1
|
León-Sobrino C, Ramond JB, Coclet C, Kapitango RM, Maggs-Kölling G, Cowan D. Temporal dynamics of microbial transcription in wetted hyperarid desert soils. FEMS Microbiol Ecol 2024; 100:fiae009. [PMID: 38299778 PMCID: PMC10913055 DOI: 10.1093/femsec/fiae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024] Open
Abstract
Rainfall is rare in hyperarid deserts but, when it occurs, it triggers large biological responses essential for the long-term maintenance of the ecosystem. In drylands, microbes play major roles in nutrient cycling, but their responses to short-lived opportunity windows are poorly understood. Due to its ephemeral nature, mRNA is ideally suited to study microbiome dynamics upon abrupt changes in the environment. We analyzed microbial community transcriptomes after simulated rainfall in a Namib Desert soil over 7 days. Using total mRNA from dry and watered plots we infer short-term functional responses in the microbiome. A rapid two-phase cycle of activation and return to basal state was completed in a short period. Motility systems activated immediately, whereas competition-toxicity increased in parallel to predator taxa and the drying of soils. Carbon fixation systems were downregulated, and reactivated upon return to a near-dry state. The chaperone HSP20 was markedly regulated by watering across all major bacteria, suggesting a particularly important role in adaptation to desiccated ecosystems. We show that transcriptomes provide consistent and high resolution information on microbiome processes in a low-biomass environment, revealing shared patterns across taxa. We propose a structured dispersal-predation dynamic as a central driver of desert microbial responses to rainfall.
Collapse
Affiliation(s)
- Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- Extreme Ecosystem Microbiomics and Ecogenomics (E²ME) Lab., Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clément Coclet
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| | | | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| |
Collapse
|
2
|
Tsiola A, Michoud G, Daffonchio D, Fodelianakis S, Giannakourou A, Malliarakis D, Pavlidou A, Pitta E, Psarra S, Santi I, Zeri C, Pitta P. Depth-driven patterns in lytic viral diversity, auxiliary metabolic gene content, and productivity in offshore oligotrophic waters. Front Microbiol 2023; 14:1271535. [PMID: 38029212 PMCID: PMC10653327 DOI: 10.3389/fmicb.2023.1271535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Marine viruses regulate microbial population dynamics and biogeochemical cycling in the oceans. The ability of viruses to manipulate hosts' metabolism through the expression of viral auxiliary metabolic genes (AMGs) was recently highlighted, having important implications in energy production and flow in various aquatic environments. Up to now, the presence and diversity of viral AMGs is studied using -omics data, and rarely using quantitative measures of viral activity alongside. Methods In the present study, four depth layers (5, 50, 75, and 1,000 m) with discrete hydrographic features were sampled in the Eastern Mediterranean Sea; we studied lytic viral community composition and AMG content through metagenomics, and lytic production rates through the viral reduction approach in the ultra-oligotrophic Levantine basin where knowledge regarding viral actions is rather limited. Results and Discussion Our results demonstrate depth-dependent patterns in viral diversity and AMG content, related to differences in temperature, nutrients availability, and host bacterial productivity and abundance. Although lytic viral production rates were similar along the water column, the virus-to-bacteria ratio was higher and the particular set of AMGs was more diverse in the bathypelagic (1,000 m) than the shallow epipelagic (5, 50, and 75 m) layers, revealing that the quantitative effect of viruses on their hosts may be the same along the water column through the intervention of different AMGs. In the resource- and energy-limited bathypelagic waters of the Eastern Mediterranean, the detected AMGs could divert hosts' metabolism toward energy production, through a boost in gluconeogenesis, fatty-acid and glycan biosynthesis and metabolism, and sulfur relay. Near the deep-chlorophyll maximum depth, an exceptionally high percentage of AMGs related to photosynthesis was noticed. Taken together our findings suggest that the roles of viruses in the deep sea might be even more important than previously thought as they seem to orchestrate energy acquisition and microbial community dynamics, and thus, biogeochemical turnover in the oceans.
Collapse
Affiliation(s)
- Anastasia Tsiola
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stilianos Fodelianakis
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Antonia Giannakourou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | | | - Alexandra Pavlidou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | - Elli Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | - Stella Psarra
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| | - Ioulia Santi
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| | - Christina Zeri
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| |
Collapse
|
3
|
Ritsch M, Cassman NA, Saghaei S, Marz M. Navigating the Landscape: A Comprehensive Review of Current Virus Databases. Viruses 2023; 15:1834. [PMID: 37766241 PMCID: PMC10537806 DOI: 10.3390/v15091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses are abundant and diverse entities that have important roles in public health, ecology, and agriculture. The identification and surveillance of viruses rely on an understanding of their genome organization, sequences, and replication strategy. Despite technological advancements in sequencing methods, our current understanding of virus diversity remains incomplete, highlighting the need to explore undiscovered viruses. Virus databases play a crucial role in providing access to sequences, annotations and other metadata, and analysis tools for studying viruses. However, there has not been a comprehensive review of virus databases in the last five years. This study aimed to fill this gap by identifying 24 active virus databases and included an extensive evaluation of their content, functionality and compliance with the FAIR principles. In this study, we thoroughly assessed the search capabilities of five database catalogs, which serve as comprehensive repositories housing a diverse array of databases and offering essential metadata. Moreover, we conducted a comprehensive review of different types of errors, encompassing taxonomy, names, missing information, sequences, sequence orientation, and chimeric sequences, with the intention of empowering users to effectively tackle these challenges. We expect this review to aid users in selecting suitable virus databases and other resources, and to help databases in error management and improve their adherence to the FAIR principles. The databases listed here represent the current knowledge of viruses and will help aid users find databases of interest based on content, functionality, and scope. The use of virus databases is integral to gaining new insights into the biology, evolution, and transmission of viruses, and developing new strategies to manage virus outbreaks and preserve global health.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Noriko A. Cassman
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Shahram Saghaei
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
4
|
Vik D, Bolduc B, Roux S, Sun CL, Pratama AA, Krupovic M, Sullivan MB. MArVD2: a machine learning enhanced tool to discriminate between archaeal and bacterial viruses in viral datasets. ISME COMMUNICATIONS 2023; 3:87. [PMID: 37620369 PMCID: PMC10449787 DOI: 10.1038/s43705-023-00295-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Our knowledge of viral sequence space has exploded with advancing sequencing technologies and large-scale sampling and analytical efforts. Though archaea are important and abundant prokaryotes in many systems, our knowledge of archaeal viruses outside of extreme environments is limited. This largely stems from the lack of a robust, high-throughput, and systematic way to distinguish between bacterial and archaeal viruses in datasets of curated viruses. Here we upgrade our prior text-based tool (MArVD) via training and testing a random forest machine learning algorithm against a newly curated dataset of archaeal viruses. After optimization, MArVD2 presented a significant improvement over its predecessor in terms of scalability, usability, and flexibility, and will allow user-defined custom training datasets as archaeal virus discovery progresses. Benchmarking showed that a model trained with viral sequences from the hypersaline, marine, and hot spring environments correctly classified 85% of the archaeal viruses with a false detection rate below 2% using a random forest prediction threshold of 80% in a separate benchmarking dataset from the same habitats.
