1
|
Hoffmann J, Hogle S, Hiltunen T, Becks L. Temporal Changes in the Role of Species Sorting and Evolution Determine Community Dynamics. Ecol Lett 2025; 28:e70033. [PMID: 39737795 DOI: 10.1111/ele.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025]
Abstract
Evolutionary change within community members and shifts in species composition via species sorting contribute to community and trait dynamics. However, we do not understand when and how both processes contribute to community dynamics. Here, we estimated the contributions of species sorting and evolution over time (60 days) in bacterial communities of 24 species under selection by a ciliate predator. We found that species sorting contributed to increased community carrying capacity, while evolution contributed to decreased anti-predator defences. The relative roles of both processes changed over time, and our analysis indicates that if initial trait variation was in the direction of selection, species sorting prevailed, otherwise evolution drove phenotypic change. Furthermore, community composition, population densities and genomic evolution were affected by phenotypic match-mismatch combinations of predator and prey evolutionary history. Overall, our findings help to integrate when and how ecological and evolutionary processes structure communities.
Collapse
Affiliation(s)
- Julius Hoffmann
- Aquatic Ecology and Evolution, University of Konstanz, Konstanz, Germany
| | - Shane Hogle
- Department of Biology, University of Turku, Turku, Finland
| | - Teppo Hiltunen
- Department of Biology, University of Turku, Turku, Finland
| | - Lutz Becks
- Aquatic Ecology and Evolution, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Li M, Pommier T, Yin Y, Cao W, Zhang X, Hu J, Hautier Y, Yang T, Xu Y, Shen Q, Kowalchuk GA, Jousset A, Wei Z. Resource availability drives bacteria community resistance to pathogen invasion via altering bacterial pairwise interactions. Environ Microbiol 2022; 24:5680-5689. [PMID: 36053873 DOI: 10.1111/1462-2920.16184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Microbial interactions within resident communities are a major determinant of resistance to pathogen invasion. Yet, interactions vary with environmental conditions, raising the question of how community composition and environments interactively shape invasion resistance. Here, we use resource availability (RA) as a model parameter altering the resistance of model bacterial communities to invasion by the plant pathogenic bacterium Ralstonia solanacearum. We found that at high RA, interactions between resident bacterial species were mainly driven by the direct antagonism, in terms of the means of invader inhibition. Consequently, the competitive resident communities with a higher production of antibacterial were invaded to a lesser degree than facilitative communities. At low RA, bacteria produced little direct antagonist potential, but facilitative communities reached a relatively higher community productivity, which showed higher resistance to pathogen invasion than competitive communities with lower productivities. This framework may lay the basis to understand complex microbial interactions and biological invasion as modulated by the dynamic changes of environmental resource availability.
Collapse
Affiliation(s)
- Mei Li
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.,Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Yue Yin
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Wenhui Cao
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaohui Zhang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Hu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.,Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands.,UMR 6553 Ecobio, CNRS-University of Rennes, Rennes Cedex, France
| | - Yann Hautier
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - Tianjie Yang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yangchun Xu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qirong Shen
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - George A Kowalchuk
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - Alexandre Jousset
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhong Wei
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Microbial eco-evolutionary dynamics in the plant rhizosphere. Curr Opin Microbiol 2022; 68:102153. [DOI: 10.1016/j.mib.2022.102153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023]
|
4
|
Plum K, Tarkington J, Zufall RA. Experimental Evolution in Tetrahymena. Microorganisms 2022; 10:414. [PMID: 35208869 PMCID: PMC8877770 DOI: 10.3390/microorganisms10020414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Experimental evolution has provided novel insight into a wide array of biological processes. Species in the genus Tetrahymena are proving to be a highly useful system for studying a range of questions using experimental evolution. Their unusual genomic architecture, diversity of life history traits, importance as both predator and prey, and amenability to laboratory culture allow them to be studied in a variety of contexts. In this paper, we review what we are learning from experimental evolution with Tetrahymena about mutation, adaptation, and eco-evolutionary dynamics. We predict that future experimental evolution studies using Tetrahyemena will continue to shed new light on these processes.
