1
|
Grigorov AS, Skvortsova YV, Bychenko OS, Aseev LV, Koledinskaya LS, Boni IV, Azhikina TL. Dynamic Transcriptional Landscape of Mycobacterium smegmatis under Cold Stress. Int J Mol Sci 2023; 24:12706. [PMID: 37628885 PMCID: PMC10454040 DOI: 10.3390/ijms241612706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial adaptation to cold stress requires wide transcriptional reprogramming. However, the knowledge of molecular mechanisms underlying the cold stress response of mycobacteria is limited. We conducted comparative transcriptomic analysis of Mycobacterium smegmatis subjected to cold shock. The growth of M. smegmatis cultivated at 37 °C was arrested just after exposure to cold (acclimation phase) but later (by 24 h) was resumed at a much slower rate (adaptation phase). Transcriptomic analyses revealed distinct gene expression patterns corresponding to the two phases. During the acclimation phase, differential expression was observed for genes associated with cell wall remodeling, starvation response, and osmotic pressure stress, in parallel with global changes in the expression of transcription factors and the downregulation of ribosomal genes, suggesting an energy-saving strategy to support survival. At the adaptation phase, the expression profiles were recovered, indicating restoration of the processes repressed earlier. Comparison of transcriptional responses in M. smegmatis with those in other bacteria revealed unique adaptation strategies developed by mycobacteria. Our findings shed light on the molecular mechanisms underlying M. smegmatis survival under cold stress. Further research should clarify whether the discovered transcriptional mechanisms exist in other mycobacterial species, including pathogenic Mycobacterium tuberculosis, which could be important for transmission control.
Collapse
Affiliation(s)
- Artem S. Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | | | | | | | | - Tatyana L. Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
2
|
Li X, Xue C, Chen H, Zhang H, Wang Q. Small antisense RNA ThfR positively regulates Thf1 in Synechocystis sp. PCC 6803. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153642. [PMID: 35193088 DOI: 10.1016/j.jplph.2022.153642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Thylakoid formation1 (Thf1), encoded by sll1414 (thf1), is a multifunctional protein conserved in all photosynthetic organisms. thf1 expression is highly induced by high light in Synechocystis during photosynthesis-related stress. In this study, differential RNA sequencing analysis of the Synechocystis sp. PCC 6803 revealed a small antisense RNA (asRNA) gene located on the reverse-complementary strand of the thf1 gene. The full length of this asRNA (designated ThfR) was determined by 5' and 3' RACE analysis. The accumulation of thf1 mRNA was up-regulated synchronously with the ThfR level during survival after high-light stress or nitrogen starvation. Under nitrogen starvation or high-light stress, compared with the wild type, a ThfR overexpression mutant demonstrated relatively more Thf1 protein content, while a ThfR reduced-expression mutant accumulated less Thf1 protein. Furthermore, the overexpression of ThfR enhanced the electron transport rate and the proliferation of cyanobacteria under high-light stress. These results, which we confirmed further using an Escherichia coli sRNA expression platform, suggest that the thf1 gene is positively regulated by ThfR, possibly through protection of the RAUUW element at the RNase E cleavage site. This study represents the first report, to our knowledge, of a cis-transcript antisense RNA that targets thf1 in Synechocystis sp. PCC 6803 and provides evidence that ThfR regulates photosynthesis by positively modulating thf1 under high-light conditions.
Collapse
Affiliation(s)
- Xiang Li
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Chunling Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Sophiarani Y, Chakraborty S. Prediction of microRNAs in Pseudomonas syringae pv. tomato DC3000 and their potential target prediction in Solanum lycopersicum. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Migur A, Heyl F, Fuss J, Srikumar A, Huettel B, Steglich C, Prakash JSS, Reinhardt R, Backofen R, Owttrim GW, Hess WR. The temperature-regulated DEAD-box RNA helicase CrhR interactome: Autoregulation and photosynthesis-related transcripts. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab416. [PMID: 34499142 DOI: 10.1093/jxb/erab416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 06/13/2023]
Abstract
RNA helicases play crucial functions in RNA biology. In plants, RNA helicases are encoded by large gene families, performing roles in abiotic stress responses, development, the post-transcriptional regulation of gene expression as well as house-keeping functions. Several of these RNA helicases are targeted to the organelles, mitochondria and chloroplasts. Cyanobacteria are the direct evolutionary ancestors of plant chloroplasts. The cyanobacterium Synechocystis 6803 encodes a single DEAD-box RNA helicase, CrhR, that is induced by a range of abiotic stresses, including low temperature. Though the ΔcrhR mutant exhibits a severe cold-sensitive phenotype, the physiological function(s) performed by CrhR have not been described. To identify transcripts interacting with CrhR, we performed RNA co-immunoprecipitation with extracts from a Synechocystis crhR deletion mutant expressing the FLAG-tagged native CrhR or a K57A mutated version with an anticipated enhanced RNA binding. The composition of the interactome was strikingly biased towards photosynthesis-associated and redox-controlled transcripts. A transcript highly enriched in all experiments was the crhR mRNA, suggesting an auto-regulatory molecular mechanism. The identified interactome explains the described physiological role of CrhR in response to the redox poise of the photosynthetic electron transport chain and characterizes CrhR as an enzyme with a diverse range of transcripts as molecular targets.