Collapse
Affiliation(s)
- Dean Vik
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christine L Sun
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Paris, France
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Zhong ZP, Vik D, Rapp JZ, Zablocki O, Maughan H, Temperton B, Deming JW, Sullivan MB. Lower viral evolutionary pressure under stable versus fluctuating conditions in subzero Arctic brines. MICROBIOME 2023; 11:174. [PMID: 37550784 PMCID: PMC10405475 DOI: 10.1186/s40168-023-01619-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Climate change threatens Earth's ice-based ecosystems which currently offer archives and eco-evolutionary experiments in the extreme. Arctic cryopeg brine (marine-derived, within permafrost) and sea ice brine, similar in subzero temperature and high salinity but different in temporal stability, are inhabited by microbes adapted to these extreme conditions. However, little is known about their viruses (community composition, diversity, interaction with hosts, or evolution) or how they might respond to geologically stable cryopeg versus fluctuating sea ice conditions. RESULTS We used long- and short-read viromics and metatranscriptomics to study viruses in Arctic cryopeg brine, sea ice brine, and underlying seawater, recovering 11,088 vOTUs (~species-level taxonomic unit), a 4.4-fold increase of known viruses in these brines. More specifically, the long-read-powered viromes doubled the number of longer (≥25 kb) vOTUs generated and recovered more hypervariable regions by >5-fold compared to short-read viromes. Distribution assessment, by comparing to known viruses in public databases, supported that cryopeg brine viruses were of marine origin yet distinct from either sea ice brine or seawater viruses, while 94% of sea ice brine viruses were also present in seawater. A virus-encoded, ecologically important exopolysaccharide biosynthesis gene was identified, and many viruses (~half of metatranscriptome-inferred "active" vOTUs) were predicted as actively infecting the dominant microbial genera Marinobacter and Polaribacter in cryopeg and sea ice brines, respectively. Evolutionarily, microdiversity (intra-species genetic variations) analyses suggested that viruses within the stable cryopeg brine were under significantly lower evolutionary pressures than those in the fluctuating sea ice environment, while many sea ice brine virus-tail genes were under positive selection, indicating virus-host co-evolutionary arms races. CONCLUSIONS Our results confirmed the benefits of long-read-powered viromics in understanding the environmental virosphere through significantly improved genomic recovery, expanding viral discovery and the potential for biological inference. Evidence of viruses actively infecting the dominant microbes in subzero brines and modulating host metabolism underscored the potential impact of viruses on these remote and underexplored extreme ecosystems. Microdiversity results shed light on different strategies viruses use to evolve and adapt when extreme conditions are stable versus fluctuating. Together, these findings verify the value of long-read-powered viromics and provide foundational data on viral evolution and virus-microbe interactions in Earth's destabilized and rapidly disappearing cryosphere. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Dean Vik
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Josephine Z Rapp
- Department of Biology, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, Devon, UK
| | - Jody W Deming
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, USA.
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Rangel-Pineros G, Almeida A, Beracochea M, Sakharova E, Marz M, Reyes Muñoz A, Hölzer M, Finn RD. VIRify: An integrated detection, annotation and taxonomic classification pipeline using virus-specific protein profile hidden Markov models. PLoS Comput Biol 2023; 19:e1011422. [PMID: 37639475 PMCID: PMC10491390 DOI: 10.1371/journal.pcbi.1011422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 09/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
The study of viral communities has revealed the enormous diversity and impact these biological entities have on various ecosystems. These observations have sparked widespread interest in developing computational strategies that support the comprehensive characterisation of viral communities based on sequencing data. Here we introduce VIRify, a new computational pipeline designed to provide a user-friendly and accurate functional and taxonomic characterisation of viral communities. VIRify identifies viral contigs and prophages from metagenomic assemblies and annotates them using a collection of viral profile hidden Markov models (HMMs). These include our manually-curated profile HMMs, which serve as specific taxonomic markers for a wide range of prokaryotic and eukaryotic viral taxa and are thus used to reliably classify viral contigs. We tested VIRify on assemblies from two microbial mock communities, a large metagenomics study, and a collection of publicly available viral genomic sequences from the human gut. The results showed that VIRify could identify sequences from both prokaryotic and eukaryotic viruses, and provided taxonomic classifications from the genus to the family rank with an average accuracy of 86.6%. In addition, VIRify allowed the detection and taxonomic classification of a range of prokaryotic and eukaryotic viruses present in 243 marine metagenomic assemblies. Finally, the use of VIRify led to a large expansion in the number of taxonomically classified human gut viral sequences and the improvement of outdated and shallow taxonomic classifications. Overall, we demonstrate that VIRify is a novel and powerful resource that offers an enhanced capability to detect a broad range of viral contigs and taxonomically classify them.
Collapse
Affiliation(s)
- Guillermo Rangel-Pineros
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Alexandre Almeida
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin Beracochea
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ekaterina Sakharova
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Manja Marz
- RNA Bioinformatics, Friedrich Schiller University, Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Jena, Germany
| | - Alejandro Reyes Muñoz
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
| | - Martin Hölzer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- European Virus Bioinformatics Center, Friedrich Schiller University, Jena, Germany
- Methodology and Research Infrastructure, Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | - Robert D. Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
7
|
Fan X, Ji M, Sun K, Li Q. Microbial and phage communities as well as their interaction in PO saponification wastewater treatment systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:354-365. [PMID: 36706286 DOI: 10.2166/wst.2022.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viruses or phages were considered affecting microbial community composition, metabolic process, and biogeochemical cycles. However, phage communities and their potential associations with microbial community are not well understood in the activated sludge (AS) of wastewater treatment plants (WWTPs). In this study, we explored the interactions between phages and microbial community by using propylene oxide (PO) saponification WWTPs as an example. Bacterial, eukaryal and archaeal communities were investigated and 34 phage contigs (>10 kb) were recovered from PO saponification WWTPs. At least 3 complete phage genomes were assembled. In all 34 phages, 21 of them have been predicted to their host. The association network analysis showed that abundant phages were associated with abundant microorganisms. This result conformed to Kill-the-Winner model. Notably, 45 auxiliary metabolic genes (AMGs) were identified from phage genomes (including small contig fragments). They influenced bacterial metabolism through facilitating phages replication and avoiding host death. Collectively, our results suggested that phage community affect microbial community and metabolic pathways by killing their hosts and AMGs transfer in AS of PO saponification WWTPs.
