah SU, Manohar M, Verma AK, Kandikattu HK, Mishra A. Interleukin-18 has an Important Role in Differentiation and Maturation of Mucosal Mast Cells. JOURNAL OF MUCOSAL IMMUNOLOGY RESEARCH 2018; 2:109. [PMID: 30474083 PMCID: PMC6248340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
A significant amount of correlational evidence has linked increased levels of IL-18 with allergic diseases in both human and animal models, and, as mast cells are major mediators of allergies, we hypothesized that IL-18 may have a role in mast cell biology. Rationale for our hypothesis is based on the evidence that IL-3 deficient mice are not devoid of mast cells, even though IL-3 is a major differentiation and growth factor for mast cells. Accordingly, we cultured IL-18 responsive bone marrow CD34+ cells in vitro under a variety of conditions and cytokine combinations to examine mast cell differentiation and maturation using flow cytometry, quantitative PCR,and immunostaining techniques. Additionally, in vivo mast cell transformation and maturation were also analysed using endogenous IL-18 gene-deficient or Fabpi-IL-18 overexpressed mice. Our data indicate that both IL-3 and IL-18 exposed CD34+ bone marrow precursors differentiate and mature into mast cells. Further, we observed that IL-18 differentiates mast cells independent of IL-3, as pharmacologic blockade of IL-3 does not prevent in vitro IL-18-driven mast cell differentiation. Further, we found that endogenous IL-18 deficiency restricts maturation of IL-3 generated mast cells and IL-18 derived mast cells require IL-3 for their survival. Additionally, we observed IL-18 intestinal overexpression promotes tissue mast cell proliferation and mucosal mast cell development. Taken together, we provide the evidence that IL-18 has an important contributory role in mast cell differentiation, maturation and in vivo development of mucosal mast cells. Therefore, IL-18 may represent a future pharmacologic target for treating mast cell-mediated allergic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Anil Mishra
- Corresponding author: Anil Mishra, Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA, USA, Tel: 504-988-3840; Fax: 504-988-0647;
| |
Collapse
|
18
|
Mussarat A, Manohar M, Verma AK, Upparahalli Venkateshaiah S, Zaidi A, Sanders NL, Zhu X, Mishra A. Intestinal overexpression of interleukin (IL)-15 promotes tissue eosinophilia and goblet cell hyperplasia. Immunol Cell Biol 2017; 96:273-283. [PMID: 29363170 DOI: 10.1111/imcb.1036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022]
Abstract
Interleukin (IL)-15 overexpression in eosinophilic gastrointestinal disorders is reported, but IL-15's role in promoting eosinophilic gastroenteritis is largely unknown. Therefore, we generated enterocyte-overexpressed IL-15 transgenic mice using Fabpi promoter. The Fabpi-IL-15 (iIL-15) transgenic mice showed induced IL-15 levels in the jejunum with a marked increase in jejunum eosinophils. However, no induction of eosinophilia in the blood or any other gastrointestinal segment was observed. Eosinophilia in the jejunum villus was substantially higher in iIL-15 mice compared to wild-type mice. In addition, goblet cell hyperplasia was also observed in the jejunum of iIL-15 mice. Furthermore, a significant correlation between induced IL-15 transcript and the IL-18 transcripts was observed. Therefore, to further understand the role of IL-18 in IL-15 mice associated gastrointestinal disorders, we generated iIL-15/IL-18Rα-/- mice. Using these mice, we found that IL-18 has an important role in promoting IL-15-induced eosinophilia. As intestinal IL-15 overexpression is reported in food intolerance, we examined OVA intolerance in iIL-15 mice. The OVA-sensitized and challenged iIL-15 mice experienced weight loss, diarrhea and eosinophilia in the jejunum. Taken together, our findings demonstrate that intestinal IL-15 overexpression induces IL-18-dependent eosinophilia and immunoglobulins in the intestine that promotes food allergic responses.
