1
|
Adeva-Andany MM, Carneiro-Freire N, Castro-Quintela E, Ameneiros-Rodriguez E, Adeva-Contreras L, Fernandez-Fernandez C. Interferon Upregulation Associates with Insulin Resistance in Humans. Curr Diabetes Rev 2025; 21:86-105. [PMID: 38500280 DOI: 10.2174/0115733998294022240309105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
In humans, insulin resistance is a physiological response to infections developed to supply sufficient energy to the activated immune system. This metabolic adaptation facilitates the immune response but usually persists after the recovery period of the infection and predisposes the hosts to type 2 diabetes and vascular injury. In patients with diabetes, superimposed insulin resistance worsens metabolic control and promotes diabetic ketoacidosis. Pathogenic mechanisms underlying insulin resistance during microbial invasions remain to be fully defined. However, interferons cause insulin resistance in healthy subjects and other population groups, and their production is increased during infections, suggesting that this group of molecules may contribute to reduced insulin sensitivity. In agreement with this notion, gene expression profiles (transcriptomes) from patients with insulin resistance show a robust overexpression of interferon- stimulated genes (interferon signature). In addition, serum levels of interferon and surrogates for interferon activity are elevated in patients with insulin resistance. Circulating levels of interferon- γ-inducible protein-10, neopterin, and apolipoprotein L1 correlate with insulin resistance manifestations, such as hypertriglyceridemia, reduced HDL-c, visceral fat, and homeostasis model assessment-insulin resistance. Furthermore, interferon downregulation improves insulin resistance. Antimalarials such as hydroxychloroquine reduce interferon production and improve insulin resistance, reducing the risk for type 2 diabetes and cardiovascular disease. In addition, diverse clinical conditions that feature interferon upregulation are associated with insulin resistance, suggesting that interferon may be a common factor promoting this adaptive response. Among these conditions are systemic lupus erythematosus, sarcoidosis, and infections with severe acute respiratory syndrome-coronavirus-2, human immunodeficiency virus, hepatitis C virus, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Maria M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Elvira Castro-Quintela
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Eva Ameneiros-Rodriguez
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | | |
Collapse
|
2
|
Yang Y, Wang TT, Xie HA, Hu PP, Li P. Experimental cell models of insulin resistance: overview and appraisal. Front Endocrinol (Lausanne) 2024; 15:1469565. [PMID: 39749015 PMCID: PMC11693592 DOI: 10.3389/fendo.2024.1469565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Insulin resistance, a key factor in the development of type 2 diabetes mellitus (T2DM), is defined as a defect in insulin-mediated control of glucose metabolism in tissues such as liver, fat and muscle. Insulin resistance is a driving force behind various metabolic diseases, such as T2DM, hyperlipidemia, hypertension, coronary heart disease and fatty liver. Therefore, improving insulin sensitivity can be considered as an effective strategy for the prevention and treatment of these complex metabolic diseases. Cell-based models are extensively employed for the study of pathological mechanisms and drug screening, particularly in relation to insulin resistance in T2DM. Currently, numerous methods are available for the establishment of in vitro insulin resistance models, a comprehensive review of these models is required and can serve as an excellent introduction or understanding for researchers undertaking studies in this filed. This review examines and discusses the primary methods for establishing and evaluating insulin resistance cell models. Furthermore, it highlights key issues and suggestions on cell selection, establishment, evaluation and drug screening of insulin resistance, thereby providing valuable references for the future research efforts.
Collapse
Affiliation(s)
- Ying Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ting-ting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hu-ai Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ping Ping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Adeva-Andany MM, Domínguez-Montero A, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, González-Lucán M. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases. Curr Diabetes Rev 2024; 20:e160823219824. [PMID: 37587805 DOI: 10.2174/1573399820666230816111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
4
|
Huang LY, Chiu CJ, Hsing CH, Hsu YH. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells 2022; 11:4041. [PMID: 36552805 PMCID: PMC9776768 DOI: 10.3390/cells11244041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity and its associated complications are global public health concerns. Metabolic disturbances and immune dysregulation cause adipose tissue stress and dysfunction in obese individuals. Immune cell accumulation in the adipose microenvironment is the main cause of insulin resistance and metabolic dysfunction. Infiltrated immune cells, adipocytes, and stromal cells are all involved in the production of proinflammatory cytokines and chemokines in adipose tissues and affect systemic homeostasis. Interferons (IFNs) are a large family of pleiotropic cytokines that play a pivotal role in host antiviral defenses. IFNs are critical immune modulators in response to pathogens, dead cells, and several inflammation-mediated diseases. Several studies have indicated that IFNs are involved in the pathogenesis of obesity. In this review, we discuss the roles of IFN family cytokines in the development of obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ling-Yu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiao-Juno Chiu
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Antibody New Drug Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Tews D, Brenner RE, Siebert R, Debatin KM, Fischer-Posovszky P, Wabitsch M. 20 Years with SGBS cells - a versatile in vitro model of human adipocyte biology. Int J Obes (Lond) 2022; 46:1939-1947. [PMID: 35986215 PMCID: PMC9584814 DOI: 10.1038/s41366-022-01199-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
20 years ago, we described a human cell strain derived from subcutaneous adipose tissue of an infant supposed to have Simpson-Golabi-Behmel Syndrome (SGBS), thus called “SGBS cells”. Since then, these cells have emerged as the most commonly used cell model for human adipogenesis and human adipocyte biology. Although these adipocyte derived stem cells have not been genetically manipulated for transformation or immortalization, SGBS cells retain their capacity to proliferate and to differentiate into adipocytes for more than 50 population doublings, providing an almost unlimited source of human adipocyte progenitor cells. Original data obtained with SGBS cells led to more than 200 peer reviewed publications comprising investigations on adipogenesis and browning, insulin sensitivity, inflammatory response, adipokine production, as well as co-culture models and cell-cell communication. In this article, we provide an update on the characterization of SGBS cells, present basic methods for their application and summarize results of a systematic literature search on original data obtained with this cell strain.