Collapse
Affiliation(s)
- Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China E-mail:
| | - Mengzhi Ji
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China E-mail:
| | - Kaili Sun
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China E-mail:
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China E-mail:
| |
Collapse
|
8
|
Fujimoto K, Miyaoka D, Uematsu S. Characterization of the human gut virome in metabolic and autoimmune diseases. Inflamm Regen 2022; 42:32. [PMID: 36316749 PMCID: PMC9623931 DOI: 10.1186/s41232-022-00218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
The intestinal microbiome is dominated by bacteria and plays a pivotal role in the occurrence and development of disease, including several metabolic and autoimmune disorders. While intestinal viral communities, primarily made up of bacteriophages, are also thought to play a role in disease pathogenesis in the gastrointestinal tract, they have received much less attention than intestinal bacteria. Thus, there is limited information about the relationship between bacteriophages and disease. This review explores a potential role for the intestinal viral microbiome in various metabolic and autoimmune diseases.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan
| | - Daichi Miyaoka
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XCollaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
9
|
Li J, George Markowitz RH, Brooks AW, Mallott EK, Leigh BA, Olszewski T, Zare H, Bagheri M, Smith HM, Friese KA, Habibi I, Lawrence WM, Rost CL, Lédeczi Á, Eeds AM, Ferguson JF, Silver HJ, Bordenstein SR. Individuality and ethnicity eclipse a short-term dietary intervention in shaping microbiomes and viromes. PLoS Biol 2022; 20:e3001758. [PMID: 35998206 PMCID: PMC9397868 DOI: 10.1371/journal.pbio.3001758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.
Collapse
Affiliation(s)
- Junhui Li
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert H George Markowitz
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Andrew W Brooks
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Stanford University Genetics Department, Stanford University, Palo Alto, California, United States of America
| | - Elizabeth K Mallott
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brittany A Leigh
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Timothy Olszewski
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
| | - Hamid Zare
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Software Integrated Systems, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Minoo Bagheri
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Holly M Smith
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Katie A Friese
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
| | - Ismail Habibi
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - William M Lawrence
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Charlie L Rost
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ákos Lédeczi
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Software Integrated Systems, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Angela M Eeds
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- School for Science and Math at Vanderbilt, Collaborative for STEM Education and Outreach, Department of Teaching and Learning, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jane F Ferguson
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Heidi J Silver
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, United States of America
| | - Seth R Bordenstein
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
10
|
Rosario K, Van Bogaert N, López-Figueroa NB, Paliogiannis H, Kerr M, Breitbart M. Freshwater macrophytes harbor viruses representing all five major phyla of the RNA viral kingdom Orthornavirae. PeerJ 2022; 10:e13875. [PMID: 35990902 PMCID: PMC9390326 DOI: 10.7717/peerj.13875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Research on aquatic plant viruses is lagging behind that of their terrestrial counterparts. To address this knowledge gap, here we identified viruses associated with freshwater macrophytes, a taxonomically diverse group of aquatic phototrophs that are visible with the naked eye. We surveyed pooled macrophyte samples collected at four spring sites in Florida, USA through next generation sequencing of RNA extracted from purified viral particles. Sequencing efforts resulted in the detection of 156 freshwater macrophyte associated (FMA) viral contigs, 37 of which approximate complete genomes or segments. FMA viral contigs represent putative members from all five major phyla of the RNA viral kingdom Orthornavirae. Similar to viral types found in land plants, viral sequences identified in macrophytes were dominated by positive-sense RNA viruses. Over half of the FMA viral contigs were most similar to viruses reported from diverse hosts in aquatic environments, including phototrophs, invertebrates, and fungi. The detection of FMA viruses from orders dominated by plant viruses, namely Patatavirales and Tymovirales, indicate that members of these orders may thrive in aquatic hosts. PCR assays confirmed the presence of putative FMA plant viruses in asymptomatic vascular plants, indicating that viruses with persistent lifestyles are widespread in macrophytes. The detection of potato virus Y and oat blue dwarf virus in submerged macrophytes suggests that terrestrial plant viruses infect underwater plants and highlights a potential terrestrial-freshwater plant virus continuum. Defining the virome of unexplored macrophytes will improve our understanding of virus evolution in terrestrial and aquatic primary producers and reveal the potential ecological impacts of viral infection in macrophytes.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States
| | - Noémi Van Bogaert
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States,Present Address: FVPHouse, Berlare, Belgium
| | | | - Haris Paliogiannis
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States,Present Address: MIO-ECSDE, Athens, Greece
| | - Mason Kerr
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States
| |
Collapse
|
11
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
12
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
13
|
Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, Bertrand EM, Braakman R, Brown CT, Covert MW, Doney SC, Dyhrman ST, Edison AS, Eren AM, Levine NM, Li L, Ross AC, Saito MA, Santoro AE, Segrè D, Shade A, Sullivan MB, Vardi A. Microbial metabolites in the marine carbon cycle. Nat Microbiol 2022; 7:508-523. [PMID: 35365785 DOI: 10.1038/s41564-022-01090-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shady A Amin
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nicholas R Bates
- Bermuda Institute of Ocean Sciences, St George's, Bermuda.,School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rogier Braakman
- Departments of Earth, Atmospheric and Planetary Sciences, and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Titus Brown
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA
| | - Arthur S Edison
- Departments of Biochemistry and Genetics, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Helmholtz-Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Naomi M Levine
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Mak A Saito
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel Segrè
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat Rev Microbiol 2022; 20:415-430. [DOI: 10.1038/s41579-022-00695-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/18/2022]
|
15
|
Bolduc B, Zablocki O, Guo J, Zayed AA, Vik D, Dehal P, Wood-Charlson EM, Arkin A, Merchant N, Pett-Ridge J, Roux S, Vaughn M, Sullivan MB. iVirus 2.0: Cyberinfrastructure-supported tools and data to power DNA virus ecology. ISME COMMUNICATIONS 2021; 1:77. [PMID: 36765102 PMCID: PMC9723767 DOI: 10.1038/s43705-021-00083-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022]
Abstract
Microbes drive myriad ecosystem processes, but under strong influence from viruses. Because studying viruses in complex systems requires different tools than those for microbes, they remain underexplored. To combat this, we previously aggregated double-stranded DNA (dsDNA) virus analysis capabilities and resources into 'iVirus' on the CyVerse collaborative cyberinfrastructure. Here we substantially expand iVirus's functionality and accessibility, to iVirus 2.0, as follows. First, core iVirus apps were integrated into the Department of Energy's Systems Biology KnowledgeBase (KBase) to provide an additional analytical platform. Second, at CyVerse, 20 software tools (apps) were upgraded or added as new tools and capabilities. Third, nearly 20-fold more sequence reads were aggregated to capture new data and environments. Finally, documentation, as "live" protocols, was updated to maximize user interaction with and contribution to infrastructure development. Together, iVirus 2.0 serves as a uniquely central and accessible analytical platform for studying how viruses, particularly dsDNA viruses, impact diverse microbial ecosystems.
