1
|
Yang Z, Cui X, Fan X, Ruan Y, Xiang Z, Ji L, Gao H, Zhang M, Shan S, Liu W. "Active carbon" is more advantageous to the bacterial community in the rice rhizosphere than "stable carbon". Comput Struct Biotechnol J 2024; 23:1288-1297. [PMID: 38560279 PMCID: PMC10978811 DOI: 10.1016/j.csbj.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Carbon materials are commonly used for soil carbon sequestration and fertilization, which can also affect crop growth by manipulating the rhizosphere bacterial community. However, the comparison of the differences between active carbon (e.g., organic fertilizers) and stable carbon (e.g., biochar) on rhizosphere microdomains is still unclear. Hence, a trial was implemented to explore the influence of control (CK, no fertilizer; NPK, chemical fertilizer), organic fertilizer (CF-O, organic fertilizer; CF-BO, biochar-based organic fertilizer) and biochar material (CF-B, perishable garbage biochar; CF-PMB, pig manure biochar) on the diversity, composition, and interaction of rice rhizosphere bacterial community through 16 S rRNA gene high-throughput sequencing. Our results demonstrate that organic fertilizer increases bacterial alpha-diversity compared to no-carbon supply treatment to the extend, whereas biochar has the opposite effect. The rhizosphere bacterial community composition showed pronounced variations among the various fertilization treatments. The relative abundance in Firmicutes decreased with organic fertilizer application, whereas that in Chloroflexi and Actinobacteria decreased with biochar application. Bacterial network analysis demonstrate that organic fertilizer enhances the complexity and key taxa of bacterial interactions, while biochar exhibits an opposing trend. The findings of our study indicate that organic fertilizer may contribute to a positive and advantageous impact on bacterial diversity and interaction in rice rhizosphere, whereas the influence of biochar is not as favorable and constructive. This study lays the foundation for elucidating the fate of the rhizosphere bacterial community following different carbon material inputs in the context of sustainable agricultural development.
Collapse
Affiliation(s)
- Zongkun Yang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xin Cui
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiaoge Fan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yefeng Ruan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhennan Xiang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lingfei Ji
- Department of Biology, University of York, York, UK
| | - Han Gao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China
| | - Min Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wenbo Liu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
2
|
Zhang R, Liu P, Wang Y, Roberts AP, Bai J, Liu Y, Zhu K, Du Z, Chen G, Pan Y, Li J. Phylogenetics and biomineralization of a novel magnetotactic Gammaproteobacterium from a freshwater lake in Beijing, China. FEMS Microbiol Ecol 2023; 99:fiad150. [PMID: 37974050 DOI: 10.1093/femsec/fiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Magnetotactic bacteria (MTB) have the remarkable capability of producing intracellularly membrane-enveloped magnetic nanocrystals (i.e. magnetosomes) and swimming along geomagnetic field lines. Despite more than 50 years of research, bacterial diversity and magnetosome biomineralization within MTB are relatively less known in the Gammaproteobacteria class than other groups. This is incompatible with the status of Gammaproteobacteria as the most diverse class of gram-negative bacteria with a number of ecologically important bacteria. Here, we identify a novel MTB strain YYHR-1 affiliated with the Gammaproteobacteria class of the Pseudomonadota phylum from a freshwater lake. In YYHR-1, most magnetosome crystals are organized into a long chain aligned along the cell long axis; unusually, a few small superparamagnetic crystals are located at the side of the chain, off the main chain axis. Micromagnetic simulations indicate that magnetostatic interactions among adjacent crystals within a chain reduce the Gibbs energy to enhance chain stability. Genomic analysis suggests that duplication of magnetosome gene clusters may result in off-chain magnetosomes formation. By integrating available genomic data from Gammaproteobacteria, the phylogenetic position of MTB in this class is reassigned here. Our new findings expand knowledge about MTB diversity and magnetosome biomineralization, and deepen understanding of the phylogenetics of the Gammaproteobacteria.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongjun Du
- Marine College, Shandong University, Weihai 264209, China
| | - Guanjun Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhao Y, Zhang W, Pan H, Chen J, Cui K, Wu LF, Lin W, Xiao T, Zhang W, Liu J. Insight into the metabolic potential and ecological function of a novel Magnetotactic Nitrospirota in coral reef habitat. Front Microbiol 2023; 14:1182330. [PMID: 37342564 PMCID: PMC10278575 DOI: 10.3389/fmicb.2023.1182330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Magnetotactic bacteria (MTB) within the Nitrospirota phylum play important roles in biogeochemical cycles due to their outstanding ability to biomineralize large amounts of magnetite magnetosomes and intracellular sulfur globules. For several decades, Nitrospirota MTB were believed to only live in freshwater or low-salinity environments. While this group have recently been found in marine sediments, their physiological features and ecological roles have remained unclear. In this study, we combine electron microscopy with genomics to characterize a novel population of Nitrospirota MTB in a coral reef area of the South China Sea. Both phylogenetic and genomic analyses revealed it as representative of a novel genus, named as Candidatus Magnetocorallium paracelense XS-1. The cells of XS-1 are small and vibrioid-shaped, and have bundled chains of bullet-shaped magnetite magnetosomes, sulfur globules, and cytoplasmic vacuole-like structures. Genomic analysis revealed that XS-1 has the potential to respire sulfate and nitrate, and utilize the Wood-Ljungdahl pathway for carbon fixation. XS-1 has versatile metabolic traits that make it different from freshwater Nitrospirota MTB, including Pta-ackA pathway, anaerobic sulfite reduction, and thiosulfate disproportionation. XS-1 also encodes both the cbb3-type and the aa3-type cytochrome c oxidases, which may function as respiratory energy-transducing enzymes under high oxygen conditions and anaerobic or microaerophilic conditions, respectively. XS-1 has multiple copies of circadian related genes in response to variability in coral reef habitat. Our results implied that XS-1 has a remarkable plasticity to adapt the environment and can play a beneficial role in coral reef ecosystems.
Collapse
Affiliation(s)
- Yicong Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | | | - Kaixuan Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Aix Marseille University, CNRS, LCB, IM2B, IMM, Marseille, France
| | - Wei Lin
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jia Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Hou Z, Zhou Q, Mo F, Kang W, Ouyang S. Enhanced carbon emission driven by the interaction between functional microbial community and hydrocarbons: An enlightenment for carbon cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161402. [PMID: 36638996 DOI: 10.1016/j.scitotenv.2023.161402] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Soil microbial communities are usually regarded as one of the key players in the global element cycling. Moreover, an important consequence of oil contamination altering the structure of microbial communities is likely to result in an increased carbon emission. However, understanding of the complex interactions between environmental factors and biological communities is clearly lagging behind. Here it showed that the flux of carbon emissions increased in oil-contaminated soils, up to 13.64 g C·(kg soil)-1·h-1. This phenomenon was mainly driven by the enrichment of rare degrading microorganisms (e.g., Methylosinus, Marinobacter, Pseudomonas, Alcanivorax, Yeosuana, Halomonas and Microbulbifer) in the aerobic layer, rather than the anaerobic layer, which is more conducive to methane formation. In addition, petroleum hydrocarbons and environmental factors are equally important in shaping the structure of microbial communities (the ecological stability) and functional traits (e.g., fatty acid metabolism, lipid metabolism and amino acid metabolism) due to the different ecological sensitivities of microorganisms. Thus, it can be believed that the variability of rare hydrocarbon degrading microorganisms is of greater concern than changes in dominant microorganisms in oil-contaminated soil. Undoubtedly, this study could reveal the unique characterization of bacterial communities that mediate carbon emission and provide evidence for understanding the conversion from carbon stores to carbon gas release in oil-contaminated soils.
Collapse
Affiliation(s)
- Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Liu P, Zheng Y, Zhang R, Bai J, Zhu K, Benzerara K, Menguy N, Zhao X, Roberts AP, Pan Y, Li J. Key gene networks that control magnetosome biomineralization in magnetotactic bacteria. Natl Sci Rev 2022; 10:nwac238. [PMID: 36654913 PMCID: PMC9840458 DOI: 10.1093/nsr/nwac238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 01/21/2023] Open
Abstract
Magnetotactic bacteria (MTB) are a group of phylogenetically and morphologically diverse prokaryotes that have the capability of sensing Earth's magnetic field via nanocrystals of magnetic iron minerals. These crystals are enclosed within intracellular membranes or organelles known as magnetosomes and enable a sensing function known as magnetotaxis. Although MTB were discovered over half a century ago, the study of the magnetosome biogenesis and organization remains limited to a few cultured MTB strains. Here, we present an integrative genomic and phenomic analysis to investigate the genetic basis of magnetosome biomineralization in both cultured and uncultured strains from phylogenetically diverse MTB groups. The magnetosome gene contents/networks of strains are correlated with magnetic particle morphology and chain configuration. We propose a general model for gene networks that control/regulate magnetosome biogenesis and chain assembly in MTB systems.