Collapse
Affiliation(s)
- Anzhela Migur
- Faculty of Biology, University of Freiburg, Schänzlestr., Freiburg, Germany
| | - Florian Heyl
- Department of Computer Science, University of Freiburg, Georges-Koehler-Allee, Freiburg, Germany
| | - Janina Fuss
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg, Köln, Germany
| | - Afshan Srikumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg, Köln, Germany
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, Schänzlestr., Freiburg, Germany
| | - Jogadhenu S S Prakash
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Rolf Backofen
- Department of Computer Science, University of Freiburg, Georges-Koehler-Allee, Freiburg, Germany
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Schänzlestr., Freiburg, Germany
| |
Collapse
|
5
|
Rachedi R, Foglino M, Latifi A. Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life (Basel) 2020; 10:life10120312. [PMID: 33256109 PMCID: PMC7760821 DOI: 10.3390/life10120312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are highly diverse, widely distributed photosynthetic bacteria inhabiting various environments ranging from deserts to the cryosphere. Throughout this range of niches, they have to cope with various stresses and kinds of deprivation which threaten their growth and viability. In order to adapt to these stresses and survive, they have developed several global adaptive responses which modulate the patterns of gene expression and the cellular functions at work. Sigma factors, two-component systems, transcriptional regulators and small regulatory RNAs acting either separately or collectively, for example, induce appropriate cyanobacterial stress responses. The aim of this review is to summarize our current knowledge about the diversity of the sensors and regulators involved in the perception and transduction of light, oxidative and thermal stresses, and nutrient starvation responses. The studies discussed here point to the fact that various stresses affecting the photosynthetic capacity are transduced by common mechanisms.
Collapse
|
6
|
Tightening the Screws on PsbA in Cyanobacteria. Trends Genet 2020; 37:211-215. [PMID: 32977998 DOI: 10.1016/j.tig.2020.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
Cyanobacterial genomes encode several isoforms of the D1 (PsbA) subunit of Photosystem II (PSII). The distinct regulation of each isoform ensures adaptation under changing environmental conditions. Uncovering the missing elements of signal transduction pathways and psbA gene expression could open new avenues in engineering programs of cyanobacterial strains.
Collapse
|
7
|
Muro-Pastor AM, Hess WR. Regulatory RNA at the crossroads of carbon and nitrogen metabolism in photosynthetic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194477. [PMID: 31884117 DOI: 10.1016/j.bbagrm.2019.194477] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are photosynthetic bacteria that populate widely different habitats. Accordingly, cyanobacteria exhibit a wide spectrum of lifestyles, physiologies, and morphologies and possess genome sizes and gene numbers which may vary by up to a factor of ten within the phylum. Consequently, large differences exist between individual species in the size and complexity of their regulatory networks. Several non-coding RNAs have been identified that play crucial roles in the acclimation responses of cyanobacteria to changes in the environment. Some of these regulatory RNAs are conserved throughout the cyanobacterial phylum, while others exist only in a few taxa. Here we give an overview on characterized regulatory RNAs in cyanobacteria, with a focus on regulators of photosynthesis, carbon and nitrogen metabolism. However, chances are high that these regulators represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
8
|
Computational prediction of microRNAs in marine bacteria of the genus Thalassospira. PLoS One 2019; 14:e0212996. [PMID: 30861013 PMCID: PMC6413936 DOI: 10.1371/journal.pone.0212996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/13/2019] [Indexed: 01/29/2023] Open
Abstract
MicroRNAs (miRNAs) are key players in regulation of gene expression at post-transcription level in eukaryotic cells. MiRNAs have been intensively studied in plants, animals and viruses. The investigations of bacterial miRNAs have gained less attention, except for the recent studies on miRNAs derived from Streptococcus mutans ATCC 25175 and Escherichia coli DH10B. In this study, high-throughput sequencing approach was employed to investigate the miRNA population in bacteria of the genus Thalassospira using both the miRDeep2 and CID-miRNA methods. A total of 984 putative miRNAs were identified in 9 species of the genus Thalassospira using both miRDeep and CID-miRNA analyses. Fifty seven conserved putative miRNAs were found in different species of the genus Thalassospira, and up to 6 miRNAs were found to be present at different locations in the T. alkalitolerans JCM 18968T, T. lucentensis QMT2T and T. xianhensis P-4T. None of the putative miRNAs was found to share sequence to the reported miRNAs in E. coli DH10B and S. mutans ATCC 25175. The findings provide a comprehensive list of computationally identified miRNAs in 9 bacterial species of the genus Thalassospira and addressed the existing knowledge gap on the presence of miRNAs in the Thalassospira genomes.