Collapse
Affiliation(s)
- Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Olivier Zablocki
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Jiarong Guo
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Dean Vik
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Paramvir Dehal
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam Arkin
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, 95343, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Vaughn
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Columbus, OH, USA.
- EMERGE Biology Integration Institute, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
16
|
Garneau JR, Legrand V, Marbouty M, Press MO, Vik DR, Fortier LC, Sullivan MB, Bikard D, Monot M. High-throughput identification of viral termini and packaging mechanisms in virome datasets using PhageTermVirome. Sci Rep 2021; 11:18319. [PMID: 34526611 PMCID: PMC8443750 DOI: 10.1038/s41598-021-97867-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Viruses that infect bacteria (phages) are increasingly recognized for their importance in diverse ecosystems but identifying and annotating them in large-scale sequence datasets is still challenging. Although efficient scalable virus identification tools are emerging, defining the exact ends (termini) of phage genomes is still particularly difficult. The proper identification of termini is crucial, as it helps in characterizing the packaging mechanism of bacteriophages and provides information on various aspects of phage biology. Here, we introduce PhageTermVirome (PTV) as a tool for the easy and rapid high-throughput determination of phage termini and packaging mechanisms using modern large-scale metagenomics datasets. We successfully tested the PTV algorithm on a mock virome dataset and then used it on two real virome datasets to achieve the rapid identification of more than 100 phage termini and packaging mechanisms, with just a few hours of computing time. Because PTV allows the identification of free fully formed viral particles (by recognition of termini present only in encapsidated DNA), it can also complement other virus identification softwares to predict the true viral origin of contigs in viral metagenomics datasets. PTV is a novel and unique tool for high-throughput characterization of phage genomes, including phage termini identification and characterization of genome packaging mechanisms. This software should help researchers better visualize, map and study the virosphere. PTV is freely available for downloading and installation at https://gitlab.pasteur.fr/vlegrand/ptv.
Collapse
Affiliation(s)
| | - Véronique Legrand
- Infrastructure et Ingénierie Scientifique, Institut Pasteur, 75015, Paris, France
| | - Martial Marbouty
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, 75015, Paris, France
| | | | - Dean R Vik
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Louis-Charles Fortier
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - David Bikard
- Département de Microbiologie, Institut Pasteur, Groupe Biologie de Synthèse, 75015, Paris, France
| | - Marc Monot
- Biomics Platform, C2RT, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
17
|
Adriaenssens EM, Farkas K, McDonald JE, Jones DL, Allison HE, McCarthy AJ. Tracing the fate of wastewater viruses reveals catchment-scale virome diversity and connectivity. WATER RESEARCH 2021; 203:117568. [PMID: 34450465 DOI: 10.1016/j.watres.2021.117568] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The discharge of wastewater-derived viruses in aquatic environments impacts catchment-scale virome composition. To explore this, we used viromic analysis of RNA and DNA virus-like particles to holistically track virus communities entering and leaving wastewater treatment plants and the connecting river catchment system and estuary. We reconstructed >40 000 partial viral genomes into 10 149 species-level groups, dominated by dsDNA and (+)ssRNA bacteriophages (Caudoviricetes and Leviviricetes) and a small number of genomes that could pose a risk to human health. We found substantial viral diversity and geographically distinct virus communities associated with different wastewater treatment plants. River and estuarine water bodies harboured more diverse viral communities in downstream locations, influenced by tidal movement and proximity to wastewater treatment plants. Shellfish and beach sand were enriched in viral communities when compared with the surrounding water, acting as entrapment matrices for virus particles. Extensive phylogenetic analyses of environmental-derived and reference sequences showed the presence of human-associated sapovirus GII in all sample types, multiple rotavirus A strains in wastewater and a diverse set of picorna-like viruses associated with shellfish. We conclude that wastewater-derived viral genetic material is commonly deposited in the environment and can be traced throughout the freshwater-marine continuum of the river catchment, where it is influenced by local geography, weather events and tidal effects. Our data illustrate the utility of viromic analyses for wastewater- and environment-based ecology and epidemiology, and we present a conceptual model for the circulation of all types of viruses in a freshwater catchment.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK; Quadram Institute Bioscience, Norwich, NR4 7UQ, UK.
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK; School of Ocean Sciences, Bangor University, Bangor, LL59 5AB, UK
| | - James E McDonald
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Heather E Allison
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Alan J McCarthy
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
18
|
Malki K, Sawaya NA, Tisza MJ, Coutinho FH, Rosario K, Székely AJ, Breitbart M. Spatial and Temporal Dynamics of Prokaryotic and Viral Community Assemblages in a Lotic System (Manatee Springs, Florida). Appl Environ Microbiol 2021; 87:e0064621. [PMID: 34232732 PMCID: PMC8388828 DOI: 10.1128/aem.00646-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
Flow from high-magnitude springs fed by the Floridan aquifer system contributes hundreds of liters of water per second to rivers, creating unique lotic systems. Despite their importance as freshwater sources and their contributions to the state's major rivers, little is known about the composition and spatiotemporal variability of prokaryotic and viral communities of these spring systems or their influence on downstream river sites. At four time points throughout a year, we determined the abundance and diversity of prokaryotic and viral communities at three sites within the first-magnitude Manatee Springs system (the spring head where water emerges from the aquifer, a mixed region where the spring run ends, and a downstream site in the Suwannee River). The abundance of prokaryotes and virus-like particles increased 100-fold from the spring head to the river and few members from the head communities persisted in the river at low abundance, suggesting the springs play a minor role in seeding downstream communities. Prokaryotic and viral communities within Manatee Springs clustered by site, with seasonal variability likely driven by flow. As water flowed through the system, microbial community composition was affected by changes in physiochemical parameters and community coalescence. Evidence of species sorting and mass effects could be seen in the assemblages. Greater temporal fluctuations were observed in prokaryotic and viral community composition with increasing distance from the spring outflow, reflecting the relative stability of the groundwater environment, and comparisons to springs from prior work reaffirmed that distinct first-magnitude springs support unique communities. IMPORTANCE Prokaryotic and viral communities are central to food webs and biogeochemical processes in aquatic environments, where they help maintain ecosystem health. The Floridan aquifer system (FAS), which is the primary drinking water source for millions of people in the southeastern United States, contributes large amounts of freshwater to major river systems in Florida through its springs. However, there is a paucity of information regarding the spatiotemporal dynamics of microbial communities in these essential flowing freshwater systems. This work explored the prokaryotic and viral communities in a first-magnitude spring system fed by the FAS that discharges millions of liters of water per day into the Suwannee River. This study examined microbial community composition through space and time as well as the environmental parameters and metacommunity assembly mechanisms that shape these communities, providing a foundational understanding for monitoring future changes.