Collapse
Affiliation(s)
- Karissa Plum
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Jason Tarkington
- Department of Genetics, Stanford University, Stanford, CA 94305, USA;
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
5
|
The genetic architecture underlying prey-dependent performance in a microbial predator. Nat Commun 2022; 13:319. [PMID: 35031602 PMCID: PMC8760311 DOI: 10.1038/s41467-021-27844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
Natural selection should favour generalist predators that outperform specialists across all prey types. Two genetic solutions could explain why intraspecific variation in predatory performance is, nonetheless, widespread: mutations beneficial on one prey type are costly on another (antagonistic pleiotropy), or mutational effects are prey-specific, which weakens selection, allowing variation to persist (relaxed selection). To understand the relative importance of these alternatives, we characterised natural variation in predatory performance in the microbial predator Dictyostelium discoideum. We found widespread nontransitive differences among strains in predatory success across different bacterial prey, which can facilitate stain coexistence in multi-prey environments. To understand the genetic basis, we developed methods for high throughput experimental evolution on different prey (REMI-seq). Most mutations (~77%) had prey-specific effects, with very few (~4%) showing antagonistic pleiotropy. This highlights the potential for prey-specific effects to dilute selection, which would inhibit the purging of variation and prevent the emergence of an optimal generalist predator. What prevents a generalist predator from evolving and outperforming specialist predators? By combing analyses of natural variation with experimental evolution, Stewart et al. suggest that predator variation persists because most mutations have prey-specific effects, which results in relaxed selection
Collapse
|
6
|
Garcia-Lopez E, Moreno A, Bartolomé M, Leunda M, Sancho C, Cid C. Glacial Ice Age Shapes Microbiome Composition in a Receding Southern European Glacier. Front Microbiol 2021; 12:714537. [PMID: 34867842 PMCID: PMC8636055 DOI: 10.3389/fmicb.2021.714537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Glaciers and their microbiomes are exceptional witnesses of the environmental conditions from remote times. Climate change is threatening mountain glaciers, and especially those found in southern Europe, such as the Monte Perdido Glacier (northern Spain, Central Pyrenees). This study focuses on the reconstruction of the history of microbial communities over time. The microorganisms that inhabit the Monte Perdido Glacier were identified using high-throughput sequencing, and the microbial communities were compared along an altitudinal transect covering most of the preserved ice sequence in the glacier. The results showed that the glacial ice age gradient did shape the diversity of microbial populations, which presented large differences throughout the last 2000 years. Variations in microbial community diversity were influenced by glacial conditions over time (nutrient concentration, chemical composition, and ice age). Some groups were exclusively identified in the oldest samples as the bacterial phyla Fusobacteria and Calditrichaeota, or the eukaryotic class Rhodophyceae. Among groups only found in modern samples, the green sulfur bacteria (phylum Chlorobi) stood out, as well as the bacterial phylum Gemmatimonadetes and the eukaryotic class Tubulinea. A patent impact of human contamination was also observed on the glacier microbiome. The oldest samples, corresponding to the Roman Empire times, were influenced by the beginning of mining exploitation in the Pyrenean area, with the presence of metal-tolerant microorganisms. The most recent samples comprise 600-year-old ancient ice in which current communities are living.