Collapse
Affiliation(s)
| | | | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
6
|
Zimina TM, Sitkov NO, Gareev KG, Fedorov V, Grouzdev D, Koziaeva V, Gao H, Combs SE, Shevtsov M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. BIOSENSORS 2022; 12:789. [PMID: 36290927 PMCID: PMC9599632 DOI: 10.3390/bios12100789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Magnetic nanocarriers have attracted attention in translational oncology due to their ability to be employed both for tumor diagnostics and therapy. This review summarizes data on applications of synthetic and biogenic magnetic nanoparticles (MNPs) in oncological theranostics and related areas. The basics of both types of MNPs including synthesis approaches, structure, and physicochemical properties are discussed. The properties of synthetic MNPs and biogenic MNPs are compared with regard to their antitumor therapeutic efficiency, diagnostic potential, biocompatibility, and cellular toxicity. The comparative analysis demonstrates that both synthetic and biogenic MNPs could be efficiently used for cancer theranostics, including biosensorics and drug delivery. At the same time, reduced toxicity of biogenic particles was noted, which makes them advantageous for in vivo applications, such as drug delivery, or MRI imaging of tumors. Adaptability to surface modification based on natural biochemical processes is also noted, as well as good compatibility with tumor cells and proliferation in them. Advances in the bionanotechnology field should lead to the implementation of MNPs in clinical trials.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Denis Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia
| | - Veronika Koziaeva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
7
|
Li J, Liu P, Menguy N, Benzerara K, Bai J, Zhao X, Leroy E, Zhang C, Zhang H, Liu J, Zhang R, Zhu K, Roberts AP, Pan Y. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: strategy for culture-independent study. Environ Microbiol 2022; 24:5019-5038. [PMID: 35726890 DOI: 10.1111/1462-2920.16109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1,100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3, and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex, France
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Keilei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Goswami P, He K, Li J, Pan Y, Roberts AP, Lin W. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. NPJ Biofilms Microbiomes 2022; 8:43. [PMID: 35650214 PMCID: PMC9160268 DOI: 10.1038/s41522-022-00304-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of phylogenetically diverse and morphologically varied microorganisms with a magnetoresponsive capability called magnetotaxis or microbial magnetoreception. MTB are a distinctive constituent of the microbiome of aquatic ecosystems because they use Earth's magnetic field to align themselves in a north or south facing direction and efficiently navigate to their favored microenvironments. They have been identified worldwide from diverse aquatic and waterlogged microbiomes, including freshwater, saline, brackish and marine ecosystems, and some extreme environments. MTB play important roles in the biogeochemical cycling of iron, sulphur, phosphorus, carbon and nitrogen in nature and have been recognized from in vitro cultures to sequester heavy metals like selenium, cadmium, and tellurium, which makes them prospective candidate organisms for aquatic pollution bioremediation. The role of MTB in environmental systems is not limited to their lifespan; after death, fossil magnetosomal magnetic nanoparticles (known as magnetofossils) are a promising proxy for recording paleoenvironmental change and geomagnetic field history. Here, we summarize the ecology, evolution, and environmental function of MTB and the paleoenvironmental implications of magnetofossils in light of recent discoveries.
Collapse
Affiliation(s)
- Pranami Goswami
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- Research School of Earth Sciences, Australian National University, ACT, Canberra, ACT, 2601, Australia
| | - Kuang He
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Submarine Geosciences and Prospecting Techniques, MoE and College of Marine Geosciences, Ocean University of China, 266100, Qingdao, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, ACT, Canberra, ACT, 2601, Australia.
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China.
| |
Collapse
|
9
|
Zhao D, Yang J, Zhang G, Lu D, Zhang S, Wang W, Yan L. Potential and whole-genome sequence-based mechanism of elongated-prismatic magnetite magnetosome formation in Acidithiobacillus ferrooxidans BYM. World J Microbiol Biotechnol 2022; 38:121. [DOI: 10.1007/s11274-022-03308-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 01/15/2023]
|
10
|
Bidaud CC, Monteil CL, Menguy N, Busigny V, Jézéquel D, Viollier É, Travert C, Skouri-Panet F, Benzerara K, Lefevre CT, Duprat É. Biogeochemical Niche of Magnetotactic Cocci Capable of Sequestering Large Polyphosphate Inclusions in the Anoxic Layer of the Lake Pavin Water Column. Front Microbiol 2022; 12:789134. [PMID: 35082768 PMCID: PMC8786505 DOI: 10.3389/fmicb.2021.789134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are microorganisms thriving mostly at oxic–anoxic boundaries of aquatic habitats. MTB are efficient in biomineralising or sequestering diverse elements intracellularly, which makes them potentially important actors in biogeochemical cycles. Lake Pavin is a unique aqueous system populated by a wide diversity of MTB with two communities harbouring the capability to sequester not only iron under the form of magnetosomes but also phosphorus and magnesium under the form of polyphosphates, or calcium carbonates, respectively. MTB thrive in the water column of Lake Pavin over a few metres along strong redox and chemical gradients representing a series of different microenvironments. In this study, we investigate the relative abundance and the vertical stratification of the diverse populations of MTB in relation to environmental parameters, by using a new method coupling a precise sampling for geochemical analyses, MTB morphotype description, and in situ measurement of the physicochemical parameters. We assess the ultrastructure of MTB as a function of depth using light and electron microscopy. We evidence the biogeochemical niche of magnetotactic cocci, capable of sequestering large PolyP inclusions below the oxic–anoxic transition zone. Our results suggest a tight link between the S and P metabolisms of these bacteria and pave the way to better understand the implication of MTB for the P cycle in stratified environmental conditions.
Collapse
Affiliation(s)
- Cécile C Bidaud
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France.,Aix-Marseille University, CNRS, CEA, UMR 7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France.,Université de Paris, Centre de Recherches Interdisciplinaires (CRI), Paris, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR 7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France.,INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, France
| | - Éric Viollier
- LSCE, CEA/CNRS/UVSQ/IPSL, Université Paris Saclay & Université de Paris France, Gif-sur-Yvette Cedex, France
| | - Cynthia Travert
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Fériel Skouri-Panet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR 7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Élodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| |
Collapse
|
11
|
Jayaraman J, Sigamani S, Ramamurthy D. Metal biosorption by magnetotactic bacteria isolated from fresh water sediments and characterization of extracted magnetosomes. Arch Microbiol 2021; 203:5951-5962. [PMID: 34529112 DOI: 10.1007/s00203-021-02534-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/20/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
The focus of the present study is to isolate and identify magnetotactic bacteria from fresh water sediments in Salem region, Tamil Nadu. Fresh water sediments were collected and characterized by X-ray diffraction to detect the crystalline nature of particles. Totally 12 isolates were screened for the metal biosorption efficiency in modified nutrient agar plates with 10 mg (lower concentration) of four different metals viz., manganese chloride, zinc sulphate, copper sulphate and potassium dichromate. Followed by testing their ability to tolerate higher concentration of metals viz., 20 mg, 30 mg, 50 mg, 70 mg, 90 mg and 150 mg/50 ml was analyzed. Only four bacteria survived the highest concentration of manganese and zinc (3000 µg/ml), CuSO4 and K2Cr2O7 at a concentration of 1400 µg/ml and 1800 µg/ml, respectively. The four bacterial strains Stenotrophomonas maltophilia, two Pseudomonas aeruginosa strains and Achromobacter xylosoxidans were grown in modified nutrient broth (NB) and Luria Bertani (LB) incorporated with metals such as manganese, zinc, copper and chromium and tested for their efficacy to sustain metal stress. Since the two bacterial strains (SBY and KY1) were able to grow in both medium with a potential to with stand higher metal concentration these strains were further studied. A metal tolerant magnetotactic bacterial strain Pseudomonas aeruginosa SBY was confirmed by TEM analysis to detect the accumulated metal within the cell. As bacterial strains were capable of tolerating higher concentration of metal, they may have a vital role in environmental bioremediation.