Collapse
|
9
|
Beal A, Rodriguez-Casariego J, Rivera-Casas C, Suarez-Ulloa V, Eirin-Lopez JM. Environmental Epigenomics and Its Applications in Marine Organisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Greenlee EB, Stav S, Atilho RM, Brewer KI, Harris KA, Malkowski SN, Mirihana Arachchilage G, Perkins KR, Sherlock ME, Breaker RR. Challenges of ligand identification for the second wave of orphan riboswitch candidates. RNA Biol 2018; 15:377-390. [PMID: 29135333 PMCID: PMC5927730 DOI: 10.1080/15476286.2017.1403002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022] Open
Abstract
Orphan riboswitch candidates are noncoding RNA motifs whose representatives are believed to function as genetic regulatory elements, but whose target ligands have yet to be identified. The study of certain orphans, particularly classes that have resisted experimental validation for many years, has led to the discovery of important biological pathways and processes once their ligands were identified. Previously, we highlighted details for four of the most common and intriguing orphan riboswitch candidates. This facilitated the validation of riboswitches for the signaling molecules c-di-AMP, ZTP, and ppGpp, the metal ion Mn2+, and the metabolites guanidine and PRPP. Such studies also yield useful linkages between the ligands sensed by the riboswitches and numerous biochemical pathways. In the current report, we describe the known characteristics of 30 distinct classes of orphan riboswitch candidates - some of which have remained unsolved for over a decade. We also discuss the prospects for uncovering novel biological insights via focused studies on these RNAs. Lastly, we make recommendations for experimental objectives along the path to finding ligands for these mysterious RNAs.
Collapse
Affiliation(s)
- Etienne B. Greenlee
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Shira Stav
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ruben M. Atilho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kenneth I. Brewer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kimberly A. Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | | - Kevin R. Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Madeline E. Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
6S RNA plays a role in recovery from nitrogen depletion in Synechocystis sp. PCC 6803. BMC Microbiol 2017; 17:229. [PMID: 29216826 PMCID: PMC5721685 DOI: 10.1186/s12866-017-1137-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022] Open
Abstract
Background The 6S RNA is a global transcriptional riboregulator, which is exceptionally widespread among most bacterial phyla. While its role is well-characterized in some heterotrophic bacteria, we subjected a cyanobacterial homolog to functional analysis, thereby extending the scope of 6S RNA action to the special challenges of photoautotrophic lifestyles. Results Physiological characterization of a 6S RNA deletion strain (ΔssaA) demonstrates a delay in the recovery from nitrogen starvation. Significantly decelerated phycobilisome reassembly and glycogen degradation are accompanied with reduced photosynthetic activity compared to the wild type. Transcriptome profiling further revealed that predominantly genes encoding photosystem components, ATP synthase, phycobilisomes and ribosomal proteins were negatively affected in ΔssaA. In vivo pull-down studies of the RNA polymerase complex indicated that the presence of 6S RNA promotes the recruitment of the cyanobacterial housekeeping σ factor SigA, concurrently supporting dissociation of group 2 σ factors during recovery from nitrogen starvation. Conclusions The combination of genetic, physiological and biochemical studies reveals the homologue of 6S RNA as an integral part of the cellular response of Synechocystis sp. PCC 6803 to changing nitrogen availability. According to these results, 6S RNA supports a rapid acclimation to changing nitrogen supply by accelerating the switch from group 2 σ factors SigB, SigC and SigE to SigA-dependent transcription. We therefore introduce the cyanobacterial 6S RNA as a novel candidate regulator of RNA polymerase sigma factor recruitment in Synechocystis sp. PCC 6803. Further studies on mechanistic features of the postulated interaction should shed additional light on the complexity of transcriptional regulation in cyanobacteria. Electronic supplementary material The online version of this article (10.1186/s12866-017-1137-9) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Hu J, Li T, Xu W, Zhan J, Chen H, He C, Wang Q. Small Antisense RNA RblR Positively Regulates RuBisCo in Synechocystis sp. PCC 6803. Front Microbiol 2017; 8:231. [PMID: 28261186 PMCID: PMC5306279 DOI: 10.3389/fmicb.2017.00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/01/2017] [Indexed: 11/21/2022] Open
Abstract