Collapse
Affiliation(s)
- Eva Garcia-Lopez
- Molecular Evolution Department, Centro de Astrobiologia (CSIC-INTA), Madrid, Spain
| | - Ana Moreno
- Departamento de Procesos Geoambientales y Cambio Global, Instituto Pirenaico de Ecología-CSIC, Zaragoza, Spain
| | - Miguel Bartolomé
- Departamento de Geología, Museo de Ciencias Naturales-CSIC, Madrid, Spain
| | - Maria Leunda
- Oeschger Centre for Climate Change Research, Institute of Plant Sciences, University of Bern, Bern, Switzerland.,Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carlos Sancho
- Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
| | - Cristina Cid
- Molecular Evolution Department, Centro de Astrobiologia (CSIC-INTA), Madrid, Spain
| |
Collapse
|
7
|
Bacteriophage: A Useful Tool for Studying Gut Bacteria Function of Housefly Larvae, Musca domestica. Microbiol Spectr 2021; 9:e0059921. [PMID: 34378967 PMCID: PMC8552782 DOI: 10.1128/spectrum.00599-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Beneficial symbiotic bacteria have positive effects on some insects’ (such as mosquitoes, cockroaches, and flies) biological activities. However, the effects of a lack of one specific symbiotic bacterium on the life activities of some insects and their natural gut microbiota composition remain unclear. Bacteriophages are viruses that specifically target and kill bacteria and have the potential to shape gut bacterial communities. In previous work, Pseudomonas aeruginosa that naturally colonized the intestines of housefly larvae was shown to be essential to protect housefly larvae from entomopathogenic fungal infections, leading us to test whether a deficiency in Pseudomonasaeruginosa strains in housefly larvae that was specifically caused using bacteriophages could remold the composition of the intestinal bacteria and affect the development of housefly larvae. Our research revealed that the phage, with a titer of 108 PFU/ml, can remove 90% of Pseudomonasaeruginosa in the gut. A single feeding of low-dose phage had no effect on the health of housefly larvae. However, the health of housefly larvae was affected by treatment with phage every 24 h. Additionally, treating housefly larvae with bacteriophages every 24 h led to bacterial composition changes in the gut. Collectively, the results revealed that deficiency in one symbiotic gut bacteria mediated by precise targeting using bacteriophages indirectly influences the intestinal microbial composition of housefly larvae and has negative effects on the development of the host insect. Our results indicated the important role of symbiotic gut bacteria in shaping the normal gut microbiota composition in insects. IMPORTANCE The well-balanced gut microbiota ensures appropriate development of the host insect, such as mosquitoes, cockroaches, and flies. Various intestinal symbiotic bacteria have different influences on the host gut community structure and thus exert different effects on host health. Therefore, it is of great importance to understand the contributions of one specific bacterial symbiont to the gut microbiota community structure and insect health. Bacteriophages that target certain bacteria are effective tools that can be used to analyze gut bacterial symbionts. However, experimental evidence for phage efficacy in regulating insect intestinal bacteria has been little reported. In this study, we used phages as precision tools to regulate a bacterial community and analyzed the influence on host health after certain bacteria were inhibited by bacteriophage. The ability of phages to target intestinal-specific bacteria in housefly larvae and reduce the levels of target bacteria makes them an effective tool for studying the function of gut bacteria.
Collapse
|
8
|
Robinson KE, Holding ML, Whitford MD, Saviola AJ, Yates JR, Clark RW. Phenotypic and functional variation in venom and venom resistance of two sympatric rattlesnakes and their prey. J Evol Biol 2021; 34:1447-1465. [PMID: 34322920 DOI: 10.1111/jeb.13907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Predator-prey interactions often lead to the coevolution of adaptations associated with avoiding predation and, for predators, overcoming those defences. Antagonistic coevolutionary relationships are often not simple interactions between a single predator and prey but rather a complex web of interactions between multiple coexisting species. Coevolution between venomous rattlesnakes and small mammals has led to physiological venom resistance in several mammalian taxa. In general, viperid venoms contain large quantities of snake venom metalloproteinase toxins (SVMPs), which are inactivated by SVMP inhibitors expressed in resistant mammals. We explored variation in venom chemistry, SVMP expression, and SVMP resistance across four co-distributed species (California Ground Squirrels, Bryant's Woodrats, Southern Pacific Rattlesnakes, and Red Diamond Rattlesnakes) collected from four different populations in Southern California. Our aim was to understand phenotypic and functional variation in venom and venom resistance in order to compare coevolutionary dynamics of a system involving two sympatric predator-prey pairs to past studies that have focused on single pairs. Proteomic analysis of venoms indicated that these rattlesnakes express different phenotypes when in sympatry, with Red Diamonds expressing more typical viperid venom (with a diversity of SVMPs) and Southern Pacifics expressing a more atypical venom with a broader range of non-enzymatic toxins. We also found that although blood sera from both mammals were generally able to inhibit SVMPs from both rattlesnake species, inhibition depended strongly on the snake population, with snakes from one geographic site expressing SVMPs to which few mammals were resistant. Additionally, we found that Red Diamond venom, rather than woodrat resistance, was locally adapted. Our findings highlight the complexity of coevolutionary relationships between multiple predators and prey that exhibit similar offensive and defensive strategies in sympatry.