Collapse
|
6
|
Huang G, Yang C, Guo S, Huang M, Deng L, Huang Y, Chen P, Chen F, Huang X. Adipocyte-specific deletion of PIP5K1c reduces diet-induced obesity and insulin resistance by increasing energy expenditure. Lipids Health Dis 2022; 21:6. [PMID: 34996482 PMCID: PMC8742433 DOI: 10.1186/s12944-021-01616-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Phosphatidylinositol 4-phosphate 5-kinase type I c (PIP5K1c) catalyses the synthesis of phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphorylating phosphatidylinositol 4 phosphate, which plays multiple roles in regulating focal adhesion formation, invasion, and cell migration signal transduction cascades. Here, a new physiological mechanism of PIP5K1c in adipocytes and systemic metabolism is reported. Methods Adipose-specific conditional knockout mice were generated to delete the PIP5K1c gene in adipocytes. In addition, in vitro research investigated the effect of PIP5K1c deletion on adipogenesis. Results Deletion of PIP5K1c in adipocytes significantly alleviated high fat diet (HFD)-induced obesity, hyperlipidaemia, hepatic steatosis, and insulin resistance. PIP5K1c deficiency in adipocytes also decreased adipocyte volume in HFD-induced obese mice, whereas no significant differences were observed in body weight and adipose tissue weight under normal chow diet conditions. PIP5K1c knockout in adipocytes significantly enhanced energy expenditure, which protected mice from HFD-induced weight gain. In addition, adipogenesis was markedly impaired in mouse stromal vascular fraction (SVF) from PIP5K1c-deleted mice. Conclusion Under HFD conditions, PIP5K1c regulates adipogenesis and adipose tissue homeostasis. Together, these data indicate that PIP5K1c could be a novel potential target for regulating fat accumulation, which could provide novel insight into the treatment of obesity. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01616-4.
Collapse
Affiliation(s)
- Guan Huang
- Department of Pathology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Cuishan Yang
- Department of Nursing, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Sheng Guo
- Department of Medical Administration, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Miaoling Huang
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Liping Deng
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Ying Huang
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Puxin Chen
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Feng Chen
- Department of Plastic Surgy, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine; Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China.
| | - Xiaohong Huang
- Department of Nursing, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China.
| |
Collapse
|
7
|
Zhang Y, Skinner JP, Chong MM. Expression of the miR-17~92a cluster of microRNAs by regulatory T cells controls blood glucose homeostasis. Immunol Cell Biol 2021; 100:101-111. [PMID: 34888953 DOI: 10.1111/imcb.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
Regulatory T cells (Tregs) are a specialized immune cell type that play important roles in regulating immune responses. However, those found in adipose tissue, particularly visceral adipose tissue (VAT), have also been shown to exert metabolic regulatory functions. This study investigated the requirement of the miR-17~92a cluster of microRNAs in VAT Tregs and the impact on blood glucose. This cluster of microRNAs is one that we previously showed to be important for the fitness of Tregs found in secondary lymphoid organs. It was found that male mice with Treg-specific miR-17~92a deficiency are resistant to impaired glucose tolerance induced by a high-fat diet. However, high-fat feeding still impaired glucose tolerance in female mice with Treg-specific miR-17~92a deficiency. There was an increase in KLRG1- naïve Tregs and a loss of KLRG1+ terminally differentiated Tregs in the VAT of Treg-specific miR-17~92a-deficient male mice but not in female mice. The protection of male mice from high-fat feeding was also associated with increased interleukin-10 and reduced interferonγ expression by conventional CD4+ T cells and reduced interleukin-2 expression by both CD4+ and CD8+ T cells in the VAT. Together this suggests that expression of miR-17~92a by VAT Tregs regulates the effector phenotype of conventional T cells and in turn the metabolic function of adipose tissue and blood glucose homeostasis.