Collapse
Affiliation(s)
- Kema Malki
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Natalie A. Sawaya
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Michael J. Tisza
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, Maryland, USA
| | - Felipe H. Coutinho
- Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Anna J. Székely
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| |
Collapse
|
19
|
Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol 2021; 19:501-513. [PMID: 33762712 DOI: 10.1038/s41579-021-00530-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 02/01/2023]
Abstract
Viruses that infect microbial hosts have traditionally been studied in laboratory settings with a focus on either obligate lysis or persistent lysogeny. In the environment, these infection archetypes are part of a continuum that spans antagonistic to beneficial modes. In this Review, we advance a framework to accommodate the context-dependent nature of virus-microorganism interactions in ecological communities by synthesizing knowledge from decades of virology research, eco-evolutionary theory and recent technological advances. We discuss that nuanced outcomes, rather than the extremes of the continuum, are particularly likely in natural communities given variability in abiotic factors, the availability of suboptimal hosts and the relevance of multitrophic partnerships. We revisit the 'rules of life' in terms of how long-term infections shape the fate of viruses and microbial cells, populations and ecosystems.
Collapse
Affiliation(s)
| | | | - Samantha R Coy
- BioSciences Department, Rice University, Houston, TX, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA.
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA. .,Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
20
|
Zhong ZP, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li YF, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG. Glacier ice archives nearly 15,000-year-old microbes and phages. MICROBIOME 2021; 9:160. [PMID: 34281625 PMCID: PMC8290583 DOI: 10.1186/s40168-021-01106-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. RESULTS We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. CONCLUSIONS Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Natalie E Solonenko
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Yueh-Fen Li
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Mary E Davis
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ellen Mosley-Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Geography, Ohio State University, Columbus, OH, USA
| | - Virginia I Rich
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| | - Lonnie G Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- School of Earth Sciences, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Kothari A, Roux S, Zhang H, Prieto A, Soneja D, Chandonia JM, Spencer S, Wu X, Altenburg S, Fields MW, Deutschbauer AM, Arkin AP, Alm EJ, Chakraborty R, Mukhopadhyay A. Ecogenomics of Groundwater Phages Suggests Niche Differentiation Linked to Specific Environmental Tolerance. mSystems 2021; 6:e0053721. [PMID: 34184913 PMCID: PMC8269241 DOI: 10.1128/msystems.00537-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023] Open
Abstract
Viruses are ubiquitous microbiome components, shaping ecosystems via strain-specific predation, horizontal gene transfer and redistribution of nutrients through host lysis. Viral impacts are important in groundwater ecosystems, where microbes drive many nutrient fluxes and metabolic processes; however, little is known about the diversity of viruses in these environments. We analyzed four groundwater plasmidomes (the entire plasmid content of an environment) and identified 200 viral sequences, which clustered into 41 genus-level viral clusters (approximately equivalent to viral genera) including 9 known and 32 putative new genera. We used publicly available bacterial whole-genome sequences (WGS) and WGS from 261 bacterial isolates from this groundwater environment to identify potential viral hosts. We linked 76 of the 200 viral sequences to a range of bacterial phyla, the majority associated with Proteobacteria, followed by Firmicutes, Bacteroidetes, and Actinobacteria. The publicly available WGS enabled mapping bacterial hosts to several viral sequences. The WGS of groundwater isolates increased the depth of host prediction by allowing host identification at the strain level. The latter included 4 viruses that were almost entirely (>99% query coverage, >99% identity) identified as integrated in the genomes of Pseudomonas, Acidovorax, and Castellaniella strains, resulting in high-confidence host assignments. Lastly, 21 of these viruses carried putative auxiliary metabolite genes for metal and antibiotic resistance, which might drive their infection cycles and/or provide selective advantage to infected hosts. Exploring the groundwater virome provides a necessary foundation for integration of viruses into ecosystem models where they are key players in microbial adaption to environmental stress. IMPORTANCE To our knowledge, this is the first study to identify the bacteriophage distribution in a groundwater ecosystem shedding light on their prevalence and distribution across metal-contaminated and background sites. Our study is uniquely based on selective sequencing of solely the extrachromosomal elements of a microbiome followed by analysis for viral signatures, thus establishing a more focused approach for phage identifications. Using this method, we detected several novel phage genera along with those previously established. Our approach of using the whole-genome sequences of hundreds of bacterial isolates from the same site enabled us to make host assignments with high confidence, several at strain levels. Certain phage genes suggest that they provide an environment-specific selective advantage to their bacterial hosts. Our study lays the foundation for future research on directed phage isolations using specific bacterial host strains to further characterize groundwater phages, their life cycles, and their effects on groundwater microbiome and biogeochemistry.