Collapse
Affiliation(s)
- Jamunadevi Jayaraman
- Department of Microbiology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Santhosh Sigamani
- Department of Microbiology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Dhandapani Ramamurthy
- Department of Microbiology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India.
| |
Collapse
|
12
|
Sesbanimide R, a Novel Cytotoxic Polyketide Produced by Magnetotactic Bacteria. mBio 2021; 12:mBio.00591-21. [PMID: 34006654 PMCID: PMC8262917 DOI: 10.1128/mbio.00591-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic information from various magnetotactic bacteria suggested that besides their common ability to form magnetosomes, they potentially also represent a source of bioactive natural products. By using targeted deletion and transcriptional activation, we connected a large biosynthetic gene cluster (BGC) of the trans-acyltransferase polyketide synthase (trans-AT PKS) type to the biosynthesis of a novel polyketide in the alphaproteobacterium Magnetospirillum gryphiswaldense Structure elucidation by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) revealed that this secondary metabolite resembles sesbanimides, which were very recently reported from other taxa. However, sesbanimide R exhibits an additional arginine moiety the presence of which reconciles inconsistencies in the previously proposed sesbanimide biosynthesis pathway observed when comparing the chemical structure and the potential biochemistry encoded in the BGC. In contrast to the case with sesbanimides D, E, and F, we were able to assign the stereocenter of the arginine moiety experimentally and two of the remaining three stereocenters by predictive biosynthetic tools. Sesbanimide R displayed strong cytotoxic activity against several carcinoma cell lines.IMPORTANCE The findings of this study contribute a new secondary metabolite member to the glutarimide-containing polyketides. The determined structure of sesbanimide R correlates with its cytotoxic bioactivity, characteristic for members of this family. Sesbanimide R represents the first natural product isolated from magnetotactic bacteria and identifies this highly diverse group as a so-far-untapped source for the future discovery of novel secondary metabolites.
Collapse
|
13
|
Liu P, Tamaxia A, Liu Y, Qiu H, Pan J, Jin Z, Zhao X, Roberts AP, Pan Y, Li J. Identification and characterization of magnetotactic Gammaproteobacteria from a salt evaporation pool, Bohai Bay, China. Environ Microbiol 2021; 24:938-950. [PMID: 33876543 DOI: 10.1111/1462-2920.15516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that can produce intracellular chain-assembled nanocrystals of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). Compared with their wide distribution in the Alpha-, Eta- and Delta-proteobacteria classes, few MTB strains have been identified in the Gammaproteobacteria class, resulting in limited knowledge of bacterial diversity and magnetosome biomineralization within this phylogenetic branch. Here, we identify two magnetotactic Gammaproteobacteria strains (tentatively named FZSR-1 and FZSR-2 respectively) from a salt evaporation pool in Bohai Bay, at the Fuzhou saltern, Dalian City, eastern China. Phylogenetic analysis indicates that strain FZSR-2 is the same species as strains SHHR-1 and SS-5, which were discovered previously from brackish and hypersaline environments respectively. Strain FZSR-1 represents a novel species. Compared with strains FZSR-2, SHHR-1 and SS-5 in which magnetite particles are assembled into a single chain, FZSR-1 cells form relatively narrower magnetite nanoparticles that are often organized into double chains. We find a good relationship between magnetite morphology within strains FZSR-2, SHHR-1 and SS-5 and the salinity of the environment in which they live. This study expands the bacterial diversity of magnetotactic Gammaproteobacteria and provides new insights into magnetosome biomineralization within magnetotactic Gammaproteobacteria.
Collapse
Affiliation(s)
- Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alima Tamaxia
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Qiu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juntong Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongke Jin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Tan SM, Ismail MH, Cao B. Biodiversity of magnetotactic bacteria in the tropical marine environment of Singapore revealed by metagenomic analysis. ENVIRONMENTAL RESEARCH 2021; 194:110714. [PMID: 33422504 DOI: 10.1016/j.envres.2021.110714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Most studies on the diversity of magnetotactic bacteria (MTB) have been conducted on samples obtained from the Northern or the Southern hemispheres. The diversity of MTB in tropical Asia near the geo-equator, with a close-to-zero geomagnetic inclination, weak magnetic field and constantly high seawater temperature has never been explored. This study aims to decipher the diversity of MTB in the marine environment of Singapore through shotgun metagenomics. Although MTB has been acknowledged to be ubiquitous in aquatic environments, we did not observe magnetotactic behaviour in the samples. However, we detected the presence and determined the diversity of MTB through bioinformatic analyses. Metagenomic analysis suggested majority of the MTB in the seafloor sediments represents novel MTB taxa that cannot be classified at the species level. The relative abundance of MTB (~0.2-1.69%) in the samples collected from the marine environment of Singapore was found to be substantially lower than studies for other regions. In contrast to other studies, the genera Magnetovibrio and Desulfamplus, but not Magnetococcus, were the dominant MTB. Additionally, we recovered 3 MTB genomic bins that are unclassified at the species level, with Magnetovibrio blakemorei being the closest-associated genome. All the recovered genomic bins contain homologs of at least 5 of the 7 mam genes but lack homologs for mamI, a membrane protein suggested to take part in the magenetosome invagination. This study fills in the knowledge gap of MTB biodiversity in the tropical marine environment near the geo-equator. Our findings will facilitate future research efforts aiming to unravel the ecological roles of MTB in the tropical marine environments as well as to bioprospecting novel MTB that have been adapted to tropical marine environments for biotechnological applications.
Collapse
Affiliation(s)
- Shi Ming Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore
| | - Muhammad Hafiz Ismail
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, N1-01C-69, 639798, Singapore.
| |
Collapse
|
15
|
Complete Genome Sequence of Strain SS-5, a Magnetotactic Gammaproteobacterium Isolated from the Salton Sea, a Shallow, Saline, Endorheic Rift Lake Located on the San Andreas Fault in California. Microbiol Resour Announc 2021; 10:10/1/e00928-20. [PMID: 33414284 PMCID: PMC8407686 DOI: 10.1128/mra.00928-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the 3.7-Mb genome sequence of strain SS-5, a magnetotactic, sulfur-oxidizing rod and member of the family Chromatiaceae of the class Gammaproteobacteria, which biomineralizes membrane-bounded, elongated, prismatic octahedral, magnetite nanocrystals. This genome sequence brings further diversity for understanding the origin and evolution of magnetotaxis and magnetosome biomineralization. We report the 3.7-Mb genome sequence of strain SS-5, a magnetotactic, sulfur-oxidizing rod and member of the family Chromatiaceae of the class Gammaproteobacteria, which biomineralizes membrane-bound, elongated, prismatic octahedral, magnetite nanocrystals. This genome sequence brings further diversity for understanding the origin and evolution of magnetotaxis and magnetosome biomineralization.
Collapse
|
16
|
Ye J, An N, Chen H, Ying Z, Zhang S, Zhao J. Performance and mechanism of carbon dioxide fixation by a newly isolated chemoautotrophic strain Paracoccus denitrificans PJ-1. CHEMOSPHERE 2020; 252:126473. [PMID: 32229363 DOI: 10.1016/j.chemosphere.2020.126473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/15/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
CO2 is regarded as a major contributor to the global warming. CO2 utilization is promising to reduce the CO2 emissions. Currently, the biofixation of CO2 using chemoautotrophs has markedly gain interest in CO2 utilization. In this study, a newly isolated chemoautotroph, Paracoccus denitrificans PJ-1, was used for the biofixation of CO2 under anaerobic condition. Experimental results revealed that Paracoccus denitrificans PJ-1 achieved a high carbon fixation rate (13.25 mg·L-1·h-1) which was ∼10 times faster than the previous reported chemotrophic bacteria using thiosulfate as electron donor. The best CO2 fixation activity of Paracoccus denitrificans PJ-1 was achieved at the pH value of 9.0 and CO2 concentration of 20 vol%. Meanwhile, a high CO2 fixation yield of 106.03 mg·L-1 was reached. The presence of oxygen was adverse to the biofixation, indicating that strain PJ-1 was more suitable for CO2 fixation in anaerobic environments. Carbon mass balance analysis revealed that the carbon from CO2 was mainly fixed into the extracellular organic carbon rather than the biomass. GC-MS analysis and cbbL gene test revealed that Paracoccus denitrificans PJ-1 fixed CO2 through the Calvin-Benson-Bassham cycle and mainly converted CO2 to oxalic acid and succinic acid. Overall, the excellent CO2 fixation capacity of Paracoccus denitrificans PJ-1 suggests that it had potential for CO2 utilization.