Collapse
Affiliation(s)
- Yangnan Zhang
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Jarrod P Skinner
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Mark Mw Chong
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
8
|
Fetuin-A regulates adipose tissue macrophage content and activation in insulin resistant mice through MCP-1 and iNOS: involvement of IFNγ-JAK2-STAT1 pathway. Biochem J 2021; 478:4027-4043. [PMID: 34724561 DOI: 10.1042/bcj20210442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
In the context of obesity-induced adipose tissue (AT) inflammation, migration of macrophages and their polarization from predominantly anti-inflammatory to proinflammatory subtype is considered a pivotal event in the loss of adipose insulin sensitivity. Two major chemoattractants, monocyte chemoattractant protein-1 (MCP-1) and Fetuin-A (FetA), have been reported to stimulate macrophage migration into inflamed AT instigating inflammation. Moreover, FetA could notably modulate macrophage polarization, yet the mechanism(s) is unknown. The present study was undertaken to elucidate the mechanistic pathway involved in the actions of FetA and MCP-1 in obese AT. We found that FetA knockdown in high fat diet (HFD) fed mice could significantly subdue the augmented MCP-1 expression and reduce adipose tissue macrophage (ATM) content thereby indicating that MCP-1 is being regulated by FetA. Additionally, knockdown of FetA in HFD mice impeded the expression of inducible nitric oxide synthase (iNOS) reverting macrophage activation from mostly proinflammatory to anti-inflammatory state. It was observed that the stimulating effect of FetA on MCP-1 and iNOS was mediated through interferon γ (IFNγ) induced activation of JAK2-STAT1-NOX4 pathway. Furthermore, we detected that the enhanced IFNγ expression was accounted by the stimulatory effect of FetA upon the activities of both cJun and JNK. Taken together, our findings revealed that obesity-induced FetA acts as a master upstream regulator of AT inflammation by regulating MCP-1 and iNOS expression through JNK-cJun-IFNγ-JAK2-STAT1 signaling pathway. This study opened a new horizon in understanding the regulation of ATM content and activation in conditions of obesity-induced insulin resistance.
Collapse
|
9
|
Gál E, Dolenšek J, Stožer A, Czakó L, Ébert A, Venglovecz V. Mechanisms of Post-Pancreatitis Diabetes Mellitus and Cystic Fibrosis-Related Diabetes: A Review of Preclinical Studies. Front Endocrinol (Lausanne) 2021; 12:715043. [PMID: 34566890 PMCID: PMC8461102 DOI: 10.3389/fendo.2021.715043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Anatomical proximity and functional correlations between the exocrine and endocrine pancreas warrant reciprocal effects between the two parts. Inflammatory diseases of the exocrine pancreas, such as acute or chronic pancreatitis, or the presence of cystic fibrosis disrupt endocrine function, resulting in diabetes of the exocrine pancreas. Although novel mechanisms are being increasingly identified, the intra- and intercellular pathways regulating exocrine-endocrine interactions are still not fully understood, making the development of new and more effective therapies difficult. Therefore, this review sought to accumulate current knowledge regarding the pathogenesis of diabetes in acute and chronic pancreatitis, as well as cystic fibrosis.
Collapse
Affiliation(s)
- Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - László Czakó
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Mogilenko DA, Caiazzo R, L'homme L, Pineau L, Raverdy V, Noulette J, Derudas B, Pattou F, Staels B, Dombrowicz D. IFNγ-producing NK cells in adipose tissue are associated with hyperglycemia and insulin resistance in obese women. Int J Obes (Lond) 2021; 45:1607-1617. [PMID: 33934108 DOI: 10.1038/s41366-021-00826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/04/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND/OBJECTIVES Innate lymphoid cells (ILCs) play an important role in the maintenance of immune and metabolic homeostasis in adipose tissue (AT). The crosstalk between AT ILCs and adipocytes and other immune cells coordinates adipocyte differentiation, beiging, glucose metabolism and inflammation. Although the metabolic and homeostatic functions of mouse ILCs have been extensively investigated, little is known about human adipose ILCs and their roles in obesity and insulin resistance (IR). SUBJECTS/METHODS Here we characterized T and NK cell populations in omental AT (OAT) from women (n = 18) with morbid obesity and varying levels of IR and performed an integrated analysis of metabolic parameters and adipose tissue transcriptomics. RESULTS In OAT, we found a distinct population of CD56-NKp46+EOMES+ NK cells characterized by expression of cytotoxic molecules, pro-inflammatory cytokines, and markers of cell activation. AT IFNγ+ NK cells, but not CD4, CD8 or γδ T cells, were positively associated with glucose levels, glycated hemoglobin (HbA1c) and IR. AT NK cells were linked to a pro-inflammatory gene expression profile in AT and developed an effector phenotype in response to IL-12 and IL-15. Moreover, integrated transcriptomic analysis revealed a potential implication of AT IFNγ+ NK cells in controlling adipose tissue inflammation, remodeling, and lipid metabolism. CONCLUSIONS Our results suggest that a distinct IFNγ-producing NK cell subset is involved in metabolic homeostasis in visceral AT in humans with obesity and may be a potential target for therapy of IR.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
- Washington University School of Medicine, Department of Pathology & Immunology, Saint Louis, MO, USA
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190-EGID, Lille, France
| | - Laurent L'homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laurent Pineau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Violeta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190-EGID, Lille, France
| | - Jerome Noulette
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190-EGID, Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Francois Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190-EGID, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
11
|
Gharib SA, Hurley AL, Rosen MJ, Spilsbury JC, Schell AE, Mehra R, Patel SR. Obstructive sleep apnea and CPAP therapy alter distinct transcriptional programs in subcutaneous fat tissue. Sleep 2021; 43:5686164. [PMID: 31872261 DOI: 10.1093/sleep/zsz314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Obstructive sleep apnea (OSA) has been linked to dysregulated metabolic states, and treatment of sleep apnea may improve these conditions. Subcutaneous adipose tissue is a readily samplable fat depot that plays an important role in regulating metabolism. However, neither the pathophysiologic consequences of OSA nor the effects of continuous positive airway pressure (CPAP) in altering this compartment's molecular pathways are understood. This study aimed to systematically identify subcutaneous adipose tissue transcriptional programs modulated in OSA and in response to its effective treatment with CPAP. Two subject groups were investigated: Study Group 1 was comprised of 10 OSA and 8 controls; Study Group 2 included 24 individuals with OSA studied at baseline and following CPAP. For each subject, genome-wide gene expression measurement of subcutaneous fat was performed. Differentially activated pathways elicited by OSA (Group 1) and in response to its treatment (Group 2) were determined using network and Gene Set Enrichment Analysis (GSEA). In Group 2, treatment of OSA with CPAP improved apnea-hypopnea index, daytime sleepiness, and blood pressure, but not anthropometric measures. In Group 1, GSEA revealed many up-regulated gene sets in OSA subjects, most of which were involved in immuno-inflammatory (e.g. interferon-γ signaling), transcription, and metabolic processes such as adipogenesis. Unexpectedly, CPAP therapy in Group 2 subjects was also associated with up-regulation of several immune pathways as well as cholesterol biosynthesis. Collectively, our findings demonstrate that OSA alters distinct inflammatory and metabolic programs in subcutaneous fat, but these transcriptional signatures are not reversed with short-term effective therapy.