Collapse
Affiliation(s)
- Ankita Kothari
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hanqiao Zhang
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Anatori Prieto
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Drishti Soneja
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sarah Spencer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaoqin Wu
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sara Altenburg
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Matthew W. Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Energy Biosciences Institute, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Eric J. Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT Cambridge, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
22
|
Zayed AA, Lücking D, Mohssen M, Cronin D, Bolduc B, Gregory AC, Hargreaves KR, Piehowski PD, White RA, Huang EL, Adkins JN, Roux S, Moraru C, Sullivan MB. efam: an expanded, metaproteome-supported HMM profile database of viral protein families. Bioinformatics 2021; 37:4202-4208. [PMID: 34132786 PMCID: PMC9502166 DOI: 10.1093/bioinformatics/btab451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
Motivation Viruses infect, reprogram and kill microbes, leading to profound ecosystem consequences, from elemental cycling in oceans and soils to microbiome-modulated diseases in plants and animals. Although metagenomic datasets are increasingly available, identifying viruses in them is challenging due to poor representation and annotation of viral sequences in databases. Results Here, we establish efam, an expanded collection of Hidden Markov Model (HMM) profiles that represent viral protein families conservatively identified from the Global Ocean Virome 2.0 dataset. This resulted in 240 311 HMM profiles, each with at least 2 protein sequences, making efam >7-fold larger than the next largest, pan-ecosystem viral HMM profile database. Adjusting the criteria for viral contig confidence from ‘conservative’ to ‘eXtremely Conservative’ resulted in 37 841 HMM profiles in our efam-XC database. To assess the value of this resource, we integrated efam-XC into VirSorter viral discovery software to discover viruses from less-studied, ecologically distinct oxygen minimum zone (OMZ) marine habitats. This expanded database led to an increase in viruses recovered from every tested OMZ virome by ∼24% on average (up to ∼42%) and especially improved the recovery of often-missed shorter contigs (<5 kb). Additionally, to help elucidate lesser-known viral protein functions, we annotated the profiles using multiple databases from the DRAM pipeline and virion-associated metaproteomic data, which doubled the number of annotations obtainable by standard, single-database annotation approaches. Together, these marine resources (efam and efam-XC) are provided as searchable, compressed HMM databases that will be updated bi-annually to help maximize viral sequence discovery and study from any ecosystem. Availability and implementation The resources are available on the iVirus platform at (doi.org/10.25739/9vze-4143). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA.,Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Dominik Lücking
- Max-Planck-Institut fuer Marine Mikrobiologie, Bremen 28359, Germany
| | - Mohamed Mohssen
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA.,Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA.,The Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Dylan Cronin
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ben Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ann C Gregory
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Katherine R Hargreaves
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK
| | - Paul D Piehowski
- Earth and Biological Sciences Directorate, PNNL, Richland, WA 99354, USA
| | - Richard A White
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte 9201 University City Boulevard, Charlotte, NC 28223, USA.,Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte 150 Research Campus Drive, Kannapolis, NC 28081, USA.,Australian Centre for Astrobiology, University of NewSouth Wales, Sydney, Australia.,RAW Molecular Systems (RAW), INC, Concord, NC 28025, USA
| | - Eric L Huang
- Earth and Biological Sciences Directorate, PNNL, Richland, WA 99354, USA
| | - Joshua N Adkins
- Earth and Biological Sciences Directorate, PNNL, Richland, WA 99354, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cristina Moraru
- The Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg 26111, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA.,Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA.,The Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
23
|
Interaction dynamics and virus-host range for estuarine actinophages captured by epicPCR. Nat Microbiol 2021; 6:630-642. [PMID: 33633401 DOI: 10.1038/s41564-021-00873-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Viruses impact microbial diversity, gene flow and function through virus-host interactions. Although metagenomics surveys are rapidly cataloguing viral diversity, methods are needed to capture specific virus-host interactions in situ. Here, we leveraged metagenomics and repurposed emulsion paired isolation-concatenation PCR (epicPCR) to investigate viral diversity and virus-host interactions in situ over time in an estuarine environment. The method fuses a phage marker, the ribonucleotide reductase gene, with the host 16S rRNA gene of infected bacterial cells within emulsion droplets providing single-cell resolution for dozens of samples. EpicPCR captured in situ virus-host interactions for viral clades with no closely related database representatives. Abundant freshwater Actinobacteria lineages, in particular Rhodoluna sp., were the most common hosts for these poorly characterized viruses, with interactions correlated with environmental factors. Multiple methods used to identify virus-host interactions, including epicPCR, identified different and largely non-overlapping interactions within the vast virus-host interaction space. Tracking virus-host interaction dynamics also revealed that multi-host viruses had significantly longer periods with observed virus-host interactions, whereas single-host viruses were observed interacting with hosts at lower minimum abundances, suggesting more efficient interactions. Capturing in situ interactions with epicPCR revealed environmental and ecological factors shaping virus-host interactions, highlighting epicPCR as a valuable technique in viral ecology.
Collapse
|
24
|
Gil P, Dupuy V, Koual R, Exbrayat A, Loire E, Fall AG, Gimonneau G, Biteye B, Talla Seck M, Rakotoarivony I, Marie A, Frances B, Lambert G, Reveillaud J, Balenghien T, Garros C, Albina E, Eloit M, Gutierrez S. A library preparation optimized for metagenomics of RNA viruses. Mol Ecol Resour 2021; 21:1788-1807. [PMID: 33713395 DOI: 10.1111/1755-0998.13378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
Our understanding of the viral communities associated to animals has not yet reached the level attained on the bacteriome. This situation is due to, among others, technical challenges in adapting metagenomics using high-throughput sequencing to the study of RNA viromes in animals. Although important developments have been achieved in most steps of viral metagenomics, there is yet a key step that has received little attention: the library preparation. This situation differs from bacteriome studies in which developments in library preparation have largely contributed to the democratisation of metagenomics. Here, we present a library preparation optimized for metagenomics of RNA viruses from insect vectors of viral diseases. The library design allows a simple PCR-based preparation, such as those routinely used in bacterial metabarcoding, that is adapted to shotgun sequencing as required in viral metagenomics. We first optimized our library preparation using mock viral communities and then validated a full metagenomic approach incorporating our preparation in two pilot studies with field-caught insect vectors; one including a comparison with a published metagenomic protocol. Our approach provided a fold increase in virus-like sequences compared to other studies, and nearly-full genomes from new virus species. Moreover, our results suggested conserved trends in virome composition within a population of a mosquito species. Finally, the sensitivity of our approach was compared to a commercial diagnostic PCR for the detection of an arbovirus in field-caught insect vectors. Our approach could facilitate studies on viral communities from animals and the democratization of metagenomics in community ecology of viruses.