Collapse
Affiliation(s)
- Jiexu Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang, Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ni An
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang, Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Han Chen
- Zhejiang University of Water Resource and Electric Power, Hangzhou, 310018, China
| | - Zanyun Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang, Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang, Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Jingkai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang, Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
17
|
Uzun M, Alekseeva L, Krutkina M, Koziaeva V, Grouzdev D. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. Sci Data 2020; 7:252. [PMID: 32737307 PMCID: PMC7449369 DOI: 10.1038/s41597-020-00593-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/03/2020] [Indexed: 11/17/2022] Open
Abstract
Magnetotactic bacteria (MTB) are prokaryotes that possess genes for the synthesis of membrane-bounded crystals of magnetite or greigite, called magnetosomes. Despite over half a century of studying MTB, only about 60 genomes have been sequenced. Most belong to Proteobacteria, with a minority affiliated with the Nitrospirae, Omnitrophica, Planctomycetes, and Latescibacteria. Due to the scanty information available regarding MTB phylogenetic diversity, little is known about their ecology, evolution and about the magnetosome biomineralization process. This study presents a large-scale search of magnetosome biomineralization genes and reveals 38 new MTB genomes. Several of these genomes were detected in the phyla Elusimicrobia, Candidatus Hydrogenedentes, and Nitrospinae, where magnetotactic representatives have not previously been reported. Analysis of the obtained putative magnetosome biomineralization genes revealed a monophyletic origin capable of putative greigite magnetosome synthesis. The ecological distributions of the reconstructed MTB genomes were also analyzed and several patterns were identified. These data suggest that open databases are an excellent source for obtaining new information of interest.
Collapse
Affiliation(s)
- Maria Uzun
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia. .,Lomonosov Moscow State University, Moscow, Russia.
| | - Lolita Alekseeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Maria Krutkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Veronika Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Denis Grouzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| |
Collapse
|
18
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
19
|
Amor M, Mathon FP, Monteil CL, Busigny V, Lefevre CT. Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environ Microbiol 2020; 22:3611-3632. [PMID: 32452098 DOI: 10.1111/1462-2920.15098] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron from their environment to synthesize intracellular nanoparticles of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in a genetically controlled manner. Magnetite and greigite magnetic phases allow MTB to swim towards redox transition zones where they thrive. MTB may represent some of the oldest microorganisms capable of synthesizing minerals on Earth and have been proposed to significantly impact the iron biogeochemical cycle by immobilizing soluble iron into crystals that subsequently fossilize in sedimentary rocks. In the present article, we describe the distribution of MTB in the environment and discuss the possible function of the magnetite and greigite nanoparticles. We then provide an overview of the chemical mechanisms leading to iron mineralization in MTB. Finally, we update the methods used for the detection of MTB crystals in sedimentary rocks and present their occurrences in the geological record.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - François P Mathon
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France.,Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Vincent Busigny
- Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
20
|
Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae, Isolated from a Brackish Spring in Death Valley, California. Microbiol Resour Announc 2020; 9:9/1/e01144-19. [PMID: 31896630 PMCID: PMC6940282 DOI: 10.1128/mra.01144-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete 4.1-Mb genome sequence of strain BW-2, a magnetotactic, sulfur-oxidizing rod, belonging to the family Ectothiorhodospiraceae of the class Gammaproteobacteria, that biomineralizes membrane-bounded magnetite nanocrystals in its magnetosomes. This genome sequence, in comparison with those of other magnetotactic bacteria, is essential for understanding the origin and evolution of magnetotaxis and magnetosome biomineralization. We report the complete 4.1-Mb genome sequence of strain BW-2, a magnetotactic, sulfur-oxidizing rod, belonging to the family Ectothiorhodospiraceae of the class Gammaproteobacteria, that biomineralizes membrane-bounded magnetite nanocrystals in its magnetosomes. This genome sequence, in comparison with those of other magnetotactic bacteria, is essential for understanding the origin and evolution of magnetotaxis and magnetosome biomineralization.
Collapse
|
21
|
Bacterial Intracellular Sulphur Globules. BACTERIAL ORGANELLES AND ORGANELLE-LIKE INCLUSIONS 2020. [DOI: 10.1007/978-3-030-60173-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Magnetoreception in Microorganisms. Trends Microbiol 2019; 28:266-275. [PMID: 31753537 DOI: 10.1016/j.tim.2019.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022]
Abstract
Magnetoreception is the sense whereby organisms geolocate and navigate in response to the Earth's magnetic field lines. For decades, magnetotactic bacteria have been the only known magnetoreceptive microorganisms. The magnetotactic behaviour of these aquatic prokaryotes is due to the biomineralization of magnetic crystals. While an old report alleged the existence of microbial algae with similar behaviour, recent discoveries have demonstrated the existence of unicellular eukaryotes able to sense the geomagnetic field, and have revealed different mechanisms and strategies involved in such a sensing. Some ciliates can be magnetically guided after predation of magnetotactic bacteria, while some flagellates acquired this sense through symbiosis with magnetic bacteria. A report has even suggested that some magnetotactic protists could biomineralize magnetic crystals.
Collapse
|
23
|
Pan H, Dong Y, Teng Z, Li J, Zhang W, Xiao T, Wu LF. A species of magnetotactic deltaproteobacterium was detected at the highest abundance during an algal bloom. FEMS Microbiol Lett 2019; 366:5681391. [PMID: 31855240 DOI: 10.1093/femsle/fnz253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of microorganisms that have the ability to synthesize intracellular magnetic crystals (magnetosomes). They prefer microaerobic or anaerobic aquatic sediments. Thus, there is growing interest in their ecological roles in various habitats. In this study we found co-occurrence of a large rod-shaped deltaproteobacterial magnetotactic bacterium (tentatively named LR-1) in the sediment of a brackish lagoon with algal bloom. Electron microscopy observations showed that they were ovoid to slightly curved rods having a mean length of 6.3 ± 1.1 μm and a mean width of 4.1 ± 0.4 μm. Each cell had a single polar flagellum. They contained hundreds of bullet-shaped intracellular magnetite magnetosomes. Phylogenetic analysis revealed that they were most closely related to Desulfamplus magnetovallimortis strain BW-1, and belonged to the Deltaproteobacteria. Our findings indicate that LR-1 may be a new species of MTB. We propose that deltaproteobacterial MTB may play an important role in iron cycling and so may represent a reservoir of iron, and be an indicator species for monitoring algal blooms in such eutrophic ecosystems. These observations provide new clues to the cultivation of magnetotactic Deltaproteobacteria and the control of algal blooms, although further studies are needed.
Collapse
Affiliation(s)
- Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Yi Dong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Jinhua Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Western Road, Beijing, 100029, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China.,LCB, Aix-Marseille Univ, CNRS, 31 Chemin Joseph Aiguier, Marseille, 13402, France
| |
Collapse
|
24
|
Koziaeva V, Dziuba M, Leão P, Uzun M, Krutkina M, Grouzdev D. Genome-Based Metabolic Reconstruction of a Novel Uncultivated Freshwater Magnetotactic coccus " Ca. Magnetaquicoccus inordinatus" UR-1, and Proposal of a Candidate Family " Ca. Magnetaquicoccaceae". Front Microbiol 2019; 10:2290. [PMID: 31632385 PMCID: PMC6783814 DOI: 10.3389/fmicb.2019.02290] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022] Open
Abstract
Magnetotactic bacteria are widely represented microorganisms that have the ability to synthesize magnetosomes. The magnetotactic cocci of the order Magnetococcales are the most frequently identified, but their classification remains unclear due to the low number of cultivated representatives. This paper reports the analysis of an uncultivated magnetotactic coccus UR-1 collected from the Uda River (in eastern Siberia). Genome analyses of this bacterium and comparison to the available Magnetococcales genomes identified a novel species called "Ca. Magnetaquicoccus inordinatus," and a delineated candidate family "Ca. Magnetaquicoccaceae" within the order Magnetococcales is proposed. We used average amino acid identity values <55-56% and <64-65% as thresholds for the separation of families and genera, respectively, within the order Magnetococcales. Analyses of the genome sequence of UR-1 revealed a potential ability for a chemolithoautotrophic lifestyle, with the oxidation of a reduced sulfur compound and carbon assimilation by rTCA. A nearly complete magnetosome genome island, containing a set of mam and mms genes, was also identified. Further comparative analyses of the magnetosome genes showed vertical inheritance as well as horizontal gene transfer as the evolutionary drivers of magnetosome biomineralization genes in strains of the order Magnetococcales.
