1
|
Fuhrmann A, Wilde B, Conz RF, Kantengwa S, Konlambigue M, Masengesho B, Kintche K, Kassa K, Musazura W, Späth L, Gold M, Mathys A, Six J, Hartmann M. Residues from black soldier fly ( Hermetia illucens) larvae rearing influence the plant-associated soil microbiome in the short term. Front Microbiol 2022; 13:994091. [PMID: 36225364 PMCID: PMC9550165 DOI: 10.3389/fmicb.2022.994091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The larvae of the black soldier fly (BSFL, Hermetia illucens) efficiently close resource cycles. Next to the nutrient-rich insect biomass used as animal feed, the residues from the process are promising plant fertilizers. Besides a high nutrient content, the residues contain a diverse microbial community and application to soil can potentially promote soil fertility and agricultural production through the introduction of beneficial microbes. This research assessed the application of the residues on plant-associated bacterial and fungal communities in the rhizosphere of a grass-clover mix in a 42-day greenhouse pot study. Potted soil was amended with BSFL residues (BR+) or conventional compost (CC+) produced by Rwandan waste management companies in parallel to residues and compost sterilized (BR-, CC-) by high-energy electron beam (HEEB) as abiotic controls. The fertilizers were applied at a rate of 150 kg N ha-1. Soil bacterial and fungal communities in both fertilizer and soil were assessed by high-throughput sequencing of ribosomal markers at different times after fertilizer application. Additionally, indicators for soil fertility such as basal respiration, plant yield and soil physicochemical properties were analyzed. Results showed that the application of BSFL residues influenced the soil microbial communities, and especially fungi, stronger than CC fertilizers. These effects on the microbial community structure could partly be attributed to a potential introduction of microbes to the soil by BSFL residues (e.g., members of genus Bacillus) since untreated and sterilized BSFL residues promoted different microbial communities. With respect to the abiotic effects, we emphasize a potential driving role of particular classes of organic matter like fiber and chitin. Indeed, especially taxa associated with decomposition of organic matter (e.g., members of the fungal genus Mortierella) were promoted by the application of BSFL residues. Soil fertility with respect to plant yield (+17% increase compared to unamended control) and basal respiration (+16% increase compared to unamended control) tended to be improved with the addition of BSFL residues. Findings underline the versatile opportunities for soil fertility arising from the application of BSFL residues in plant production and point to further research on quantification of the described effects.
Collapse
Affiliation(s)
- Adrian Fuhrmann
- Sustainable Agroecosystems Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Singapore-ETH Centre, Singapore, Singapore
| | - Benjamin Wilde
- Sustainable Agroecosystems Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Rafaela Feola Conz
- Sustainable Agroecosystems Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | | | | | | - Kokou Kintche
- International Institute of Tropical Agriculture, Kigali, Rwanda
| | - Kinfe Kassa
- Faculty of Water Supply and Environmental Engineering, Arba Minch University, Arba Minch, Ethiopia
| | - William Musazura
- School of Agricultural, Earth and Environmental Sciences, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Leonhard Späth
- Sustainable Agroecosystems Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Transdisciplinary Lab, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Moritz Gold
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
- Department of Sanitation, Water and Solid Waste for Development (Sandec), Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| | - Johan Six
- Sustainable Agroecosystems Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Yaguchi A, Franaszek N, O'Neill K, Lee S, Sitepu I, Boundy-Mills K, Blenner M. Identification of oleaginous yeasts that metabolize aromatic compounds. J Ind Microbiol Biotechnol 2020; 47:801-813. [PMID: 32221720 DOI: 10.1007/s10295-020-02269-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
Abstract
The valorization of lignin is critical for the economic viability of the bioeconomy. Microbial metabolism is advantageous for handling the myriad of aromatic compounds resulting from lignin chemical or enzymatic depolymerization. Coupling aromatic metabolism to fatty acid biosynthesis makes possible the production of biofuels, oleochemicals, and other fine/bulk chemicals derived from lignin. Our previous work identified Cutaneotrichosporon oleaginosus as a yeast that could accumulate nearly 70% of its dry cell weight as lipids using aromatics as a sole carbon source. Expanding on this, other oleaginous yeast species were investigated for the metabolism of lignin-relevant monoaromatics. Thirty-six oleaginous yeast species from the Phaff yeast collection were screened for growth on several aromatic compounds representing S-, G-, and H- type lignin. The analysis reported in this study suggests that aromatic metabolism is largely segregated to the Cutaenotrichosporon, Trichosporon, and Rhodotorula clades. Each species tested within each clade has different properties with respect to the aromatics metabolized and the concentrations of aromatics tolerated. The combined analysis suggests that Cutaneotrichosporon yeast are the best suited to broad spectrum aromatic metabolism and support its development as a model system for aromatic metabolism in yeast.