Collapse
Affiliation(s)
- Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA.,Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA
| | | | - Michael J Rosen
- Department of Surgery, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH
| | - James C Spilsbury
- Department of Population & Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Amy E Schell
- Department of Otolaryngology, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH.,Division of Pulmonary, Critical Care, and Sleep Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Reena Mehra
- Sleep Disorders Center of the Neurologic Institute, Respiratory Institute, Heart and Vascular Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Sanjay R Patel
- Center for Sleep and Cardiovascular Outcomes Research, University of Pittsburgh, Pittsburgh, PA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
12
|
The Inflammatory Profile of Obesity and the Role on Pulmonary Bacterial and Viral Infections. Int J Mol Sci 2021; 22:ijms22073456. [PMID: 33810619 PMCID: PMC8037155 DOI: 10.3390/ijms22073456] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is a globally increasing health problem, entailing diverse comorbidities such as infectious diseases. An obese weight status has marked effects on lung function that can be attributed to mechanical dysfunctions. Moreover, the alterations of adipocyte-derived signal mediators strongly influence the regulation of inflammation, resulting in chronic low-grade inflammation. Our review summarizes the known effects regarding pulmonary bacterial and viral infections. For this, we discuss model systems that allow mechanistic investigation of the interplay between obesity and lung infections. Overall, obesity gives rise to a higher susceptibility to infectious pathogens, but the pathogenetic process is not clearly defined. Whereas, viral infections often show a more severe course in obese patients, the same patients seem to have a survival benefit during bacterial infections. In particular, we summarize the main mechanical impairments in the pulmonary tract caused by obesity. Moreover, we outline the main secretory changes within the expanded adipose tissue mass, resulting in chronic low-grade inflammation. Finally, we connect these altered host factors to the influence of obesity on the development of lung infection by summarizing observations from clinical and experimental data.
Collapse
|
13
|
Vasileva LV, Savova MS, Tews D, Wabitsch M, Georgiev MI. Rosmarinic acid attenuates obesity and obesity-related inflammation in human adipocytes. Food Chem Toxicol 2021; 149:112002. [PMID: 33476690 DOI: 10.1016/j.fct.2021.112002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Chronic low-grade inflammation is a hallmark of obesity and its related metabolic disorders. At the same time signaling from pro-inflammatory factors such as transforming growth factor beta (TGF-β) or interleukin 17A (IL-17A) are proposed as crucial for the commitment of fibroblast progenitor cells towards adipogenic differentiation. Modulation of inflammation during adipogenic differentiation is incompletely explored as a potential approach to prevent metabolic disorders. Rosmarinic acid (RA) is a caffeic acid derivative known for its anti-inflammatory effects. Experimental studies of its activity on adipogenic factors or in vivo obesity models are, however, controversial and hence insufficient. Here, we investigated the anti-adipogenic action of RA in human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Gene expression levels of key players in adipogenesis and lipid metabolism were assessed. Furthermore, a molecular mechanism of action was proposed. The most prominent effect was found on the translation of C/EBPα, PPARγ and adiponectin, as well as on the modulation of TGF1B and IL17A. Interestingly, involvement of NRF2 signaling was identified upon RA treatment. In summary, our findings indicate that RA prevents inflammation and excessive lipid accumulation in human adipocytes. Data from the molecular analysis demonstrate that RA has potential for treatment of obesity and obesity-related inflammation.