Small regulatory RNAs (sRNAs) function as transcriptional and post-transcriptional regulators of gene expression in organisms from all domains of life. Cyanobacteria are thought to have developed a complex RNA-based regulatory mechanism. In the current study, by genome-wide analysis of differentially expressed small RNAs in Synechocystis sp. PCC 6803 under high light conditions, we discovered an asRNA (RblR) that is 113nt in length and completely complementary to its target gene rbcL, which encodes the large chain of RuBisCO, the enzyme that catalyzes carbon fixation. Further analysis of the RblR(+)/(−) mutants revealed that RblR acts as a positive regulator of rbcL under various stress conditions; Suppressing RblR adversely affects carbon assimilation and thus the yield, and those phenotypes of both the wild type and the overexpressor could be downgraded to the suppressor level by carbonate depletion, indicated a regulatory role of RblR in CO2 assimilation. In addition, a real-time expression platform in Escherichia coli was setup and which confirmed that RblR promoted the translation of the rbcL mRNA into the RbcL protein. The present study is the first report of a regulatory RNA that targets RbcL in Synechocystis sp. PCC 6803, and provides strong evidence that RblR regulates photosynthesis by positively modulating rbcL expression in Synechocystis.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University Xi'an, China
| | - Tianpei Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of SciencesWuhan, China; University of the Chinese Academy of SciencesBeijing, China
| | - Wen Xu
- Crop Designing Centre, Henan Academy of Agricultural Sciences Zhengzhou, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| | - Qiang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| |
Collapse
|
13
|
Burns AS, Bullock HA, Smith C, Huang Q, Whitman WB, Moran MA. Small RNAs expressed during dimethylsulfoniopropionate degradation by a model marine bacterium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:763-773. [PMID: 27337503 DOI: 10.1111/1758-2229.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
The fate of the sulfur moiety of dimethylsulfoniopropionate (DMSP) depends on the 'bacterial switch', a regulatory point between two metabolic pathways with different biogeochemical endpoints. Studies have focused on transcriptional patterns of known genes to determine physiological and environmental factors affecting this switch, but post-transcriptional regulation has been under-studied. Here we use a model bacterium containing both pathways to look for transcription of non-coding regulatory small RNAs (sRNAs) during DMSP metabolism. RNA-seq analysis of Ruegeria pomeroyi DSS-3 grown with DMSP, metabolic intermediates of DMSP degradation (MMPA or acetate), or methionine revealed 182 putative sRNAs, with 46 showing differential expression during growth on DMSP. A knockout mutant constructed for an upregulated sRNA had a phenotype that differed in its use of the two degradation pathways. Because transcription patterns of many differentially expressed sRNAs were not correlated with the transcription of their putative target gene, their effects on DMSP degradation would not be observable in the transcriptome. Overall, our results indicate that sRNAs are crucial but largely cryptic actors in regulating DMSP metabolism in this model marine bacterium and potentially other bacterial groups involved in the surface ocean sulfur cycle.
Collapse
Affiliation(s)
- Andrew S Burns
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Hannah A Bullock
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Christa Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Qiuyuan Huang
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
McClure RS, Overall CC, McDermott JE, Hill EA, Markillie LM, McCue LA, Taylor RC, Ludwig M, Bryant DA, Beliaev AS. Network analysis of transcriptomics expands regulatory landscapes in Synechococcus sp. PCC 7002. Nucleic Acids Res 2016; 44:8810-8825. [PMID: 27568004 PMCID: PMC5062996 DOI: 10.1093/nar/gkw737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/05/2016] [Indexed: 12/29/2022] Open
Abstract
Cyanobacterial regulation of gene expression must contend with a genome organization that lacks apparent functional context, as the majority of cellular processes and metabolic pathways are encoded by genes found at disparate locations across the genome and relatively few transcription factors exist. In this study, global transcript abundance data from the model cyanobacterium Synechococcus sp. PCC 7002 grown under 42 different conditions was analyzed using Context-Likelihood of Relatedness (CLR). The resulting network, organized into 11 modules, provided insight into transcriptional network topology as well as grouping genes by function and linking their response to specific environmental variables. When used in conjunction with genome sequences, the network allowed identification and expansion of novel potential targets of both DNA binding proteins and sRNA regulators. These results offer a new perspective into the multi-level regulation that governs cellular adaptations of the fast-growing physiologically robust cyanobacterium Synechococcus sp. PCC 7002 to changing environmental variables. It also provides a methodological high-throughput approach to studying multi-scale regulatory mechanisms that operate in cyanobacteria. Finally, it provides valuable context for integrating systems-level data to enhance gene grouping based on annotated function, especially in organisms where traditional context analyses cannot be implemented due to lack of operon-based functional organization.