Collapse
Affiliation(s)
- Veronika Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Marina Dziuba
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Uzun
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Krutkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Denis Grouzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| |
Collapse
|
25
|
Abreu F, Leão P, Vargas G, Cypriano J, Figueiredo V, Enrich-Prast A, Bazylinski DA, Lins U. Culture-independent characterization of a novel magnetotactic member affiliated to the Beta class of the Proteobacteria phylum from an acidic lagoon. Environ Microbiol 2019; 20:2615-2624. [PMID: 29806735 DOI: 10.1111/1462-2920.14286] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/08/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023]
Abstract
Magnetotactic bacteria (MTB) comprise a group of motile microorganisms common in most mesothermal aquatic habitats with pH values around neutrality. However, during the last two decades, a number of MTB from extreme environments have been characterized including: cultured alkaliphilic strains belonging to the Deltaproteobacteria class of the Proteobacteria phylum; uncultured moderately thermophilic strains belonging to the Nitrospirae phylum; cultured and uncultured moderately halophilic or strongly halotolerant bacteria affiliated with the Deltaproteobacteria and Gammaproteobacteria classes and an uncultured psychrophilic species belonging to the Alphaproteobacteria class. Here, we used culture-independent techniques to characterize MTB from an acidic freshwater lagoon in Brazil (pH ∼ 4.4). MTB morphotypes found in this acidic lagoon included cocci, rods, spirilla and vibrioid cells. Magnetite (Fe3 O4 ) was the only mineral identified in magnetosomes of these MTB while magnetite magnetosome crystal morphologies within the different MTB cells included cuboctahedral (present in spirilla), elongated prismatic (present in cocci and vibrios) and bullet-shaped (present in rod-shaped cells). Intracellular pH measurements using fluorescent dyes showed that the cytoplasmic pH was close to neutral in most MTB cells and acidic in some intracellular granules. Based on 16S rRNA gene phylogenetic analyses, some of the retrieved gene sequences belonged to the genus Herbaspirillum within the Betaproteobacteria class of the Proteobacteria phylum. Fluorescent in situ hybridization using a Herbaspirillum-specific probe hybridized with vibrioid MTB in magnetically-enriched samples. Transmission electron microscopy of the Herbaspirillum-like MTB revealed the presence of many intracellular granules and a single chain of elongated prismatic magnetite magnetosomes. Diverse populations of MTB have not seemed to have been described in detail in an acid environment. In addition, this is the first report of an MTB phylogenetically affiliated with Betaproteobacteria class.
Collapse
Affiliation(s)
- Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Viviane Figueiredo
- Instituto de Biologia, Departamento de Botânica, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Alex Enrich-Prast
- Instituto de Biologia, Departamento de Botânica, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.,Department of Thematic Studies - Environmental Change, Linköping University, Linköping, c- 58183, Sweden
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Dieudonné A, Pignol D, Prévéral S. Magnetosomes: biogenic iron nanoparticles produced by environmental bacteria. Appl Microbiol Biotechnol 2019; 103:3637-3649. [PMID: 30903215 DOI: 10.1007/s00253-019-09728-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/10/2023]
Abstract
The scientific community's interest in magnetotactic bacteria has increased substantially in recent decades. These prokaryotes have the particularity of synthesizing nanomagnets, called magnetosomes. The majority of research is based on several scientific questions. Where do magnetotactic bacteria live, what are their characteristics, and why are they magnetic? What are the molecular phenomena of magnetosome biomineralization and what are the physical characteristics of magnetosomes? In addition to scientific curiosity to better understand these stunning organisms, there are biotechnological opportunities to consider. Magnetotactic bacteria, as well as magnetosomes, are used in medical applications, for example cancer treatment, or in environmental ones, for example bioremediation. In this mini-review, we investigated all the aspects mentioned above and summarized the currently available knowledge.
Collapse
Affiliation(s)
- Anissa Dieudonné
- UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBC, Saint Paul-Lez-Durance, France
| | - David Pignol
- UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBC, Saint Paul-Lez-Durance, France
| | - Sandra Prévéral
- UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBC, Saint Paul-Lez-Durance, France.
| |
Collapse
|
27
|
Bukar M, Sodipo O, Dawkins K, Ramirez R, Kaldapa JT, Tarfa M, Esiobu N. Microbiomes of Top and Sub-Layers of Semi-Arid Soils in North-Eastern Nigeria Are Rich in Firmicutes and Proteobacteria with Surprisingly High Diversity of Rare Species. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aim.2019.91008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Le Nagard L, Morillo-López V, Fradin C, Bazylinski DA. Growing Magnetotactic Bacteria of the Genus Magnetospirillum: Strains MSR-1, AMB-1 and MS-1. J Vis Exp 2018. [PMID: 30394392 DOI: 10.3791/58536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Magnetotactic bacteria are Gram-negative, motile, mainly aquatic prokaryotes ubiquitous in freshwater and marine habitats. They are characterized by their ability to biomineralize magnetosomes, which are magnetic nanometer-sized crystals of magnetite (Fe3O4) or greigite (Fe3S4) surrounded by a lipid bilayer membrane, within their cytoplasm. For most known magnetotactic bacteria, magnetosomes are assembled in chains inside the cytoplasm, thereby conferring a permanent magnetic dipole moment to the cells and causing them to align passively with external magnetic fields. Because of these specific features, magnetotactic bacteria have a great potential for commercial and medical applications. However, most species are microaerophilic and have specific O2 concentration requirements, making them more difficult to grow routinely than many other bacteria such as Escherichia coli. Here we present detailed protocols for growing three of the most widely studied strains of magnetotactic bacteria, all belonging to the genus Magnetospirillum. These methods allow for precise control of the O2 concentration made available to the bacteria, in order to ensure that they grow normally and synthesize magnetosomes. Growing magnetotactic bacteria for further studies using these procedures does not require the experimentalist to be an expert in microbiology. The general methods presented in this article may also be used to isolate and culture other magnetotactic bacteria, although it is likely that growth media chemical composition will need to be modified.
Collapse
Affiliation(s)
| | | | - Cecile Fradin
- Department of Physics & Astronomy, McMaster University;
| | | |
Collapse
|
29
|
Yan L, Xing W. Methods to Study Magnetotactic Bacteria and Magnetosomes. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Islam T, Peng C, Ali I. Morphological and cellular diversity of magnetotactic bacteria: A review. J Basic Microbiol 2017; 58:378-389. [PMID: 29112284 DOI: 10.1002/jobm.201700383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 11/12/2022]
Abstract
Magnetotactic bacteria (MTB) are getting much attention in the recent years due to the biomineralization in their magnetosomes (MS). MS are unique organelles that are bio-mineralized due to MTB. MS contains nanosized crystal minerals of magnetite or greigite covered by bilayer lipid membrane, which are originated from cytoplasmic membrane (CM). MS are organized as an ordered chain into the cell which acts as a miniature compass needle. Furthermore, the biodiversity of MTB and their distribution is principally linked with the characteristics and growths of the MS. MTB are often considered as a part of the bacterial biomass from all of the aquatic environments. There have been a lot of genes that control the functions of MTB by accumulating as clusters of genomes such as magnetosomes genomic island (MAI). Therefore, in the present review, the function of the genes and proteins has been highlighted, which are mainly associated with the construction and formation of MS. In addition, the biodiversity, morphology and cell biology of MTB is discussed in greater detail to understand the formation of MS crystals by MTB.