Collapse
Affiliation(s)
- Liliya V Vasileva
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Martina S Savova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.
| |
Collapse
|
14
|
Cox AR, Chernis N, Bader DA, Saha PK, Masschelin PM, Felix JB, Sharp R, Lian Z, Putluri V, Rajapakshe K, Kim KH, Villareal DT, Armamento-Villareal R, Wu H, Coarfa C, Putluri N, Hartig SM. STAT1 Dissociates Adipose Tissue Inflammation From Insulin Sensitivity in Obesity. Diabetes 2020; 69:2630-2641. [PMID: 32994273 PMCID: PMC7679774 DOI: 10.2337/db20-0384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Obesity fosters low-grade inflammation in white adipose tissue (WAT) that may contribute to the insulin resistance that characterizes type 2 diabetes. However, the causal relationship of these events remains unclear. The established dominance of STAT1 function in the immune response suggests an obligate link between inflammation and the comorbidities of obesity. To this end, we sought to determine how STAT1 activity in white adipocytes affects insulin sensitivity. STAT1 expression in WAT inversely correlated with fasting plasma glucose in both obese mice and humans. Metabolomic and gene expression profiling established STAT1 deletion in adipocytes (STAT1 a-KO ) enhanced mitochondrial function and accelerated tricarboxylic acid cycle flux coupled with reduced fat cell size in subcutaneous WAT depots. STAT1 a-KO reduced WAT inflammation, but insulin resistance persisted in obese mice. Rather, elimination of type I cytokine interferon-γ activity enhanced insulin sensitivity in diet-induced obesity. Our findings reveal a permissive mechanism that bridges WAT inflammation to whole-body insulin sensitivity.
Collapse
Affiliation(s)
- Aaron R Cox
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Natasha Chernis
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Pradip K Saha
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Peter M Masschelin
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jessica B Felix
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Robert Sharp
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Zeqin Lian
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Vasanta Putluri
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Sean M Hartig
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
15
|
Liddle DM, Hutchinson AL, Monk JM, DeBoer AA, Ma DWL, Robinson LE. Dietary long-chain n-3 PUFAs mitigate CD4 + T cell/adipocyte inflammatory interactions in co-culture models of obese adipose tissue. J Nutr Biochem 2020; 86:108488. [PMID: 32827664 DOI: 10.1016/j.jnutbio.2020.108488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Obese adipose tissue (AT) inflammation is partly driven by accumulation of CD4+ T helper (Th)1 cells and reduced Th2 and T regulatory subsets, which promotes macrophage chemotaxis and ensuing AT metabolic dysfunction. This study investigated CD4+ T cell/adipocyte cytokine-mediated paracrine interactions (cross talk) as a target for dietary intervention to mitigate obese AT inflammation. Using an in vitro co-culture model designed to recapitulate CD4+ T cell accumulation in obese AT (5% of stromal vascular cellular fraction), 3T3-L1 adipocytes were co-cultured with purified splenic CD4+ T cells from C57Bl/6 mice consuming one of two isocaloric diets containing either 10% w/w safflower oil (control, CON) or 7% w/w safflower oil+3% w/w fish oil (FO) for 4 weeks (n=8-11/diet). The FO diet provided 1.9% kcal from the long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid, a dose that can be achieved by supplementation. Co-cultures were stimulated for 48 h with lipopolysaccharide (LPS) to mimic in vivo obese endotoxin levels or with conditioned media collected from LPS-stimulated visceral AT isolated from CON-fed mice. In both stimulation conditions, FO reduced mRNA expression and/or secreted protein levels of Th1 markers (T-bet, IFN-γ) and increased Th2 markers (GATA3, IL-4), concomitant with reduced inflammatory cytokines (IL-1β, IL-6, IL-12p70, TNF-α), macrophage chemokines (MCP-1, MCP-3, MIP-1α, MIP-2) and levels of activated central regulators of inflammatory signaling (NF-κB, STAT-1, STAT-3) (P<.05). Therefore, CD4+ T cell/adipocyte cross talk represents a potential target for LC n-3 PUFAs to mitigate obese AT inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Amber L Hutchinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jennifer M Monk
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Anna A DeBoer
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - David W L Ma
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Lindsay E Robinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
16
|
Cardellini S, Socci C, Bissolati M, Pindozzi F, Giovenzana A, Saibene A, Bosi E, Battaglia M, Petrelli A. Enrichment of Tc1 cells and T cell resistance to suppression are associated with dysglycemia in the visceral fat in human obesity. BMJ Open Diabetes Res Care 2020; 8:8/1/e000772. [PMID: 32299896 PMCID: PMC7199176 DOI: 10.1136/bmjdrc-2019-000772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Insulin resistance, defined as tissue inflammation leading to type 2 diabetes, is a feature of obesity. The immune system has been implicated in its pathogenesis, but the role of adaptive immunity in humans remains uncertain. Here, we aim to determine whether specific phenotypic and functional properties of visceral adipose tissue (VAT)-derived CD4 conventional T cells (Tconv) and CD8 T cells are associated with dysglycemia in human obesity. RESEARCH DESIGN AND METHODS Peripheral blood and the stromal vascular fraction of obese patients without dysglycemia (n=23), with impaired fasting glucose or type 2 diabetes (n=17), and non-diabetic lean controls (n=11) were studied. Characterization of memory, activation profile, cytokine production, proliferative capacity, cytotoxic potential and transforming growth factor-β-mediated suppression of CD4 Tconv and CD8 T cells was performed. Correlation between anthropometric/metabolic parameters and VAT-derived T cell subsets was determined. RESULTS In the VAT of the overall obese population, reduced frequency of interferon-γ-producing or tumor necrosis factor-α-producing CD4 (ie, T helper 1, Th1) and CD8 (ie, cytotoxic type 1, Tc1) T cells, as well as interleukin-17-producing CD8 T cells (ie, Tc17), was evident when compared with lean controls. However, enrichment of Tc1 cells, together with the impaired ability of CD4 and CD8 T cells to be suppressed, distinguished the visceral fat of obese patients with dysglycemia from the one of non-diabetic obese patients. Moreover, accumulation of Th1 and Tc1 cells in the VAT correlated with anthropometric and metabolic parameters. CONCLUSIONS Here, we define the VAT-specific characteristics of T cells in human obesity, showing that accumulation of Tc1 cells and T cell resistance to suppression can be harmful to the development of obesity-induced diabetes. These findings open new directions to investigate immunological targets in the obesity setting.