Collapse
Affiliation(s)
- Ryan S McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Christopher C Overall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lye Meng Markillie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lee Ann McCue
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ronald C Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Alexander S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
15
|
Ruiz-Larrabeiti O, Plágaro AH, Gracia C, Sevillano E, Gallego L, Hajnsdorf E, Kaberdin VR. A new custom microarray for sRNA profiling in Escherichia coli. FEMS Microbiol Lett 2016; 363:fnw131. [PMID: 27190161 DOI: 10.1093/femsle/fnw131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial small RNAs (sRNAs) play essential roles in the post-transcriptional control of gene expression. To improve their detection by conventional microarrays, we designed a custom microarray containing a group of probes targeting known and some putative Escherichia coli sRNAs. To assess its potential in detection of sRNAs, RNA profiling experiments were performed with total RNA extracted from E. coli MG1655 cells exponentially grown in rich (Luria-Bertani) and minimal (M9/glucose) media. We found that many sRNAs could yield reasonably strong and statistically significant signals corresponding to nearly all sRNAs annotated in the EcoCyc database. Besides differential expression of two sRNAs (GcvB and RydB), expression of other sRNAs was less affected by the composition of the growth media. Other examples of the differentially expressed sRNAs were revealed by comparing gene expression of the wild-type strain and its isogenic mutant lacking functional poly(A) polymerase I (pcnB). Further, northern blot analysis was employed to validate these data and to assess the existence of new putative sRNAs. Our results suggest that the use of custom microarrays with improved capacities for detection of sRNAs can offer an attractive opportunity for efficient gene expression profiling of sRNAs and their target mRNAs at the whole transcriptome level.
Collapse
Affiliation(s)
- Olatz Ruiz-Larrabeiti
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ander Hernández Plágaro
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Celine Gracia
- CNRS UMR8261 (previously FRE3630), University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Elena Sevillano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Lucía Gallego
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Eliane Hajnsdorf
- CNRS UMR8261 (previously FRE3630), University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
16
|
Rivers AR, Burns AS, Chan LK, Moran MA. Experimental Identification of Small Non-Coding RNAs in the Model Marine Bacterium Ruegeria pomeroyi DSS-3. Front Microbiol 2016; 7:380. [PMID: 27065955 PMCID: PMC4809877 DOI: 10.3389/fmicb.2016.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/09/2016] [Indexed: 12/31/2022] Open
Abstract
In oligotrophic ocean waters where bacteria are often subjected to chronic nutrient limitation, community transcriptome sequencing has pointed to the presence of highly abundant small RNAs (sRNAs). The role of sRNAs in regulating response to nutrient stress was investigated in a model heterotrophic marine bacterium Ruegeria pomeroyi grown in continuous culture under carbon (C) and nitrogen (N) limitation. RNAseq analysis identified 99 putative sRNAs. Sixty-nine were cis-encoded and located antisense to a presumed target gene. Thirty were trans-encoded and initial target prediction was performed computationally. The most prevalent functional roles of genes anti-sense to the cis-sRNAs were transport, cell-cell interactions, signal transduction, and transcriptional regulation. Most sRNAs were transcribed equally under both C and N limitation, and may be involved in a general stress response. However, 14 were regulated differentially between the C and N treatments and may respond to specific nutrient limitations. A network analysis of the predicted target genes of the R. pomeroyi cis-sRNAs indicated that they average fewer connections than typical protein-encoding genes, and appear to be more important in peripheral or niche-defining functions encoded in the pan genome.
Collapse
Affiliation(s)
- Adam R Rivers
- United States Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | - Andrew S Burns
- Department of Marine Sciences, University of Georgia Athens, GA, USA
| | | | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia Athens, GA, USA
| |
Collapse
|
17
|
González A, Sevilla E, Bes MT, Peleato ML, Fillat MF. Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport. Adv Microb Physiol 2016; 68:169-217. [PMID: 27134024 DOI: 10.1016/bs.ampbs.2016.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-containing metalloproteins are the main cornerstones for efficient electron transport in biological systems. The abundance and diversity of iron-dependent proteins in cyanobacteria makes those organisms highly dependent of this micronutrient. To cope with iron imbalance, cyanobacteria have developed a survey of adaptation strategies that are strongly related to the regulation of photosynthesis, nitrogen metabolism and other central electron transfer pathways. Furthermore, either in its ferrous form or as a component of the haem group, iron plays a crucial role as regulatory signalling molecule that directly or indirectly modulates the composition and efficiency of cyanobacterial redox reactions. We present here the major mechanism used by cyanobacteria to couple iron homeostasis to the regulation of electron transport, making special emphasis in processes specific in those organisms.