Collapse
Affiliation(s)
- Kelly E Robinson
- Department of Biology, San Diego State University, San Diego, CA, USA.,Department of Biology, University of Nevada, Reno, NV, USA.,Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| | - Matthew L Holding
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA.,Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Malachi D Whitford
- Department of Biology, San Diego State University, San Diego, CA, USA.,Ecology Graduate Group, University of California, Davis, CA, USA
| | - Anthony J Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rulon W Clark
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
9
|
Govaert L, Altermatt F, De Meester L, Leibold MA, McPeek MA, Pantel JH, Urban MC. Integrating fundamental processes to understand eco‐evolutionary community dynamics and patterns. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- URPP Global Change and BiodiversityUniversity of Zurich Zurich Switzerland
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- URPP Global Change and BiodiversityUniversity of Zurich Zurich Switzerland
| | - Luc De Meester
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Institute of Biology Freie Universität Berlin Berlin Germany
| | | | - Mark A. McPeek
- Department of Biological Sciences Dartmouth College Hanover NH USA
| | - Jelena H. Pantel
- Department of Computer Science, Mathematics, and Environmental Science The American University of Paris Paris France
| | - Mark C. Urban
- Center of Biological Risk and Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| |
Collapse
|
10
|
Karakoç C, Clark AT, Chatzinotas A. Diversity and coexistence are influenced by time-dependent species interactions in a predator-prey system. Ecol Lett 2020; 23:983-993. [PMID: 32243074 DOI: 10.1111/ele.13500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 02/23/2020] [Indexed: 12/17/2022]
Abstract
Although numerous studies show that communities are jointly influenced by predation and competitive interactions, few have resolved how temporal variability in these interactions influences community assembly and stability. Here, we addressed this challenge in experimental microbial microcosms by employing empirical dynamic modelling tools to: (1) detect causal interactions between prey species in the absence and presence of a predator; (2) quantify the time-varying strength of these interactions and (3) explore stability in the resulting communities. Our findings show that predators boost the number of causal interactions among community members, and lead to reduced dynamic stability, but higher coexistence among prey species. These results correspond to time-varying changes in species interactions, including emergence of morphological characteristics that appeared to reduce predation, and indirectly facilitate growth of predator-susceptible species. Jointly, our findings suggest that careful consideration of both context and time may be necessary to predict and explain outcomes in multi-trophic systems.
Collapse
Affiliation(s)
- Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Adam Thomas Clark
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,Synthesis Centre for Biodiversity Sciences (sDiv), Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Talstrasse 33, 04103, Leipzig, Germany
| |
Collapse
|
11
|
Wang X, Wei Z, Yang K, Wang J, Jousset A, Xu Y, Shen Q, Friman VP. Phage combination therapies for bacterial wilt disease in tomato. Nat Biotechnol 2019; 37:1513-1520. [PMID: 31792408 DOI: 10.1038/s41587-019-0328-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022]
Abstract
Bacteriophages have been proposed as an alternative to pesticides to kill bacterial pathogens of crops. However, the efficacy of phage biocontrol is variable and poorly understood in natural rhizosphere microbiomes. We studied biocontrol efficacy of different phage combinations on Ralstonia solanacearum infection in tomato. Increasing the number of phages in combinations decreased the incidence of disease by up to 80% in greenhouse and field experiments during a single crop season. The decreased incidence of disease was explained by a reduction in pathogen density and the selection for phage-resistant but slow-growing pathogen strains, together with enrichment for bacterial species that were antagonistic toward R. solanacearum. Phage treatment did not affect the existing rhizosphere microbiota. Specific phage combinations have potential as precision tools to control plant pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.