Collapse
Affiliation(s)
- Tariqul Islam
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
31
|
Lin W, Pan Y, Bazylinski DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:345-356. [PMID: 28557300 DOI: 10.1111/1758-2229.12550] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/20/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular, membrane-bounded crystals of magnetite (Fe3 O4 ) and/or greigite (Fe3 S4 ) called magnetosomes. MTB play important roles in the geochemical cycling of iron, sulfur, nitrogen and carbon. Significantly, they also represent an intriguing model system not just for the study of microbial biomineralization but also for magnetoreception, prokaryotic organelle formation and microbial biogeography. Here we review current knowledge on the ecology of and biomineralization by MTB, with an emphasis on more recent reports of unexpected ecological and phylogenetic findings regarding MTB. In this study, we conducted a search of public metagenomic databases and identified six novel magnetosome gene cluster-containing genomic fragments affiliated with the Deltaproteobacteria and Gammaproteobacteria classes of the Proteobacteria phylum, the Nitrospirae phylum and the Planctomycetes phylum from the deep subseafloor, marine oxygen minimum zone, groundwater biofilm and estuary sediment, thereby extending our knowledge on the diversity and distribution of MTB as well deriving important information as to their ecophysiology. We point out that the increasing availability of sequence data will facilitate researchers to systematically explore the ecology and biomineralization of MTB even further.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| |
Collapse
|
32
|
Yan L, Da H, Zhang S, López VM, Wang W. Bacterial magnetosome and its potential application. Microbiol Res 2017; 203:19-28. [PMID: 28754204 DOI: 10.1016/j.micres.2017.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/08/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023]
Abstract
Bacterial magnetosome, synthetized by magnetosome-producing microorganisms including magnetotactic bacteria (MTB) and some non-magnetotactic bacteria (Non-MTB), is a new type of material comprising magnetic nanocrystals surrounded by a phospholipid bilayer. Because of the special properties such as single magnetic domain, excellent biocompatibility and surface modification, bacterial magnetosome has become an increasingly attractive for researchers in biology, medicine, paleomagnetism, geology and environmental science. This review briefly describes the general feature of magnetosome-producing microorganisms. This article also highlights recent advances in the understanding of the biochemical and magnetic characteristics of bacterial magnetosome, as well as the magnetosome formation mechanism including iron ions uptake, magnetosome membrane formation, biomineralization and magnetosome chain assembly. Finally, this review presents the potential applications of bacterial magnetosome in biomedicine, wastewater treatment, and the significance of mineralization of magnetosome in biology and geology.
Collapse
Affiliation(s)
- Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Huiyun Da
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Viviana Morillo López
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| |
Collapse
|
33
|
Single-Cell Resolution of Uncultured Magnetotactic Bacteria via Fluorescence-Coupled Electron Microscopy. Appl Environ Microbiol 2017; 83:AEM.00409-17. [PMID: 28389550 PMCID: PMC5452806 DOI: 10.1128/aem.00409-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/05/2017] [Indexed: 12/02/2022] Open
Abstract
Magnetotactic bacteria (MTB) form intracellular chain-assembled nanocrystals of magnetite or greigite termed magnetosomes. The characterization of magnetosome crystals requires electron microscopy due to their nanoscopic sizes. However, electron microscopy does not provide phylogenetic information for MTB. We have developed a strategy for the simultaneous and rapid phylogenetic and biomineralogical characterization of uncultured MTB at the single-cell level. It consists of four steps: (i) enrichment of MTB cells from an environmental sample, (ii) 16S rRNA gene sequencing of MTB, and (iii) fluorescence in situ hybridization analyses coordinated with (iv) transmission or scanning electron microscopy of the probe-hybridized cells. The application of this strategy identified a magnetotactic Gammaproteobacteria strain, SHHR-1, from brackish sediments collected from the Shihe River estuary in Qinhuangdao City, China. SHHR-1 magnetosomes are elongated prismatic magnetites which can be idealized as hexagonal prisms. Taxonomic groups of uncultured MTB were also identified in freshwater sediments from Lake Miyun in northern Beijing via this novel coordinated fluorescence and scanning electron microscopy method based on four group-specific rRNA-targeted probes. Our analyses revealed that major magnetotactic taxonomic groups can be accurately determined only with coordinated scanning electron microscopy observations on fluorescently labeled single cells due to limited group coverage and specificity for existing group-specific MTB fluorescence in situ hybridization (FISH) probes. Our reported strategy is simple and efficient, offers great promise toward investigating the diversity and biomineralization of MTB, and may also be applied to other functional groups of microorganisms. IMPORTANCE Magnetotactic bacteria (MTB) are phylogenetically diverse and biomineralize morphologically diverse magnetic nanocrystals of magnetite or greigite in intracellular structures termed magnetosomes. However, many uncultured MTB strains have not been phylogenetically identified or structurally investigated at the single-cell level, which limits our comprehensive understanding of the diversity of MTB and their role in biomineralization. We developed a fluorescence-coupled electron microscopy method for the rapid phylogenetic and biomineralogical characterization of uncultured MTB at the single-cell level. Using this novel method, we successfully identified taxonomic groups of several uncultured MTB and one novel magnetotactic Gammaproteobacteria strain, SHHR-1, from natural environments. Our analyses further indicate that strain SHHR-1 forms elongated prismatic magnetites. Our findings provide a promising strategy for the rapid characterization of phylogenetic and biomineralogical properties of uncultured MTB at the single-cell level. Furthermore, due to its simplicity and generalized methodology, this strategy can also be useful in the study of the diversity and biomineralization properties of microbial taxa involved in other mineralization processes.
Collapse
|
34
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
35
|
Ji B, Zhang SD, Zhang WJ, Rouy Z, Alberto F, Santini CL, Mangenot S, Gagnot S, Philippe N, Pradel N, Zhang L, Tempel S, Li Y, Médigue C, Henrissat B, Coutinho PM, Barbe V, Talla E, Wu LF. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of P
roteobacteria. Environ Microbiol 2017; 19:1103-1119. [DOI: 10.1111/1462-2920.13637] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Boyang Ji
- Aix Marseille Univ, CNRS, LCB; Marseille France
| | - Sheng-Da Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Wei-Jia Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Zoe Rouy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | - François Alberto
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Claire-Lise Santini
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | | | - Nathalie Pradel
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- Aix Marseille Univ, Univ Toulon, CNRS, IRD; Marseille France
| | | | | | - Ying Li
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Claudine Médigue
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | | | | | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | - Long-Fei Wu
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| |
Collapse
|
36
|
Wu W, Jiang CZ, Roy VAL. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. NANOSCALE 2016; 8:19421-19474. [PMID: 27812592 DOI: 10.1039/c6nr07542h] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron oxide nanoparticles (NPs) hold great promise for future biomedical applications because of their magnetic properties as well as other intrinsic properties such as low toxicity, colloidal stability, and surface engineering capability. Numerous related studies on iron oxide NPs have been conducted. Recent progress in nanochemistry has enabled fine control over the size, crystallinity, uniformity, and surface properties of iron oxide NPs. This review examines various synthetic approaches and surface engineering strategies for preparing naked and functional iron oxide NPs with different physicochemical properties. Growing interest in designed and surface-engineered iron oxide NPs with multifunctionalities was explored in in vitro/in vivo biomedical applications, focusing on their combined roles in bioseparation, as a biosensor, targeted-drug delivery, MR contrast agents, and magnetic fluid hyperthermia. This review outlines the limitations of extant surface engineering strategies and several developing strategies that may overcome these limitations. This study also details the promising future directions of this active research field.
Collapse
Affiliation(s)
- Wei Wu
- Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China. and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Chang Zhong Jiang
- School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Vellaisamy A L Roy
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China.