Collapse
Affiliation(s)
- Patricia Gil
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Virginie Dupuy
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Rachid Koual
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Antoni Exbrayat
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Etienne Loire
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Assane G Fall
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Geoffrey Gimonneau
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France.,Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Biram Biteye
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Momar Talla Seck
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Ignace Rakotoarivony
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | | | | | | | - Julie Reveillaud
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France
| | - Thomas Balenghien
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Claire Garros
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Emmanuel Albina
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France.,École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Serafin Gutierrez
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| |
Collapse
|
25
|
Roux S, Páez-Espino D, Chen IMA, Palaniappan K, Ratner A, Chu K, Reddy TBK, Nayfach S, Schulz F, Call L, Neches RY, Woyke T, Ivanova NN, Eloe-Fadrosh EA, Kyrpides NC. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res 2021; 49:D764-D775. [PMID: 33137183 PMCID: PMC7778971 DOI: 10.1093/nar/gkaa946] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Viruses are integral components of all ecosystems and microbiomes on Earth. Through pervasive infections of their cellular hosts, viruses can reshape microbial community structure and drive global nutrient cycling. Over the past decade, viral sequences identified from genomes and metagenomes have provided an unprecedented view of viral genome diversity in nature. Since 2016, the IMG/VR database has provided access to the largest collection of viral sequences obtained from (meta)genomes. Here, we present the third version of IMG/VR, composed of 18 373 cultivated and 2 314 329 uncultivated viral genomes (UViGs), nearly tripling the total number of sequences compared to the previous version. These clustered into 935 362 viral Operational Taxonomic Units (vOTUs), including 188 930 with two or more members. UViGs in IMG/VR are now reported as single viral contigs, integrated proviruses or genome bins, and are annotated with a new standardized pipeline including genome quality estimation using CheckV, taxonomic classification reflecting the latest ICTV update, and expanded host taxonomy prediction. The new IMG/VR interface enables users to efficiently browse, search, and select UViGs based on genome features and/or sequence similarity. IMG/VR v3 is available at https://img.jgi.doe.gov/vr, and the underlying data are available to download at https://genome.jgi.doe.gov/portal/IMG_VR.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Páez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - I-Min A Chen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Krishna Palaniappan
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Ratner
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ken Chu
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephen Nayfach
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lee Call
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Russell Y Neches
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia N Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. Cell Host Microbe 2020; 28:724-740.e8. [PMID: 32841606 PMCID: PMC7443397 DOI: 10.1016/j.chom.2020.08.003] [Citation(s) in RCA: 318] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiome profoundly affects human health and disease, and their infecting viruses are likely as important, but often missed because of reference database limitations. Here, we (1) built a human Gut Virome Database (GVD) from 2,697 viral particle or microbial metagenomes from 1,986 individuals representing 16 countries, (2) assess its effectiveness, and (3) report a meta-analysis that reveals age-dependent patterns across healthy Westerners. The GVD contains 33,242 unique viral populations (approximately species-level taxa) and improves average viral detection rates over viral RefSeq and IMG/VR nearly 182-fold and 2.6-fold, respectively. GVD meta-analyses show highly personalized viromes, reveal that inter-study variability from technical artifacts is larger than any "disease" effect at the population level, and document how viral diversity changes from human infancy into senescence. Together, this compact foundational resource, these standardization guidelines, and these meta-analysis findings provide a systematic toolkit to help maximize our understanding of viral roles in health and disease.
Collapse
Affiliation(s)
- Ann C Gregory
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Allison Howell
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Girard C, Langlois V, Vigneron A, Vincent WF, Culley AI. Seasonal Regime Shift in the Viral Communities of a Permafrost Thaw Lake. Viruses 2020; 12:v12111204. [PMID: 33105728 PMCID: PMC7690404 DOI: 10.3390/v12111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Permafrost thaw lakes including thermokarst lakes and ponds are ubiquitous features of Subarctic and Arctic landscapes and are hotspots of microbial activity. Input of terrestrial organic matter into the planktonic microbial loop of these lakes may greatly amplify global greenhouse gas emissions. This microbial loop, dominated in the summer by aerobic microorganisms including phototrophs, is radically different in the winter, when metabolic processes shift to the anaerobic degradation of organic matter. Little is known about the viruses that infect these microbes, despite evidence that viruses can control microbial populations and influence biogeochemical cycling in other systems. Here, we present the results of a metagenomics-based study of viruses in the larger than 0.22 µm fraction across two seasons (summer and winter) in a permafrost thaw lake in Subarctic Canada. We uncovered 351 viral populations (vOTUs) in the surface waters of this lake, with diversity significantly greater during the summer. We also identified and characterized several phage genomes and prophages, which were mostly present in the summer. Finally, we compared the viral community of this waterbody to other habitats and found unexpected similarities with distant bog lakes in North America.
Collapse
Affiliation(s)
- Catherine Girard
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada; (C.G.); (V.L.)
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
| | - Valérie Langlois
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada; (C.G.); (V.L.)
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
| | - Adrien Vigneron
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Warwick F. Vincent
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander I. Culley
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada; (C.G.); (V.L.)
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
28
|
Pratas D, Toppinen M, Pyöriä L, Hedman K, Sajantila A, Perdomo MF. A hybrid pipeline for reconstruction and analysis of viral genomes at multi-organ level. Gigascience 2020; 9:giaa086. [PMID: 32815536 PMCID: PMC7439602 DOI: 10.1093/gigascience/giaa086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Advances in sequencing technologies have enabled the characterization of multiple microbial and host genomes, opening new frontiers of knowledge while kindling novel applications and research perspectives. Among these is the investigation of the viral communities residing in the human body and their impact on health and disease. To this end, the study of samples from multiple tissues is critical, yet, the complexity of such analysis calls for a dedicated pipeline. We provide an automatic and efficient pipeline for identification, assembly, and analysis of viral genomes that combines the DNA sequence data from multiple organs. TRACESPipe relies on cooperation among 3 modalities: compression-based prediction, sequence alignment, and de novo assembly. The pipeline is ultra-fast and provides, additionally, secure transmission and storage of sensitive data. FINDINGS TRACESPipe performed outstandingly when tested on synthetic and ex vivo datasets, identifying and reconstructing all the viral genomes, including those with high levels of single-nucleotide polymorphisms. It also detected minimal levels of genomic variation between different organs. CONCLUSIONS TRACESPipe's unique ability to simultaneously process and analyze samples from different sources enables the evaluation of within-host variability. This opens up the possibility to investigate viral tissue tropism, evolution, fitness, and disease associations. Moreover, additional features such as DNA damage estimation and mitochondrial DNA reconstruction and analysis, as well as exogenous-source controls, expand the utility of this pipeline to other fields such as forensics and ancient DNA studies. TRACESPipe is released under GPLv3 and is available for free download at https://github.com/viromelab/tracespipe.