Collapse
Affiliation(s)
| | - E Sevilla
- University of Zaragoza, Zaragoza, Spain
| | - M T Bes
- University of Zaragoza, Zaragoza, Spain
| | | | - M F Fillat
- University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
18
|
Lin X, Ding H, Zeng Q. Transcriptomic response during phage infection of a marine cyanobacterium under phosphorus-limited conditions. Environ Microbiol 2015; 18:450-60. [DOI: 10.1111/1462-2920.13104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Xingqin Lin
- Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay Hong Kong China
| | - Huiming Ding
- Department of Civil and Environmental Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Qinglu Zeng
- Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay Hong Kong China
| |
Collapse
|
19
|
Stazic D, Voß B. The complexity of bacterial transcriptomes. J Biotechnol 2015; 232:69-78. [PMID: 26450562 DOI: 10.1016/j.jbiotec.2015.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/07/2015] [Accepted: 09/29/2015] [Indexed: 01/09/2023]
Abstract
For eukaryotes there seems to be no doubt that differences on the trancriptomic level substantially contribute to the process of species diversification, whereas for bacteria this is thought to be less important. Recent years saw a significant increase in full transcriptome studies for bacteria, which provided deep insight into the architecture of bacterial transcriptomes. Most notably, it became evident that, in contrast to previous scientific consensus, bacterial transcriptomes are quite complex. There exist a large number of cis-antisense RNAs, non-coding RNAs, overlapping transcripts and RNA elements that regulate transcription, such as riboswitches. Furthermore, processing and degradation of RNA has gained interest, because it has a significant impact on the composition of the transcriptome. In this review, we summarize recent findings and put them into a broader context with respect to the complexity of bacterial transcriptomes and its putative biological meanings.
Collapse
Affiliation(s)
- D Stazic
- University of Freiburg, Faculty of Biology, Computational Transcriptomics, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - B Voß
- University of Freiburg, Faculty of Biology, Computational Transcriptomics, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
20
|
Kopf M, Hess WR. Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 2015; 39:301-15. [PMID: 25934122 PMCID: PMC6596454 DOI: 10.1093/femsre/fuv017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. We suggest that actuatons comprise a new class of genetic elements in which an sRNA gene is inserted upstream of a coding region to modify or enable transcription of that region.
Collapse
Affiliation(s)
- Matthias Kopf
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
21
|
Trichodesmium genome maintains abundant, widespread noncoding DNA in situ, despite oligotrophic lifestyle. Proc Natl Acad Sci U S A 2015; 112:4251-6. [PMID: 25831533 DOI: 10.1073/pnas.1422332112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance because of its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20-25% less than the average for other cyanobacteria and nonpathogenic, free-living bacteria. We use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus, both in culture and in situ. Transcriptome analysis indicates that 86% of the noncoding space is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and twofold higher than that found in the gene-dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium noncoding RNA secondary structures were predicted between most culture and metagenomic sequences, lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Our data suggest that transposition of selfish DNA, low effective population size, and high-fidelity replication allowed the unusual "inflation" of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.
Collapse
|
22
|
Whidden CE, DeZeeuw KG, Zorz JK, Joy AP, Barnett DA, Johnson MS, Zhaxybayeva O, Cockshutt AM. Quantitative and functional characterization of the hyper-conserved protein of Prochlorococcus and marine Synechococcus. PLoS One 2014; 9:e109327. [PMID: 25360678 PMCID: PMC4215834 DOI: 10.1371/journal.pone.0109327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/11/2014] [Indexed: 11/26/2022] Open
Abstract
A large fraction of any bacterial genome consists of hypothetical protein-coding open reading frames (ORFs). While most of these ORFs are present only in one or a few sequenced genomes, a few are conserved, often across large phylogenetic distances. Such conservation provides clues to likely uncharacterized cellular functions that need to be elucidated. Marine cyanobacteria from the Prochlorococcus/marine Synechococcus clade are dominant bacteria in oceanic waters and are significant contributors to global primary production. A Hyper Conserved Protein (PSHCP) of unknown function is 100% conserved at the amino acid level in genomes of Prochlorococcus/marine Synechococcus, but lacks homologs outside of this clade. In this study we investigated Prochlorococcus marinus strains MED4 and MIT 9313 and Synechococcus sp. strain WH 8102 for the transcription of the PSHCP gene using RT-Q-PCR, for the presence of the protein product through quantitative immunoblotting, and for the protein's binding partners in a pull down assay. Significant transcription of the gene was detected in all strains. The PSHCP protein content varied between 8±1 fmol and 26±9 fmol per ug total protein, depending on the strain. The 50 S ribosomal protein L2, the Photosystem I protein PsaD and the Ycf48-like protein were found associated with the PSHCP protein in all strains and not appreciably or at all in control experiments. We hypothesize that PSHCP is a protein associated with the ribosome, and is possibly involved in photosystem assembly.