Collapse
Affiliation(s)
- Ahad Mussarat
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Alok K Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Asifa Zaidi
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nathan L Sanders
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Xiang Zhu
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
19
|
Verma AK, Manohar M, Venkateshaiah SU, Blecker U, Collins MH, Mishra A. Role of Vasoactive Intestinal Peptide in Promoting the Pathogenesis of Eosinophilic Esophagitis (EoE). Cell Mol Gastroenterol Hepatol 2017; 5:99-100.e7. [PMID: 29276755 PMCID: PMC5736881 DOI: 10.1016/j.jcmgh.2017.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Alok K Verma
- Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Murli Manohar
- Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sathisha Upparahalli Venkateshaiah
- Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Uwe Blecker
- Pediatric Gastroenterology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Margaret H Collins
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anil Mishra
- Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
20
|
Muir AB, Benitez AJ, Dods K, Spergel JM, Fillon SA. Microbiome and its impact on gastrointestinal atopy. Allergy 2016; 71:1256-63. [PMID: 27240281 DOI: 10.1111/all.12943] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2016] [Indexed: 01/01/2023]
Abstract
The prevalence of allergic conditions has continuously increased in the last few decades in Westernized countries. A dysbiotic gut microbiome may play an important role in the development of allergic diseases. Genetic, environmental, and dietary factors may alter the commensal microbiota leading to inflammatory dysregulation of homeostasis. Murine and human studies have begun to elucidate the role of the microbiota in the pathogenesis of atopic diseases including asthma, atopic dermatitis, and food allergies. However, the role of the microbiome in most eosinophilic gastrointestinal diseases (EGIDs) is not yet known. This review provides an overview of what is currently known about the development of tolerance from both molecular and clinical standpoints. We also look at the gut-specific microbiome and its role in atopic conditions with the hope of applying this knowledge to the understanding, prevention, and treatment of EGIDs, particularly EoE.
Collapse
Affiliation(s)
- A. B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition; The Children's Hospital of Philadelphia; Philadelphia PA USA
- Department of Pediatrics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
| | - A. J. Benitez
- Division of Allergy and Immunology; The Children's Hospital of Philadelphia; Philadelphia PA USA
| | - K. Dods
- Division of Gastroenterology, Hepatology, and Nutrition; The Children's Hospital of Philadelphia; Philadelphia PA USA
| | - J. M. Spergel
- Department of Pediatrics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
- Division of Allergy and Immunology; The Children's Hospital of Philadelphia; Philadelphia PA USA
| | - S. A. Fillon
- University of Colorado School of Medicine; Aurora CO USA
- Digestive Health Institute; Section of Pediatric Gastroenterology, Hepatology and Nutrition; Gastrointestinal Eosinophilic Diseases Program; Mucosal Inflammation Program; Children's Hospital Colorado; Aurora CO USA
| |
Collapse
|
21
|
Role of interleukin-18 in the pathophysiology of allergic diseases. Cytokine Growth Factor Rev 2016; 32:31-39. [PMID: 27496752 DOI: 10.1016/j.cytogfr.2016.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023]
Abstract
Interleukin (IL)-18 is an IL-1 family cytokine expressed by macrophages, dendritic cells, epithelial cells, and keratinocytes and is implicated in various aspects of both the innate and adaptive immune systems. IL-18 signals similar to IL-1β intracellularly to activate gene transcription. Since its discovery, IL-18 has been demonstrated to play a key role in pathogen defense from helminths and some bacteria. Recently however, evidence has accumulated that IL-18 expression is increased in many presentations of allergic disease. A pathologic role for IL-18 includes stimulating mast cell and basophil degranulation, recruiting granulocytes to sites of inflammation, increasing cytotoxic activity of natural killer (NK) and NK-T cells, inducing Immunoglobulin (Ig)E production and isotype switching, and affecting a broad range of T cells to promote a type II helper T cell (Th2) response. Evidence and importance of these effects are presented, including novel results from our lab implicating IL-18 in the direct expansion of mast cells, basophils, and other myeloid-lineage cells from bone-marrow precursors. The development of urticaria, asthma, dermatitis, rhinitis, and eosinophilic disorders all have demonstrated correlations to increased IL-18 levels either in the tissue or systemically. IL-18 represents a novel site of immune regulation in not only allergic conditions, but also autoimmune diseases and other instances of aberrant immune functioning. Diagrammatic summarized abstract for readers convinance is presented in Fig. 1.
Collapse
|
22
|
From the Deep Sea to Everywhere: Environmental Antigens for iNKT Cells. Arch Immunol Ther Exp (Warsz) 2015; 64:291-8. [PMID: 26703211 DOI: 10.1007/s00005-015-0381-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/02/2015] [Indexed: 01/18/2023]
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of innate T cells that share features with innate NK cells and adaptive memory T cells. The first iNKT cell antigen described was found 1993 in a marine sponge and it took over 10 years for other, bacterial antigens to be described. Given the paucity of known bacterial iNKT cell antigens, it appeared as if iNKT cells play a very specialist role in the protection against few, rare and unusual pathogenic bacteria. However, in the last few years several publications painted a very different picture, suggesting that antigens for iNKT cells are found almost ubiquitous in the environment. These environmental iNKT cell antigens can shape the distribution, phenotype and function of iNKT cells. Here, these recent findings will be reviewed and their implications for the field will be outlined.
Collapse
|