Collapse
Affiliation(s)
- Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Nicole Franaszek
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Kaelyn O'Neill
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Stephen Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Irnayuli Sitepu
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA.
| |
Collapse
|
3
|
Chen S, Yu H, Zhou X, Wu F. Cucumber ( Cucumis sativus L.) Seedling Rhizosphere Trichoderma and Fusarium spp. Communities Altered by Vanillic Acid. Front Microbiol 2018; 9:2195. [PMID: 30283420 PMCID: PMC6157394 DOI: 10.3389/fmicb.2018.02195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Root exudates mediate soil microbiome composition and diversity, which might further influence plant development and health. Vanillic acid from root exudates is usually referred as autotoxin of cucumber, however, how vanillic acid affect soil microbial community diversities and abundances remains unclear. In this study, vanillic acid (VA; 0.02, 0.05, 0.1, and 0.2 μmol g-1 soil) was applied to soil every other day for a total of five applications. We used Illumina MiSeq sequencing, quantitative PCR (qPCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to test the effects of VA on the total fungi community composition as well as the Trichoderma and Fusarium spp. community abundances and structures in the cucumber rhizosphere. Illumina MiSeq sequencing showed that VA (0.05 μmol g-1 soil) increased the relative abundance of the fungal phylum Basidiomycota while decreasing the relative abundance of Ascomycota (P < 0.05), and not altered the diversity of the soil fungal community. VA (0.05 μmol g-1 soil) also increased the relative abundances of the fungal genera with plant pathogens, such as Conocybe and Spizellomyces spp.(P < 0.05). A qPCR analysis showed that VA (0.05 to 0.2 μmol g-1 soil) exerted promoting effects on Trichoderma spp. community abundance and stimulated Fusarium spp. abundance at low concentrations (0.02 to 0.05 μmol g-1 soil) but inhibited it at high concentrations (0.1 to 0.2 μmol g-1 soil). The PCR-DGGE analysis showed that all concentrations of VA altered the community structures of Trichoderma spp. and that the application of VA (0.02 and 0.05 μmol g-1 soil) changed the band number and the Shannon-Wiener index of the Fusarium spp. community. This study demonstrated that VA changed the total fungal community in the cucumber seedling rhizosphere and that the Trichoderma and Fusarium spp. communities showed different responses to VA.
Collapse
Affiliation(s)
- Shaocan Chen
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Hongjie Yu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| |
Collapse
|
4
|
Wang Z, Zhang J, Wu F, Zhou X. Changes in rhizosphere microbial communities in potted cucumber seedlings treated with syringic acid. PLoS One 2018; 13:e0200007. [PMID: 29953531 PMCID: PMC6023137 DOI: 10.1371/journal.pone.0200007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/18/2018] [Indexed: 11/24/2022] Open
Abstract
Phytotoxic effects of phenolic compounds have been extensively studied, but less attention has been given to the effects of these compounds on soil microbial communities, which are crucial to the productivity of agricultural systems. Responses of cucumber rhizosphere bacterial and fungal communities to syringic acid (SA), a phenolic compound with autotoxicity to cucumber, were analyzed by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer amplicons. SA at the concentration of 0.1 μmol g-1 soil changed rhizosphere bacterial and fungal community compositions, decreased bacterial community diversity but increased fungal community richness and diversity (P<0.05). Moreover, SA increased the relative abundances of bacterial phylum Proteobacteria and fungal classes Leotiomycetes, Pezizomycetes, Tremellomycetes and Eurotiomycetes, but decreased the relative abundances of bacterial phylum Firmicutes and fungal class Sordariomycetes (P<0.05). At the genus level, SA decreased the relative abundances of microbial taxa with pathogen-antagonistic and/or plant growth promoting potentials, such as Pseudomonas spp. (P<0.05). Real-time PCR validated that SA decreased cucumber rhizosphere Pseudomonas spp. abundance (P<0.05). In vitro study showed that SA (0.01 to 10 mM) inhibited the growth of a strain of Pseudomonas spp. with pathogen-antagonistic activities to cucumber pathogen Fusarium oxysporum f.sp. cucumerinum Owen (P<0.05). Overall, SA changed cucumber rhizosphere bacterial and fungal community compositions, which may exert negative effects on cucumber seedling growth through inhibiting plant-beneficial microorganisms.