Collapse
Affiliation(s)
- Caroline E. Whidden
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Katrina G. DeZeeuw
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Jackie K. Zorz
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Andrew P. Joy
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | | | - Milo S. Johnson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail: (OZ); (AMC)
| | - Amanda M. Cockshutt
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, NB, Canada
- * E-mail: (OZ); (AMC)
| |
Collapse
|
23
|
Daily expression pattern of protein-encoding genes and small noncoding RNAs in synechocystis sp. strain PCC 6803. Appl Environ Microbiol 2014; 80:5195-206. [PMID: 24928881 DOI: 10.1128/aem.01086-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many organisms harbor circadian clocks with periods close to 24 h. These cellular clocks allow organisms to anticipate the environmental cycles of day and night by synchronizing circadian rhythms with the rising and setting of the sun. These rhythms originate from the oscillator components of circadian clocks and control global gene expression and various cellular processes. The oscillator of photosynthetic cyanobacteria is composed of three proteins, KaiA, KaiB, and KaiC, linked to a complex regulatory network. Synechocystis sp. strain PCC 6803 possesses the standard cyanobacterial kaiABC gene cluster plus multiple kaiB and kaiC gene copies and antisense RNAs for almost every kai transcript. However, there is no clear evidence of circadian rhythms in Synechocystis sp. PCC 6803 under various experimental conditions. It is also still unknown if and to what extent the multiple kai gene copies and kai antisense RNAs affect circadian timing. Moreover, a large number of small noncoding RNAs whose accumulation dynamics over time have not yet been monitored are known for Synechocystis sp. PCC 6803. Here we performed a 48-h time series transcriptome analysis of Synechocystis sp. PCC 6803, taking into account periodic light-dark phases, continuous light, and continuous darkness. We found that expression of functionally related genes occurred in different phases of day and night. Moreover, we found day-peaking and night-peaking transcripts among the small RNAs; in particular, the amounts of kai antisense RNAs correlated or anticorrelated with those of their respective kai target mRNAs, pointing toward the regulatory relevance of these antisense RNAs. Surprisingly, we observed that the amounts of 16S and 23S rRNAs in this cyanobacterium fluctuated in light-dark periods, showing maximum accumulation in the dark phase. Importantly, the amounts of all transcripts, including small noncoding RNAs, did not show any rhythm under continuous light or darkness, indicating the absence of circadian rhythms in Synechocystis.
Collapse
|
24
|
Wurtmann EJ, Ratushny AV, Pan M, Beer KD, Aitchison JD, Baliga NS. An evolutionarily conserved RNase-based mechanism for repression of transcriptional positive autoregulation. Mol Microbiol 2014; 92:369-82. [PMID: 24612392 PMCID: PMC4060883 DOI: 10.1111/mmi.12564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2014] [Indexed: 01/27/2023]
Abstract
It is known that environmental context influences the degree of regulation at the transcriptional and post-transcriptional levels. However, the principles governing the differential usage and interplay of regulation at these two levels are not clear. Here, we show that the integration of transcriptional and post-transcriptional regulatory mechanisms in a characteristic network motif drives efficient environment-dependent state transitions. Through phenotypic screening, systems analysis, and rigorous experimental validation, we discovered an RNase (VNG2099C) in Halobacterium salinarum that is transcriptionally co-regulated with genes of the aerobic physiologic state but acts on transcripts of the anaerobic state. Through modelling and experimentation we show that this arrangement generates an efficient state-transition switch, within which RNase-repression of a transcriptional positive autoregulation (RPAR) loop is critical for shutting down ATP-consuming active potassium uptake to conserve energy required for salinity adaptation under aerobic, high potassium, or dark conditions. Subsequently, we discovered that many Escherichia coli operons with energy-associated functions are also putatively controlled by RPAR indicating that this network motif may have evolved independently in phylogenetically distant organisms. Thus, our data suggest that interplay of transcriptional and post-transcriptional regulation in the RPAR motif is a generalized principle for efficient environment-dependent state transitions across prokaryotes.
Collapse
Affiliation(s)
| | - Alexander V. Ratushny
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA
| | - Min Pan
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - John D. Aitchison
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA
| | | |
Collapse
|
25
|
Hess WR, Berghoff BA, Wilde A, Steglich C, Klug G. Riboregulators and the role of Hfq in photosynthetic bacteria. RNA Biol 2014; 11:413-26. [PMID: 24651049 PMCID: PMC4152350 DOI: 10.4161/rna.28035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 12/25/2022] Open
Abstract
Anoxygenic and oxygenic bacteria directly convert solar energy into biomass using photosynthesis. The formation and composition of photosynthetic complexes has to be tightly controlled in response to environmental conditions, as exposure to sunlight can be harmful due to the generation of reactive oxygen species and the damaging effects of UV irradiation. Therefore, photosynthetic bacteria are exposed to a particular set of regulatory challenges in addition to those that also affect other bacteria, requiring sophisticated regulatory systems. Indeed, hundreds of potential regulatory RNAs have been identified in photosynthetic model bacteria as well as antisense RNAs (asRNAs) of up to several kb in length that protect certain mRNAs from degradation. The trans-acting small non-coding RNAs (sRNAs), PcrZ and PsrR1, control pigment and photosystem biogenesis in Rhodobacter sphaeroides and cyanobacteria, respectively. The asRNAs IsrR and As1_flv4 act as negative regulators and the asRNAs PsbA2R and PsbA3R as positive effectors of photosynthesis gene expression in Synechocystis 6803.