| | - Keming Yang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jianing Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.,Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, the Netherlands
| | - Yangchun Xu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.
| | - Ville-Petri Friman
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
12
|
McClean D, Friman V, Finn A, Salzberg LI, Donohue I. Coping with multiple enemies: pairwise interactions do not predict evolutionary change in complex multitrophic communities. OIKOS 2019. [DOI: 10.1111/oik.06586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Deirdre McClean
- Centre for Immunity, Infection and Evolution, Univ. of Edinburgh Edinburgh UK
- Centre for Synthetic and Systems Biology, School of Biological Sciences Univ. of Edinburgh Edinburgh UK
| | | | - Alain Finn
- Dept of Zoology, School of Natural Sciences, Trinity College Dublin Ireland
| | - Letal I. Salzberg
- Smurfit Inst. of Genetics, School of Genetics and Microbiology, Trinity College Dublin Ireland
| | - Ian Donohue
- Dept of Zoology, School of Natural Sciences, Trinity College Dublin Ireland
| |
Collapse
|
13
|
Canino-Koning R, Wiser MJ, Ofria C. Fluctuating environments select for short-term phenotypic variation leading to long-term exploration. PLoS Comput Biol 2019; 15:e1006445. [PMID: 31002665 PMCID: PMC6474582 DOI: 10.1371/journal.pcbi.1006445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Genetic spaces are often described in terms of fitness landscapes or genotype-to-phenotype maps, where each genetic sequence is associated with phenotypic properties and linked to other genotypes that are a single mutational step away. The positions close to a genotype make up its "mutational landscape" and, in aggregate, determine the short-term evolutionary potential of a population. Populations with wider ranges of phenotypes in their mutational neighborhood are known to be more evolvable. Likewise, those with fewer phenotypic changes available in their local neighborhoods are more mutationally robust. Here, we examine whether forces that change the distribution of phenotypes available by mutation profoundly alter subsequent evolutionary dynamics. We compare evolved populations of digital organisms that were subject to either static or cyclically-changing environments. For each of these, we examine diversity of the phenotypes that are produced through mutations in order to characterize the local genotype-phenotype map. We demonstrate that environmental change can push populations toward more evolvable mutational landscapes where many alternate phenotypes are available, though purely deleterious mutations remain suppressed. Further, we show that populations in environments with harsh changes switch phenotypes more readily than those in environments with more benign changes. We trace this effect to repeated population bottlenecks in the harsh environments, which result in shorter coalescence times and keep populations in regions of the mutational landscape where the phenotypic shifts in question are more likely to occur. Typically, static environments select solely for immediate optimization, at the expensive of long-term evolvability. In contrast, we show that with changing environments, short-term pressures to deal with immediate challenges can align with long-term pressures to explore a more productive portion of the mutational landscape.