Collapse
Affiliation(s)
- Zhilin Wang
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Jianhui Zhang
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| |
Collapse
|
5
|
Patel A, Sartaj K, Arora N, Pruthi V, Pruthi PA. Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:47-56. [PMID: 28711832 DOI: 10.1016/j.jhazmat.2017.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 05/17/2023]
Abstract
Phenol is reported to be one of the most toxic environmental pollutants present in the discharge of various industrial effluents causing a serious threat to the existing biome. Biodegradation of phenol by oleaginous yeast Rhodosporidium kratochvilovae HIMPA1 was found to degrade 1000mg/l phenol. The pathways for phenol degradation by both ortho and meta-cleavage were proposed by the identification of metabolites and enzymatic assays of ring cleavage enzymes in the cell extracts. Results suggest that this oleaginous yeast degrade phenol via meta-cleavage pathway and accumulates a high quantity of lipid content (64.92%; wt/wt) as compared to control glucose synthetic medium (GSM). Meta-cleavage pathway of phenol degradation leads to formation of pyruvate and acetaldehyde. Both these end products feed as precursors for de novo triacylglycerols (TAG) biosynthesis pathway which causes accumulation of TAG in the lipid droplets (LD) of 6.12±0.78μm grown on phenol while 2.38±0.52μm observed on GSM. This was confirmed by fluorescence microscopic images of BODIPY505-515nm stained live yeast cells. GC-MS analysis of extracted total lipid showed enhanced amount of monounsaturated fatty acid (MUFA) which was as 51.87%, 58.33% and 62.98% in presence of 0.5, 0.75 and 1g/l of phenol.
Collapse
Affiliation(s)
- Alok Patel
- Molecular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee (IIT R), Roorkee, Uttarakhand, 247667, India
| | - Km Sartaj
- Molecular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee (IIT R), Roorkee, Uttarakhand, 247667, India
| | - Neha Arora
- Molecular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee (IIT R), Roorkee, Uttarakhand, 247667, India
| | - Vikas Pruthi
- Molecular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee (IIT R), Roorkee, Uttarakhand, 247667, India
| | - Parul A Pruthi
- Molecular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee (IIT R), Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
6
|
Mašínová T, Bahnmann BD, Větrovský T, Tomšovský M, Merunková K, Baldrian P. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol Ecol 2016; 93:fiw223. [PMID: 27789535 DOI: 10.1093/femsec/fiw223] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/08/2016] [Accepted: 10/26/2016] [Indexed: 01/09/2023] Open
Abstract
Fungi represent a group of soil microorganisms fulfilling important ecological functions. Although several studies have shown that yeasts represent a significant proportion of fungal communities, our current knowledge is based mainly on cultivation experiments. In this study, we used amplicon sequencing of environmental DNA to describe the composition of yeast communities in European temperate forest and to identify the potential biotic and abiotic drivers of community assembly. Based on the analysis of ITS2 PCR amplicons, yeasts represented a substantial proportion of fungal communities ranging from 0.4 to 14.3% of fungal sequences in soil and 0.2 to 9.9% in litter. The species richness at individual sites was 28 ± 9 in soil and 31 ± 11 in litter. The basidiomycetous yeasts dominated over ascomycetous ones. In litter, yeast communities differed significantly among beech-, oak- and spruce-dominated stands. Drivers of community assembly are probably more complex in soils and comprise the effects of environmental conditions and vegetation.