Collapse
Affiliation(s)
- Wolfgang R Hess
- Faculty of Biology; Institute for Biology III; University of Freiburg; Freiburg, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology; University of Giessen; Giessen, Germany
| | - Annegret Wilde
- Faculty of Biology; Institute for Biology III; University of Freiburg; Freiburg, Germany
| | - Claudia Steglich
- Faculty of Biology; Institute for Biology III; University of Freiburg; Freiburg, Germany
| | - Gabriele Klug
- Institute for Microbiology and Molecular Biology; University of Giessen; Giessen, Germany
| |
Collapse
|
26
|
Gross J, Wajid S, Price DC, Zelzion E, Li J, Chan CX, Bhattacharya D. Evidence for widespread exonic small RNAs in the glaucophyte alga Cyanophora paradoxa. PLoS One 2013; 8:e67669. [PMID: 23844054 PMCID: PMC3700990 DOI: 10.1371/journal.pone.0067669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/21/2013] [Indexed: 12/12/2022] Open
Abstract
RNAi (RNA interference) relies on the production of small RNAs (sRNAs) from double-stranded RNA and comprises a major pathway in eukaryotes to restrict the propagation of selfish genetic elements. Amplification of the initial RNAi signal by generation of multiple secondary sRNAs from a targeted mRNA is catalyzed by RNA-dependent RNA polymerases (RdRPs). This phenomenon is known as transitivity and is particularly important in plants to limit the spread of viruses. Here we describe, using a genome-wide approach, the distribution of sRNAs in the glaucophyte alga Cyanophora paradoxa. C. paradoxa is a member of the supergroup Plantae (also known as Archaeplastida) that includes red algae, green algae, and plants. The ancient (>1 billion years ago) split of glaucophytes within Plantae suggests that C. paradoxa may be a useful model to learn about the early evolution of RNAi in the supergroup that ultimately gave rise to plants. Using next-generation sequencing and bioinformatic analyses we find that sRNAs in C. paradoxa are preferentially associated with mRNAs, including a large number of transcripts that encode proteins arising from different functional categories. This pattern of exonic sRNAs appears to be a general trend that affects a large fraction of mRNAs in the cell. In several cases we observe that sRNAs have a bias for a specific strand of the mRNA, including many instances of antisense predominance. The genome of C. paradoxa encodes four sequences that are homologous to RdRPs in Arabidopsis thaliana. We discuss the possibility that exonic sRNAs in the glaucophyte may be secondarily derived from mRNAs by the action of RdRPs. If this hypothesis is confirmed, then transitivity may have had an ancient origin in Plantae.
Collapse
Affiliation(s)
- Jeferson Gross
- Department of Ecology, Evolution, and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Sana Wajid
- Department of Ecology, Evolution, and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Dana C. Price
- Department of Ecology, Evolution, and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Ehud Zelzion
- Department of Ecology, Evolution, and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Junyi Li
- Department of Ecology, Evolution, and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Cheong Xin Chan
- The University of Queensland, Institute for Molecular Bioscience, and ARC Centre of Excellence in Bioinformatics, Brisbane, Australia
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
27
|
Iron deprivation in Synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. G3-GENES GENOMES GENETICS 2012; 2:1475-95. [PMID: 23275872 PMCID: PMC3516471 DOI: 10.1534/g3.112.003863] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/20/2012] [Indexed: 01/02/2023]
Abstract
Iron is an essential cofactor in many metabolic reactions. Mechanisms controlling iron homeostasis need to respond rapidly to changes in extracellular conditions, but they must also keep the concentration of intracellular iron under strict control to avoid the generation of damaging reactive oxygen species. Due to its role as a redox carrier in photosynthesis, the iron quota in cyanobacteria is about 10 times higher than in model enterobacteria. The molecular details of how such a high quota is regulated are obscure. Here we present experiments that shed light on the iron regulatory system in cyanobacteria. We measured time-resolved changes in gene expression after iron depletion in the cyanobacterium Synechocystis sp. PCC 6803 using a comprehensive microarray platform, monitoring both protein-coding and non-coding transcripts. In total, less than a fifth of all protein-coding genes were differentially expressed during the first 72 hr. Many of these proteins are associated with iron transport, photosynthesis, or ATP synthesis. Comparing our data with three previous studies, we identified a core set of 28 genes involved in iron stress response. Among them were genes important for assimilation of inorganic carbon, suggesting a link between the carbon and iron regulatory networks. Nine of the 28 genes have unknown functions and constitute key targets for further functional analysis. Statistical and clustering analyses identified 10 small RNAs, 62 antisense RNAs, four 5′UTRs, and seven intragenic elements as potential novel components of the iron regulatory network in Synechocystis. Hence, our genome-wide expression profiling indicates an unprecedented complexity in the iron regulatory network of cyanobacteria.
Collapse
|