| |
Collapse
|
37
|
Lefèvre CT, Howse PA, Schmidt ML, Sabaty M, Menguy N, Luther GW, Bazylinski DA. Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:1003-1015. [PMID: 27701830 DOI: 10.1111/1758-2229.12479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Although dissimilatory sulfate-reducing bacteria (SRB) are generally described as strictly anaerobic organisms with regard to growth, several reports have shown that some SRB, particularly Desulfovibrio species, are quite resistant to O2 . For example, SRB remain viable in many aerobic environments while some even reduce O2 to H2 O. However, reproducible aerobic growth of SRB has not been unequivocally documented. Desulfovibrio magneticus is a SRB that is also a magnetotactic bacterium (MTB). MTB biomineralize magnetosomes which are intracellular, membrane-bounded, magnetic iron mineral crystals. The ability of D. magneticus to grow aerobically in several different media under air where an O2 concentration gradient formed, or under O2 -free N2 gas was tested. Under air, cells grew as a microaerophilic band of cells at the oxic-anoxic interface in media lacking sulfate. These results show that D. magneticus is capable of aerobic growth with O2 as a terminal electron acceptor. This is the first report of consistent, reproducible aerobic growth of SRB. This finding is critical in determining important ecological roles SRB play in the environment. Interestingly, the crystal structure of the magnetite crystals of D. magneticus grown under microaerobic conditions showed significant differences compared with those produced anaerobically providing more evidence that environmental parameters influence magnetosome formation.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université UMR7265 Institut de biosciences et biotechnologies Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, 13108, France
| | - Paul A Howse
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Marian L Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Monique Sabaty
- CNRS/CEA/Aix-Marseille Université UMR7265 Institut de biosciences et biotechnologies Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, 13108, France
| | - Nicolas Menguy
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, Université Pierre et Marie Curie, UMR 7590 CNRS, Institut de Recherche pour le Développement UMR 206, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd. Lewes, DE, 19958, USA
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| |
Collapse
|
38
|
North-Seeking Magnetotactic Gammaproteobacteria in the Southern Hemisphere. Appl Environ Microbiol 2016; 82:5595-602. [PMID: 27401974 DOI: 10.1128/aem.01545-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Magnetotactic bacteria (MTB) comprise a phylogenetically diverse group of prokaryotes capable of orienting and navigating along magnetic field lines. Under oxic conditions, MTB in natural environments in the Northern Hemisphere generally display north-seeking (NS) polarity, swimming parallel to the Earth's magnetic field lines, while those in the Southern Hemisphere generally swim antiparallel to magnetic field lines (south-seeking [SS] polarity). Here, we report a population of an uncultured, monotrichously flagellated, and vibrioid MTB collected from a brackish lagoon in Brazil in the Southern Hemisphere that consistently exhibits NS polarity. Cells of this organism were mainly located below the oxic-anoxic interface (OAI), suggesting it is capable of some type of anaerobic metabolism. Magnetosome crystalline habit and composition were consistent with elongated prismatic magnetite (Fe3O4) particles. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that this organism belongs to a distinct clade of the Gammaproteobacteria class. The presence of NS MTB in the Southern Hemisphere and the previously reported finding of SS MTB in the Northern Hemisphere reinforce the idea that magnetotaxis is more complex than we currently understand and may be modulated by factors other than O2 concentration and redox gradients in sediments and water columns. IMPORTANCE Magnetotaxis is a navigational mechanism used by magnetotactic bacteria to move along geomagnetic field lines and find an optimal position in chemically stratified sediments. For that, magnetotactic bacteria swim parallel to the geomagnetic field lines under oxic conditions in the Northern Hemisphere, whereas those in the Southern Hemisphere swim antiparallel to magnetic field lines. A population of uncultured vibrioid magnetotactic bacteria was discovered in a brackish lagoon in the Southern Hemisphere that consistently swim northward, i.e., the opposite of the overwhelming majority of other Southern Hemisphere magnetotactic bacteria. This finding supports the idea that magnetotaxis is more complex than previously thought.
Collapse
|
39
|
Abreu F, Carolina A, Araujo V, Leão P, Silva KT, Carvalho FMD, Cunha ODL, Almeida LG, Geurink C, Farina M, Rodelli D, Jovane L, Pellizari VH, Vasconcelos ATD, Bazylinski DA, Lins U. Culture‐independent characterization of novel psychrophilic magnetotactic cocci from Antarctic marine sediments. Environ Microbiol 2016; 18:4426-4441. [DOI: 10.1111/1462-2920.13388] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/20/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | | | - V. Araujo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | - Karen Tavares Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | | | - Oberdan de Lima Cunha
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica25651‐070Petrópolis RJ Brazil
| | - Luiz Gonzaga Almeida
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica25651‐070Petrópolis RJ Brazil
| | - Corey Geurink
- School of Life SciencesUniversity of Nevada at Las VegasLas Vegas NV89154‐4004 USA
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | - Daniel Rodelli
- Instituto Oceanográfico, Universidade de São Paulo05508‐900São Paulo SP Brazil
| | - Luigi Jovane
- Instituto Oceanográfico, Universidade de São Paulo05508‐900São Paulo SP Brazil
| | - Vivian H. Pellizari
- Instituto Oceanográfico, Universidade de São Paulo05508‐900São Paulo SP Brazil
| | - Ana Tereza de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica25651‐070Petrópolis RJ Brazil
| | - Dennis A. Bazylinski
- School of Life SciencesUniversity of Nevada at Las VegasLas Vegas NV89154‐4004 USA
| | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| |
Collapse
|
40
|
Deng A, Lin W, Shi N, Wu J, Sun Z, Sun Q, Bai H, Pan Y, Wen T. In vitro assembly of the bacterial actin protein MamK from ' Candidatus Magnetobacterium casensis' in the phylum Nitrospirae. Protein Cell 2016; 7:267-280. [PMID: 26960409 PMCID: PMC4818849 DOI: 10.1007/s13238-016-0253-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 10/29/2022] Open
Abstract
Magnetotactic bacteria (MTB), a group of phylogenetically diverse organisms that use their unique intracellular magnetosome organelles to swim along the Earth's magnetic field, play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have revealed that the bacterial actin protein MamK plays essential roles in the linear arrangement of magnetosomes in MTB cells belonging to the Proteobacteria phylum. However, the molecular mechanisms of multiple-magnetosome-chain arrangements in MTB remain largely unknown. Here, we report that the MamK filaments from the uncultivated 'Candidatus Magnetobacterium casensis' (Mcas) within the phylum Nitrospirae polymerized in the presence of ATP alone and were stable without obvious ATP hydrolysis-mediated disassembly. MamK in Mcas can convert NTP to NDP and NDP to NMP, showing the highest preference to ATP. Unlike its Magnetospirillum counterparts, which form a single magnetosome chain, or other bacterial actins such as MreB and ParM, the polymerized MamK from Mcas is independent of metal ions and nucleotides except for ATP, and is assembled into well-ordered filamentous bundles consisted of multiple filaments. Our results suggest a dynamically stable assembly of MamK from the uncultivated Nitrospirae MTB that synthesizes multiple magnetosome chains per cell. These findings further improve the current knowledge of biomineralization and organelle biogenesis in prokaryotic systems.
Collapse
Affiliation(s)
- Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Nana Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaopeng Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinyun Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxin Pan
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
41
|
Naleway SE, Taylor JR, Porter MM, Meyers MA, McKittrick J. Structure and mechanical properties of selected protective systems in marine organisms. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:1143-1167. [DOI: 10.1016/j.msec.2015.10.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 12/18/2022]
|
42
|
Barber-Zucker S, Keren-Khadmy N, Zarivach R. From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci 2015; 25:338-51. [PMID: 26457474 DOI: 10.1002/pro.2827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) are a group of Gram-negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome-chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome-associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Noa Keren-Khadmy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
43
|
Prozorov T. Magnetic microbes: Bacterial magnetite biomineralization. Semin Cell Dev Biol 2015; 46:36-43. [DOI: 10.1016/j.semcdb.2015.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 11/27/2022]
|
44
|
Lefèvre CT, Bennet M, Landau L, Vach P, Pignol D, Bazylinski DA, Frankel RB, Klumpp S, Faivre D. Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys J 2015; 107:527-538. [PMID: 25028894 DOI: 10.1016/j.bpj.2014.05.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/21/2014] [Accepted: 05/29/2014] [Indexed: 11/15/2022] Open
Abstract
Microorganisms living in gradient environments affect large-scale processes, including the cycling of elements such as carbon, nitrogen or sulfur, the rates and fate of primary production, and the generation of climatically active gases. Aerotaxis is a common adaptation in organisms living in the oxygen gradients of stratified environments. Magnetotactic bacteria are such gradient-inhabiting organisms that have a specific type of aerotaxis that allows them to compete at the oxic-anoxic interface. They biomineralize magnetosomes, intracellular membrane-coated magnetic nanoparticles, that comprise a permanent magnetic dipole that causes the cells to align along magnetic field lines. The magnetic alignment enables them to efficiently migrate toward an optimal oxygen concentration in microaerobic niches. This phenomenon is known as magneto-aerotaxis. Magneto-aerotaxis has only been characterized in a limited number of available cultured strains. In this work, we characterize the magneto-aerotactic behavior of 12 magnetotactic bacteria with various morphologies, phylogenies, physiologies, and flagellar apparatus. We report six different magneto-aerotactic behaviors that can be described as a combination of three distinct mechanisms, including the reported (di-)polar, axial, and a previously undescribed mechanism we named unipolar. We implement a model suggesting that the three magneto-aerotactic mechanisms are related to distinct oxygen sensing mechanisms that regulate the direction of cells' motility in an oxygen gradient.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; CEA/CNRS/Aix-Marseille Université, UMR7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, France
| | - Mathieu Bennet
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Livnat Landau
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter Vach
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - David Pignol
- CEA/CNRS/Aix-Marseille Université, UMR7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, France
| | - Dennis A Bazylinski
- University of Nevada at Las Vegas, School of Life Sciences, Las Vegas, Nevada
| | - Richard B Frankel
- Department of Physics, California Polytechnic State University, San Luis Obispo, California
| | - Stefan Klumpp
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
45
|
Zeytuni N, Cronin S, Lefèvre CT, Arnoux P, Baran D, Shtein Z, Davidov G, Zarivach R. MamA as a Model Protein for Structure-Based Insight into the Evolutionary Origins of Magnetotactic Bacteria. PLoS One 2015; 10:e0130394. [PMID: 26114501 PMCID: PMC4482739 DOI: 10.1371/journal.pone.0130394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/20/2015] [Indexed: 02/01/2023] Open
Abstract
MamA is a highly conserved protein found in magnetotactic bacteria (MTB), a diverse group of prokaryotes capable of navigating according to magnetic fields – an ability known as magnetotaxis. Questions surround the acquisition of this magnetic navigation ability; namely, whether it arose through horizontal or vertical gene transfer. Though its exact function is unknown, MamA surrounds the magnetosome, the magnetic organelle embedding a biomineralised nanoparticle and responsible for magnetotaxis. Several structures for MamA from a variety of species have been determined and show a high degree of structural similarity. By determining the structure of MamA from Desulfovibrio magneticus RS-1 using X-ray crystallography, we have opened up the structure-sequence landscape. As such, this allows us to perform structural- and phylogenetic-based analyses using a variety of previously determined MamA from a diverse range of MTB species across various phylogenetic groups. We found that MamA has remained remarkably constant throughout evolution with minimal change between different taxa despite sequence variations. These findings, coupled with the generation of phylogenetic trees using both amino acid sequences and 16S rRNA, indicate that magnetotaxis likely did not spread via horizontal gene transfer and instead has a significantly earlier, primordial origin.