Collapse
Affiliation(s)
- Tereza Mašínová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Barbara Doreen Bahnmann
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Michal Tomšovský
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Kristina Merunková
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
7
|
Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater. Appl Microbiol Biotechnol 2016; 100:8191-202. [PMID: 27221291 DOI: 10.1007/s00253-016-7591-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
The combined anaerobic-aerobic biosystem is assumed to consume less energy for the treatment of high strength industrial wastewater. In this study, pollutant removal performance and microbial diversity were assessed in a long-term (over 300 days) bench-scale sequential anaerobic-aerobic bioreactor treating coking wastewater. Anaerobic treatment removed one third of the chemical oxygen demand (COD) and more than half of the phenols with hydraulic retention time (HRT) of 42 h, while the combined system with total HRT of 114 h removed 81.8, 85.6, 99.9, 98.2, and 85.4 % of COD, total organic carbon (TOC), total phenols, thiocyanate, and cyanide, respectively. Two-dimensional gas chromatography with time-of-flight mass spectrometry showed complete removal of phenol derivatives and nitrogenous heterocyclic compounds (NHCs) via the combined system, with the anaerobic process alone contributing 58.4 and 58.6 % removal on average, respectively. Microbial activity in the bioreactors was examined by 454 pyrosequencing of the bacterial, archaeal, and fungal communities. Proteobacteria (61.2-93.4 %), particularly Betaproteobacteria (34.4-70.1 %), was the dominant bacterial group. Ottowia (14.1-46.7 %), Soehngenia (3.0-8.2 %), and Corynebacterium (0.9-12.0 %), which are comprised of phenol-degrading and hydrolytic bacteria, were the most abundant genera in the anaerobic sludge, whereas Thiobacillus (6.6-43.6 %), Diaphorobacter (5.1-13.0 %), and Comamonas (0.2-11.1 %) were the major degraders of phenol, thiocyanate, and NHCs in the aerobic sludge. Despite the low density of fungi, phenol degrading oleaginous yeast Trichosporon was abundant in the aerobic sludge. This study demonstrated the feasibility and optimization of less energy intensive treatment and the potential association between abundant bacterial groups and biodegradation of key pollutants in coking wastewater.
Collapse
|
8
|
Godwin S, Kang A, Gulino LM, Manefield M, Gutierrez-Zamora ML, Kienzle M, Ouwerkerk D, Dawson K, Klieve AV. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing. ISME JOURNAL 2014; 8:1855-65. [PMID: 24621520 DOI: 10.1038/ismej.2014.25] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 12/15/2013] [Accepted: 01/21/2014] [Indexed: 02/01/2023]
Abstract
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.
Collapse
Affiliation(s)
- Scott Godwin
- Queensland Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland, Australia
| | - Alicia Kang
- Queensland Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland, Australia
| | - Lisa-Maree Gulino
- Queensland Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland, Australia
| | - Mike Manefield
- Centre for Marine BioInnovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, New South Wales, Australia
| | - Maria-Luisa Gutierrez-Zamora
- Centre for Marine BioInnovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, New South Wales, Australia
| | - Marco Kienzle
- Queensland Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland, Australia
| | - Diane Ouwerkerk
- Queensland Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland, Australia
| | - Kerri Dawson
- Queensland Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland, Australia
| | - Athol V Klieve
- 1] Queensland Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland, Australia [2] School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia [3] Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
9
|
Importance of soil organic matter for the diversity of microorganisms involved in the degradation of organic pollutants. ISME JOURNAL 2014; 8:1289-300. [PMID: 24430482 DOI: 10.1038/ismej.2013.233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 11/09/2022]
Abstract
Many organic pollutants are readily degradable by microorganisms in soil, but the importance of soil organic matter for their transformation by specific microbial taxa is unknown. In this study, sorption and microbial degradation of phenol and 2,4-dichlorophenol (DCP) were characterized in three soil variants, generated by different long-term fertilization regimes. Compared with a non-fertilized control (NIL), a mineral-fertilized NPK variant showed 19% and a farmyard manure treated FYM variant 46% more soil organic carbon (SOC). Phenol sorption declined with overall increasing SOC because of altered affinities to the clay fraction (soil particles <2 mm in diameter). In contrast, DCP sorption correlated positively with particulate soil organic matter (present in the soil particle fractions of 63-2000 μm). Stable isotope probing identified Rhodococcus, Arthrobacter (both Actinobacteria) and Cryptococcus (Basidiomycota) as the main degraders of phenol. Rhodococcus and Cryptococcus were not affected by SOC, but the participation of Arthrobacter declined in NPK and even more in FYM. (14)C-DCP was hardly metabolized in the NIL variant, more efficiently in FYM and most in NPK. In NPK, Burkholderia was the main degrader and in FYM Variovorax. This study demonstrates a strong effect of SOC on the partitioning of organic pollutants to soil particle size fractions and indicates the profound consequences that this process could have for the diversity of bacteria involved in their degradation.
Collapse
|
10
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|