Collapse
Affiliation(s)
- Sara Cardellini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Carlo Socci
- Transplant and Metabolic/Bariatric Surgery Unit, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Massimiliano Bissolati
- Transplant and Metabolic/Bariatric Surgery Unit, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Fioralba Pindozzi
- Transplant and Metabolic/Bariatric Surgery Unit, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Anna Giovenzana
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Alessandro Saibene
- Department of General Medicine, Diabetes and Endocrinology, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Emanuele Bosi
- Department of General Medicine, Diabetes and Endocrinology, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| |
Collapse
|
17
|
Zhang Y, Zheng Y, Fu Y, Wang C. Identification of biomarkers, pathways and potential therapeutic agents for white adipocyte insulin resistance using bioinformatics analysis. Adipocyte 2019; 8:318-329. [PMID: 31407623 PMCID: PMC6768254 DOI: 10.1080/21623945.2019.1649578] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For the better understanding of insulin resistance (IR), the molecular biomarkers in IR white adipocytes and its potential mechanism, we downloaded two mRNA expression profiles from Gene Expression Omnibus (GEO). The white adipocyte samples in two databases were collected from the human omental adipose tissue of IR obese (IRO) subjects and insulin-sensitive obese (ISO) subjects, respectively. We identified 86 differentially expressed genes (DEGs) between the IRO and ISO subjects using limma package in R software. Gene Set Enrichment Analysis (GSEA) provided evidence that the most gene sets enriched in kidney mesenchyme development in the ISO subjects, as compared with the IRO subjects. The Gene Ontology (GO) analysis indicated that the most significantly enriched in cellular response to interferon-gamma. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the DEGs were most significantly enriched in cytokine-cytokine receptor interaction. Protein–Protein Interaction (PPI) network was performed with the STRING, and the top 10 hub genes were identified with the Cytohubba. CMap analysis found several small molecular compounds to reverse the altered DEGs, including dropropizine, aceclofenac, melatonin, and so on. Our outputs could empower the novel potential targets to treat omental white adipocyte insulin resistance, diabetes, and diabetes-related diseases.
Collapse
Affiliation(s)
- Yemin Zhang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yuyang Zheng
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yalin Fu
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
18
|
Weinstock A, Brown EJ, Garabedian ML, Pena S, Sharma M, Lafaille J, Moore KJ, Fisher EA. Single-Cell RNA Sequencing of Visceral Adipose Tissue Leukocytes Reveals that Caloric Restriction Following Obesity Promotes the Accumulation of a Distinct Macrophage Population with Features of Phagocytic Cells. IMMUNOMETABOLISM 2019; 1:e190008. [PMID: 31396408 PMCID: PMC6687332 DOI: 10.20900/immunometab20190008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity can lead to type 2 diabetes and is an epidemic. A major contributor to its adverse effects is inflammation of the visceral adipose tissue (VAT). Life-long caloric restriction (CR), in contrast, results in extended lifespan, enhanced glucose tolerance/insulin sensitivity, and other favorable phenotypes. The effects of CR following obesity are incompletely established, but studies show multiple benefits. Many leukocyte types, macrophages predominantly, reside in VAT in homeostatic and pathological states. CR following obesity transiently increases VAT macrophage content prior to resolution of inflammation and obesity, suggesting that macrophage content and phenotype play critical roles. Here, we examined the heterogeneity of VAT leukocytes and the effects of obesity and CR. In general, our single-cell RNA-sequencing data demonstrate that macrophages are the most abundant and diverse subpopulation of leukocytes in VAT. Obesity induced significant transcriptional changes in all 15 leukocyte subpopulations, with many genes showing coordinated changes in expression across the leukocyte subpopulations. Additionally, obese VAT displayed expansion of one major macrophage subpopulation, which, in silico, was enriched in lipid binding and metabolic processes. This subpopulation returned from dominance in obesity to lean proportions after only 2 weeks of CR, although the pattern of gene expression overall remained similar. Surprisingly, CR VAT is dominated by a different macrophage subpopulation, which is absent in lean conditions. This subpopulation is enriched in genes related to phagocytosis and we postulate that its function includes clearance of dead cells, as well as excess lipids, contributing to limiting VAT inflammation and restoration of the homeostatic state.