Collapse
Affiliation(s)
- Rosangela Canino-Koning
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA
| | - Michael J. Wiser
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA
| | - Charles Ofria
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, Shen JP, Wei WX, Fang YT, Li PP, Zhang LM. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. MICROBIOME 2019; 7:33. [PMID: 30813951 PMCID: PMC6393985 DOI: 10.1186/s40168-019-0647-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Agricultural food production is at the base of food and fodder, with fertilization having fundamentally and continuously increased crop yield over the last decades. The performance of crops is intimately tied to their microbiome as they together form holobionts. The importance of the microbiome for plant performance is, however, notoriously ignored in agricultural systems as fertilization disconnects the dependency of plants for often plant-beneficial microbial processes. Moreover, we lack a holistic understanding of how fertilization regimes affect the soil microbiome. Here, we examined the effect of a 2-year fertilization regime (no nitrogen fertilization control, nitrogen fertilization, and nitrogen fertilization plus straw amendment) on entire soil microbiomes (bacteria, fungi, and protist) in three common agricultural soil types cropped with maize in two seasons. RESULTS We found that the application of nitrogen fertilizers more strongly affected protist than bacterial and fungal communities. Nitrogen fertilization indirectly reduced protist diversity through changing abiotic properties and bacterial and fungal communities which differed between soil types and sampling seasons. Nitrogen fertilizer plus straw amendment had greater effects on soil physicochemical properties and microbiome diversity than nitrogen addition alone. Moreover, nitrogen fertilization, even more together with straw, increased soil microbiome network complexity, suggesting that the application of nitrogen fertilizers tightened soil microbiomes interactions. CONCLUSIONS Together, our results suggest that protists are the most susceptible microbiome component to the application of nitrogen fertilizers. As protist communities also exhibit the strongest seasonal dynamics, they serve as the most sensitive bioindicators of soil changes. Changes in protist communities might have long-term effects if some of the key protist hubs that govern microbiome complexities as top microbiome predators are altered. This study serves as the stepping stone to promote protists as promising agents in targeted microbiome engineering to help in reducing the dependency on exogenous unsustainably high fertilization and pesticide applications.
Collapse
Affiliation(s)
- Zhi-Bo Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology NIOO-KNAW, 6708 PB, Wageningen, The Netherlands.
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xue Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yun-Ting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Pei-Pei Li
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Li M, Wei Z, Wang J, Jousset A, Friman VP, Xu Y, Shen Q, Pommier T. Facilitation promotes invasions in plant-associated microbial communities. Ecol Lett 2018; 22:149-158. [PMID: 30460736 DOI: 10.1111/ele.13177] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/12/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
Abstract
While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant-pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.
Collapse
Affiliation(s)
- Mei Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jianing Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, China.,Institute for Environmental Biology, Ecology& Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ville-Petri Friman
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, China.,Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095, Nanjing, China
| | - Thomas Pommier
- Ecologie Microbienne, UMR1418, French National Institute for Agricultural Research (INRA), University Lyon I, F-69622, Villeurbanne, France
| |
Collapse
|
16
|
Hiltunen T, Kaitala V, Laakso J, Becks L. Evolutionary contribution to coexistence of competitors in microbial food webs. Proc Biol Sci 2018; 284:rspb.2017.0415. [PMID: 29021178 DOI: 10.1098/rspb.2017.0415] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/08/2017] [Indexed: 11/12/2022] Open
Abstract
The theory of species coexistence is a key concept in ecology that has received much attention. The role of rapid evolution for determining species coexistence is still poorly understood although evolutionary change on ecological time-scales has the potential to change almost any ecological process. The influence of evolution on coexistence can be especially pronounced in microbial communities where organisms often have large population sizes and short generation times. Previous work on coexistence has assumed that traits involved in resource use and species interactions are constant or change very slowly in terms of ecological time-scales. However, recent work suggests that these traits can evolve rapidly. Nevertheless, the importance of rapid evolution to coexistence has not been tested experimentally. Here, we show how rapid evolution alters the frequency of two bacterial competitors over time when grown together with specialist consumers (bacteriophages), a generalist consumer (protozoan) and all in combination. We find that consumers facilitate coexistence in a manner consistent with classic ecological theory. However, through disentangling the relative contributions of ecology (changes in consumer abundance) and evolution (changes in traits mediating species interactions) on the frequency of the two competitors over time, we find differences between the consumer types and combinations. Overall, our results indicate that the influence of evolution on species coexistence strongly depends on the traits and species interactions considered.