Collapse
Affiliation(s)
- Natalie Zeytuni
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Samuel Cronin
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Christopher T. Lefèvre
- CEA/CNRS/Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul les Durance, France
| | - Pascal Arnoux
- CEA/CNRS/Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul les Durance, France
| | - Dror Baran
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zvi Shtein
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
46
|
Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 2015; 39:203-21. [DOI: 10.1093/femsre/fuu011] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
47
|
Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity. mBio 2015; 6:e02286. [PMID: 25714711 PMCID: PMC4358019 DOI: 10.1128/mbio.02286-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Faithful replication of all structural features is a sine qua non condition for the success of bacterial reproduction by binary fission. For some species, a key challenge is to replicate and organize structures with multiple polarities. Polarly flagellated magnetotactic bacteria are the prime example of organisms dealing with such a dichotomy; they have the challenge of bequeathing two types of polarities to their daughter cells: magnetic and flagellar polarities. Indeed, these microorganisms align and move in the Earth’s magnetic field using an intracellular chain of nano-magnets that imparts a magnetic dipole to the cell. The paradox is that, after division occurs in cells, if the new flagellum is positioned opposite to the old pole devoid of a flagellum during cell division, the two daughter cells will have opposite magnetic polarities with respect to the positions of their flagella. Here we show that magnetotactic bacteria of the class Gammaproteobacteria pragmatically solve this problem by synthesizing a new flagellum at the division site. In addition, we model this particular structural inheritance during cell division. This finding opens up new questions regarding the molecular aspects of the new division mechanism, the way other polarly flagellated magnetotactic bacteria control the rotational direction of their flagella, and the positioning of organelles. Magnetotactic bacteria produce chains of magnetic nanoparticles that endow the cells with a magnetic dipole, a “compass” used for navigation. This feature, however, also drastically complicates cellular division in the case of polarly flagellated bacteria. In this case, the bacteria have to pass on to their daughter cells two types of cellular polarities simultaneously, their magnetic polarity and the polarity of their motility apparatus. We show here that magnetotactic bacteria of the Gammaproteobacteria class pragmatically solve this problem by synthesizing the new flagellum at the division site, a division scheme never observed so far in bacteria. Even though the molecular mechanisms behind this scheme cannot be resolved at the moment due to the lack of genetic tools, this discovery provides a new window into the organizational complexity of simple organisms.
Collapse
|
48
|
Magnetotactic bacteria as potential sources of bioproducts. Mar Drugs 2015; 13:389-430. [PMID: 25603340 PMCID: PMC4306944 DOI: 10.3390/md13010389] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce intracellular organelles called magnetosomes which are magnetic nanoparticles composed of magnetite (Fe3O4) or greigite (Fe3S4) enveloped by a lipid bilayer. The synthesis of a magnetosome is through a genetically controlled process in which the bacterium has control over the composition, direction of crystal growth, and the size and shape of the mineral crystal. As a result of this control, magnetosomes have narrow and uniform size ranges, relatively specific magnetic and crystalline properties, and an enveloping biological membrane. These features are not observed in magnetic particles produced abiotically and thus magnetosomes are of great interest in biotechnology. Most currently described MTB have been isolated from saline or brackish environments and the availability of their genomes has contributed to a better understanding and culturing of these fastidious microorganisms. Moreover, genome sequences have allowed researchers to study genes related to magnetosome production for the synthesis of magnetic particles for use in future commercial and medical applications. Here, we review the current information on the biology of MTB and apply, for the first time, a genome mining strategy on these microorganisms to search for secondary metabolite synthesis genes. More specifically, we discovered that the genome of the cultured MTB Magnetovibrio blakemorei, among other MTB, contains several metabolic pathways for the synthesis of secondary metabolites and other compounds, thereby raising the possibility of the co-production of new bioactive molecules along with magnetosomes by this species.
Collapse
|
49
|
Taoka A, Kondo J, Oestreicher Z, Fukumori Y. Characterization of uncultured giant rod-shaped magnetotactic Gammaproteobacteria from a freshwater pond in Kanazawa, Japan. Microbiology (Reading) 2014; 160:2226-2234. [DOI: 10.1099/mic.0.078717-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnetotactic bacteria (MTB) are widespread aquatic bacteria, and are a phylogenetically, physiologically and morphologically heterogeneous group, but they all have the ability to orientate and move along the geomagnetic field using intracellular magnetic organelles called magnetosomes. Isolation and cultivation of novel MTB are necessary for a comprehensive understanding of magnetosome formation and function in divergent MTB. In this study, we enriched a giant rod-shaped magnetotactic bacterium (strain GRS-1) from a freshwater pond in Kanazawa, Japan. Cells of strain GRS-1 were unusually large (~13×~8 µm). They swam in a helical trajectory towards the south pole of a bar magnet by means of a polar bundle of flagella. Another striking feature of GRS-1 was the presence of two distinct intracellular biomineralized structures: large electron-dense granules composed of calcium and long chains of magnetosomes that surround the large calcium granules. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that this strain belongs to the Gammaproteobacteria and represents a new genus of MTB.
Collapse
Affiliation(s)
- Azuma Taoka
- Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Junya Kondo
- Department of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Zachery Oestreicher
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yoshihiro Fukumori
- Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
50
|
Kolinko S, Richter M, Glöckner FO, Brachmann A, Schüler D. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:524-531. [PMID: 25079475 DOI: 10.1111/1758-2229.12198] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
For magnetic orientation, magnetotactic bacteria biosynthesize magnetosomes, which consist of membrane-enveloped magnetic nanocrystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). While magnetite formation is increasingly well understood, much less is known about the genetic control of greigite biomineralization. Recently, two related yet distinct sets of magnetosome genes were discovered in a cultivated magnetotactic deltaproteobacterium capable of synthesizing either magnetite or greigite, or both minerals. This led to the conclusion that greigite and magnetite magnetosomes are synthesized by separate biomineralization pathways. Although magnetosomes of both mineral types co-occurred in uncultured multicellular magnetotactic prokaryotes (MMPs), so far only one type of magnetosome genes could be identified in the available genome data. The MMP Candidatus Magnetomorum strain HK-1 from coastal tidal sand flats of the North Sea (Germany) was analysed by a targeted single-cell approach. The draft genome assembly resulted in a size of 14.3 Mb and an estimated completeness of 95%. In addition to genomic features consistent with a sulfate-reducing lifestyle, we identified numerous genes putatively involved in magnetosome biosynthesis. Remarkably, most mam orthologues were present in two paralogous copies with highest similarity to either magnetite or greigite type magnetosome genes, supporting the ability to synthesize magnetite and greigite magnetosomes.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Ludwig-Maximilians-Universität Munich, Microbiology, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|