Collapse
Affiliation(s)
- Ada Weinstock
- Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Emily J Brown
- Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Michela L Garabedian
- Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Stephanie Pena
- Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Monika Sharma
- Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Juan Lafaille
- Department of Microbiology and Immunology, NYU School of Medicine, New York, NY 10016, USA
| | - Kathryn J Moore
- Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
- Department of Microbiology and Immunology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
19
|
van Niekerk G, Davis T, Patterton HG, Engelbrecht AM. How Does Inflammation-Induced Hyperglycemia Cause Mitochondrial Dysfunction in Immune Cells? Bioessays 2019; 41:e1800260. [PMID: 30970156 DOI: 10.1002/bies.201800260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/26/2019] [Indexed: 12/15/2022]
Abstract
Inflammatory mediators have an established role in inducing insulin resistance and promoting hyperglycemia. In turn, hyperglycemia has been argued to drive immune cell dysfunction as a result of mitochondrial dysfunction. Here, the authors review the evidence challenging this view. First, it is pointed out that inflammatory mediators are known to induce altered mitochondrial function. In this regard, critical care patients suffer both an elevated inflammatory tone as well as hyperglycemia, rendering it difficult to distinguish between the effects of inflammation and hyperglycemia. Second, emerging evidence indicates that a decrease in mitochondrial respiration and an increase in reactive oxygen species (ROS) production are not necessarily manifestations of pathology, but adaptations taking shape as the mitochondria is abdicating its adenosine triphosphate (ATP)-producing function (which is taken over by glycolysis) and instead becomes "retooled" for an immunological role. Collectively, these observations challenge the commonly held belief that acute hyperglycemia induces mitochondrial damage leading to immune cell dysfunction.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, 7602, Stellenbosch, South Africa
| | - Tanja Davis
- Department of Physiological Sciences, Stellenbosch University, 7602, Stellenbosch, South Africa
| | - Hugh-George Patterton
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, 7602, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, 7602, Stellenbosch, South Africa
| |
Collapse
|
20
|
Teslow EA, Mitrea C, Bao B, Mohammad RM, Polin LA, Dyson G, Purrington KS, Bollig‐Fischer A. Obesity-induced MBD2_v2 expression promotes tumor-initiating triple-negative breast cancer stem cells. Mol Oncol 2019; 13:894-908. [PMID: 30636104 PMCID: PMC6441886 DOI: 10.1002/1878-0261.12444] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022] Open
Abstract
Obesity is a risk factor for triple-negative breast cancer (TNBC) incidence and poor outcomes, but the underlying molecular biology remains unknown. We previously identified in TNBC cell cultures that expression of epigenetic reader methyl-CpG-binding domain protein 2 (MBD2), specifically the alternative mRNA splicing variant MBD variant 2 (MBD2_v2), is dependent on reactive oxygen species (ROS) and is crucial for maintenance and expansion of cancer stem cell-like cells (CSCs). Because obesity is coupled with inflammation and ROS, we hypothesized that obesity can fuel an increase in MBD2_v2 expression to promote the tumor-initiating CSC phenotype in TNBC cells in vivo. Analysis of TNBC patient datasets revealed associations between high tumor MBD2_v2 expression and high relapse rates and high body mass index (BMI). Stable gene knockdown/overexpression methods were applied to TNBC cell lines to elucidate that MBD2_v2 expression is governed by ROS-dependent expression of serine- and arginine-rich splicing factor 2 (SRSF2). We employed a diet-induced obesity (DIO) mouse model that mimics human obesity to investigate whether obesity causes increased MBD2_v2 expression and increased tumor initiation capacity in inoculated TNBC cell lines. MBD2_v2 and SRSF2 levels were increased in TNBC cell line-derived tumors that formed more frequently in DIO mice relative to tumors in lean control mice. Stable MBD2_v2 overexpression increased the CSC fraction in culture and increased TNBC cell line tumor initiation capacity in vivo. SRSF2 knockdown resulted in decreased MBD2_v2 expression, decreased CSCs in TNBC cell cultures, and hindered tumor formation in vivo. This report describes evidence to support the conclusion that MBD2_v2 expression is induced by obesity and drives TNBC cell tumorigenicity, and thus provides molecular insights into support of the epidemiological evidence that obesity is a risk factor for TNBC. The majority of TNBC patients are obese and rising obesity rates threaten to further increase the burden of obesity-linked cancers, which reinforces the relevance of this report.