Collapse
Affiliation(s)
- Teppo Hiltunen
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Veijo Kaitala
- Department of Biosciences/Ecology and Evolutionary biology, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Jouni Laakso
- Department of Biosciences/Ecology and Evolutionary biology, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Lutz Becks
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Community Dynamics Group, August Thienemann Str. 2, 24306 Plön, Germany
| |
Collapse
|
17
|
Madsen JS, Sørensen SJ, Burmølle M. Bacterial social interactions and the emergence of community-intrinsic properties. Curr Opin Microbiol 2017; 42:104-109. [PMID: 29197823 DOI: 10.1016/j.mib.2017.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 02/04/2023]
Abstract
Bacterial communities are dominated and shaped by social interactions, which facilitate the emergence of properties observed only in the community setting. Such community-intrinsic properties impact not only the phenotypes of cells in a community, but also community composition and function, and are thus likely to affect a potential host. Studying community-intrinsic properties is, therefore, important for furthering our understanding of clinical, applied and environmental microbiology. Here, we provide recent examples of research investigating community-intrinsic properties, focusing mainly on community composition and interactions in multispecies biofilms. We hereby wish to emphasize the importance of studying social interactions in settings where community-intrinsic properties are likely to emerge.
Collapse
Affiliation(s)
| | | | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Seiler C, van Velzen E, Neu TR, Gaedke U, Berendonk TU, Weitere M. Grazing resistance of bacterial biofilms: a matter of predators’ feeding trait. FEMS Microbiol Ecol 2017; 93:4107106. [DOI: 10.1093/femsec/fix112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/05/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Claudia Seiler
- Helmholtz Centre for Environmental Research – UFZ, Department of River Ecology, 39114 Magdeburg, Germany
| | - Ellen van Velzen
- Department of Ecology and Ecosystem Modelling, University of Potsdam, 14469 Potsdam, Germany
| | - Thomas R. Neu
- Helmholtz Centre for Environmental Research – UFZ, Department of River Ecology, 39114 Magdeburg, Germany
| | - Ursula Gaedke
- Department of Ecology and Ecosystem Modelling, University of Potsdam, 14469 Potsdam, Germany
| | - Thomas U. Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, 01062 Dresden, Germany
| | - Markus Weitere
- Helmholtz Centre for Environmental Research – UFZ, Department of River Ecology, 39114 Magdeburg, Germany
| |
Collapse
|
19
|
Cairns J, Frickel J, Jalasvuori M, Hiltunen T, Becks L. Genomic evolution of bacterial populations under coselection by antibiotics and phage. Mol Ecol 2017; 26:1848-1859. [DOI: 10.1111/mec.13950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Johannes Cairns
- Department of Food and Environmental Sciences / Microbiology and Biotechnology; University of Helsinki; P.O. Box 65 00014 Helsinki Finland
| | - Jens Frickel
- Department of Evolutionary Ecology / Community Dynamics Group; Max Planck Institute for Evolutionary Biology; August Thienemann Street 2 24306 Plön Germany
| | - Matti Jalasvuori
- Department of Biological and Environmental Science / Centre of Excellence in Biological Interactions; University of Jyväskylä; P.O. Box 35 Jyväskylä 40014 Finland
| | - Teppo Hiltunen
- Department of Food and Environmental Sciences / Microbiology and Biotechnology; University of Helsinki; P.O. Box 65 00014 Helsinki Finland
| | - Lutz Becks
- Department of Evolutionary Ecology / Community Dynamics Group; Max Planck Institute for Evolutionary Biology; August Thienemann Street 2 24306 Plön Germany
| |
Collapse
|
20
|
Host and Parasite Evolution in a Tangled Bank. Trends Parasitol 2016; 32:863-873. [PMID: 27599631 DOI: 10.1016/j.pt.2016.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023]
Abstract
Most hosts and parasites exist in diverse communities wherein they interact with other species, spanning the parasite-mutualist continuum. These additional interactions have the potential to impose selection on hosts and parasites and influence the patterns and processes of their evolution. Yet, host-parasite interactions are almost exclusively studied in species pairs. A wave of new research has incorporated a multispecies community context, showing that additional ecological interactions can alter components of host and parasite fitness, as well as interaction specificity and virulence. Here, we synthesize these findings to assess the effects of increased species diversity on the patterns and processes of host and parasite evolution. We argue that our understanding of host-parasite interactions would benefit from a richer biotic perspective.
Collapse
|