Collapse
Affiliation(s)
- Emily A. Teslow
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Cristina Mitrea
- Department of Computer ScienceWayne State UniversityDetroitMIUSA
| | - Bin Bao
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Ramzi M. Mohammad
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Lisa A. Polin
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Greg Dyson
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Kristen S. Purrington
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Aliccia Bollig‐Fischer
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
21
|
Tarantino G, Costantini S, Citro V, Conforti P, Capone F, Sorice A, Capone D. Interferon-alpha 2 but not Interferon-gamma serum levels are associated with intramuscular fat in obese patients with nonalcoholic fatty liver disease. J Transl Med 2019; 17:8. [PMID: 30602382 PMCID: PMC6317208 DOI: 10.1186/s12967-018-1754-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Intramuscular triglycerides (IMTGs) represent an important energy supply and a dynamic fat-storage depot that can expand during periods of elevated lipid availability and a fatty acid source. Ultrasonography (US) of human skeletal muscles is a practical and reproducible method to assess both IMTG presence and entity. Although a crosstalk between cytokines in skeletal muscle and adipose tissue has been suggested in obesity, condition leading to hepatic steatosis (HS) or better defined as nonalcoholic fatty liver disease and cancer, there are still questions to be answered about the role of interferons (IFNs), alpha as well as gamma, and IMTG in obesity. We aimed at discovering any correlation between IFNs and IMTG. METHODS We analysed anthropometric data, metabolic parameters and imaging features of a population of 80 obese subjects with low-prevalence of co-morbidities but HS in relation to IFNs serum levels. A population of 38 healthy subjects (21 males) served as controls. The levels of serum IFNs were detected by a magnetic bead-based multiplex immunoassays. RESULTS Serum concentrations of IFN-alpha 2 were increased, while serum levels of IFN-gamma were decreased confronted with those of controls; the severity of IMTG, revealed at US as Heckmatt scores, was inversely predicted by IFN-alpha 2 serum concentrations; IMTG scores were not predicted by serum levels of IFN-gamma; IMTG scores were predicted by HS severity, ascertained at US; HS severity was predicted by visceral adipose tissue, assessed by US, but the latter was not instrumental to IMTG. DISCUSSION AND CONCLUSION This study has added some pieces of observation about the cytokine network regulating the interplay between IMTG and obesity in obese patients with HS.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, Naples, Italy
| | - Susan Costantini
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori-IRCSS-Fondazione G. Pascale, Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, Nocera Inferiore, SA Italy
| | - Paolo Conforti
- “Federico II” University Medical School of Naples, Naples, Italy
| | - Francesca Capone
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori-IRCSS-Fondazione G. Pascale, Naples, Italy
| | - Angela Sorice
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori-IRCSS-Fondazione G. Pascale, Naples, Italy
| | - Domenico Capone
- Integrated Care Department of Public Health and Drug-Use, Section of Medical Pharmacology and Toxicology, “Federico II” University, Naples, Italy
| |
Collapse
|
22
|
Koh EH, Chernis N, Saha PK, Xiao L, Bader DA, Zhu B, Rajapakshe K, Hamilton MP, Liu X, Perera D, Chen X, York B, Trauner M, Coarfa C, Bajaj M, Moore DD, Deng T, McGuire SE, Hartig SM. miR-30a Remodels Subcutaneous Adipose Tissue Inflammation to Improve Insulin Sensitivity in Obesity. Diabetes 2018; 67:2541-2553. [PMID: 30002134 PMCID: PMC6245225 DOI: 10.2337/db17-1378] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/03/2018] [Indexed: 01/08/2023]
Abstract
Chronic inflammation accompanies obesity and limits subcutaneous white adipose tissue (WAT) expandability, accelerating the development of insulin resistance and type 2 diabetes mellitus. MicroRNAs (miRNAs) influence expression of many metabolic genes in fat cells, but physiological roles in WAT remain poorly characterized. Here, we report that expression of the miRNA miR-30a in subcutaneous WAT corresponds with insulin sensitivity in obese mice and humans. To examine the hypothesis that restoration of miR-30a expression in WAT improves insulin sensitivity, we injected adenovirus (Adv) expressing miR-30a into the subcutaneous fat pad of diabetic mice. Exogenous miR-30a expression in the subcutaneous WAT depot of obese mice coupled improved insulin sensitivity and increased energy expenditure with decreased ectopic fat deposition in the liver and reduced WAT inflammation. High-throughput proteomic profiling and RNA-Seq suggested that miR-30a targets the transcription factor STAT1 to limit the actions of the proinflammatory cytokine interferon-γ (IFN-γ) that would otherwise restrict WAT expansion and decrease insulin sensitivity. We further demonstrated that miR-30a opposes the actions of IFN-γ, suggesting an important role for miR-30a in defending adipocytes against proinflammatory cytokines that reduce peripheral insulin sensitivity. Together, our data identify a critical molecular signaling axis, elements of which are involved in uncoupling obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Eun-Hee Koh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Natasha Chernis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Pradip K Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Liuling Xiao
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Xia Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Dimuthu Perera
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Mandeep Bajaj
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Tuo Deng
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
23
|
Sadie-Van Gijsen H. Adipocyte biology: It is time to upgrade to a new model. J Cell Physiol 2018; 234:2399-2425. [PMID: 30192004 DOI: 10.1002/jcp.27266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Globally, the obesity pandemic is profoundly affecting quality of life and economic productivity, but efforts to address this, especially on a pharmacological level, have generally proven unsuccessful to date, serving as a stark demonstration that our understanding of adipocyte biology and pathophysiology is incomplete. To deliver better insight into adipocyte function and obesity, we need improved adipocyte models with a high degree of fidelity in representing the in vivo state and with a diverse range of experimental applications. Adipocyte cell lines, especially 3T3-L1 cells, have been used extensively over many years, but these are limited in terms of relevance and versatility. In this review, I propose that primary adipose-derived stromal/stem cells (ASCs) present a superior model with which to study adipocyte biology ex vivo. In particular, ASCs afford us the opportunity to study adipocytes from different, functionally distinct, adipose depots and to investigate, by means of in vivo/ex vivo studies, the effects of many different physiological and pathophysiological factors, such as age, body weight, hormonal status, diet and nutraceuticals, as well as disease and pharmacological treatments, on the biology of adipocytes and their precursors. This study will give an overview of the characteristics of ASCs and published studies utilizing ASCs, to highlight the areas where our knowledge is lacking. More comprehensive studies in primary ASCs will contribute to an improved understanding of adipose tissue, in healthy and dysfunctional states, which will enhance our efforts to more successfully manage and treat obesity.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.,Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|