Collapse
Affiliation(s)
- Diogo Pratas
- Department of Virology, University of Helsinki, Haartmaninkatu 3, Helsinki, 00290, Finland
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Mari Toppinen
- Department of Virology, University of Helsinki, Haartmaninkatu 3, Helsinki, 00290, Finland
| | - Lari Pyöriä
- Department of Virology, University of Helsinki, Haartmaninkatu 3, Helsinki, 00290, Finland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Haartmaninkatu 3, Helsinki, 00290, Finland
- HUSLAB, Helsinki University Hospital, Topeliuksenkatu 32, 00290 Helsinki, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Kytösuontie 11, 00300, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute of Health and Welfare, PO Box 30 FI-00271 Helsinki, Finland
| | - Maria F Perdomo
- Department of Virology, University of Helsinki, Haartmaninkatu 3, Helsinki, 00290, Finland
| |
Collapse
|
29
|
Tsiola A, Michoud G, Fodelianakis S, Karakassis I, Kotoulas G, Pavlidou A, Pavloudi C, Pitta P, Simboura N, Daffonchio D, Tsapakis M. Viral Metagenomic Content Reflects Seawater Ecological Quality in the Coastal Zone. Viruses 2020; 12:v12080806. [PMID: 32722579 PMCID: PMC7472104 DOI: 10.3390/v12080806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/21/2023] Open
Abstract
Viruses interfere with their host’s metabolism through the expression of auxiliary metabolic genes (AMGs) that, until now, are mostly studied under large physicochemical gradients. Here, we focus on coastal marine ecosystems and we sequence the viral metagenome (virome) of samples with discrete levels of human-driven disturbances. We aim to describe the relevance of viromics with respect to ecological quality status, defined by the classic seawater trophic index (TRIX). Neither viral (family level) nor bacterial (family level, based on 16S rRNA sequencing) community structure correlated with TRIX. AMGs involved in the Calvin and tricarboxylic acid cycles were found at stations with poor ecological quality, supporting viral lysis by modifying the host’s energy supply. AMGs involved in “non-traditional” energy-production pathways (3HP, sulfur oxidation) were found irrespective of ecological quality, highlighting the importance of recognizing the prevalent metabolic paths and their intermediate byproducts. Various AMGs explained the variability between stations with poor vs. good ecological quality. Our study confirms the pivotal role of the virome content in ecosystem functioning, acting as a “pool” of available functions that may be transferred to the hosts. Further, it suggests that AMGs could be used as an ultra-sensitive metric of energy-production pathways with relevance in the vulnerable coastal zone and its ecological quality.
Collapse
Affiliation(s)
- Anastasia Tsiola
- Institute of Oceanography, Hellenic Centre for Marine Research, 71003 Heraklion Crete, Greece; (P.P.); (M.T.)
- Department of Biology, University of Crete, 70013 Heraklion Crete, Greece;
- Institute of Marine Biology, Biotechnology & Aquaculture, 71003 Heraklion Crete, Greece; (G.K.); (C.P.)
- Correspondence: ; Tel.: +30-2810-337713; Fax: +30-2810-337822
| | - Grégoire Michoud
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia; (G.M.); (S.F.); (D.D.)
| | - Stilianos Fodelianakis
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia; (G.M.); (S.F.); (D.D.)
| | - Ioannis Karakassis
- Department of Biology, University of Crete, 70013 Heraklion Crete, Greece;
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology & Aquaculture, 71003 Heraklion Crete, Greece; (G.K.); (C.P.)
| | - Alexandra Pavlidou
- Institute of Oceanography, Hellenic Centre for Marine Research, 19013 Anavyssos Attiki, Greece; (A.P.); (N.S.)
| | - Christina Pavloudi
- Institute of Marine Biology, Biotechnology & Aquaculture, 71003 Heraklion Crete, Greece; (G.K.); (C.P.)
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research, 71003 Heraklion Crete, Greece; (P.P.); (M.T.)
| | - Nomiki Simboura
- Institute of Oceanography, Hellenic Centre for Marine Research, 19013 Anavyssos Attiki, Greece; (A.P.); (N.S.)
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia; (G.M.); (S.F.); (D.D.)
| | - Manolis Tsapakis
- Institute of Oceanography, Hellenic Centre for Marine Research, 71003 Heraklion Crete, Greece; (P.P.); (M.T.)
| |
Collapse
|
30
|
Abstract
Wastewater is a rich source of microbial life and contains bacteria, viruses, and other microbes found in human waste as well as environmental runoff sources. As part of an effort to characterize the New York City wastewater metagenome, we profiled the viral community of sewage samples across all five boroughs of NYC and found that local sampling sites have unique sets of viruses. We focused on bacteriophages, or viruses of bacteria, to understand how they may influence the microbial ecology of this system. We identified several new clusters of phages and successfully associated them with bacterial hosts, providing insight into virus-host interactions in urban wastewater. This study provides a first look into the viral communities present across the wastewater system in NYC and points to their functional importance in this environment. Bacteriophages are abundant members of all microbiomes studied to date, influencing microbial communities through interactions with their bacterial hosts. Despite their functional importance and ubiquity, phages have been underexplored in urban environments compared to their bacterial counterparts. We profiled the viral communities in New York City (NYC) wastewater using metagenomic data collected in November 2014 from 14 wastewater treatment plants. We show that phages accounted for the largest viral component of the sewage samples and that specific virus communities were associated with local environmental conditions within boroughs. The vast majority of the virus sequences had no homology matches in public databases, forming an average of 1,700 unique virus clusters (putative genera). These new clusters contribute to elucidating the overwhelming proportion of data that frequently goes unidentified in viral metagenomic studies. We assigned potential hosts to these phages, which appear to infect a wide range of bacterial genera, often outside their presumed host. We determined that infection networks form a modular-nested pattern, indicating that phages include a range of host specificities, from generalists to specialists, with most interactions organized into distinct groups. We identified genes in viral contigs involved in carbon and sulfur cycling, suggesting functional importance of viruses in circulating pathways and gene functions in the wastewater environment. In addition, we identified virophage genes as well as a nearly complete novel virophage genome. These findings provide an understanding of phage abundance and diversity in NYC wastewater, previously uncharacterized, and further examine geographic patterns of phage-host association in urban environments. IMPORTANCE Wastewater is a rich source of microbial life and contains bacteria, viruses, and other microbes found in human waste as well as environmental runoff sources. As part of an effort to characterize the New York City wastewater metagenome, we profiled the viral community of sewage samples across all five boroughs of NYC and found that local sampling sites have unique sets of viruses. We focused on bacteriophages, or viruses of bacteria, to understand how they may influence the microbial ecology of this system. We identified several new clusters of phages and successfully associated them with bacterial hosts, providing insight into virus-host interactions in urban wastewater. This study provides a first look into the viral communities present across the wastewater system in NYC and points to their functional importance in this environment.
Collapse
|
31
|
Zhong ZP, Rapp JZ, Wainaina JM, Solonenko NE, Maughan H, Carpenter SD, Cooper ZS, Jang HB, Bolduc B, Deming JW, Sullivan MB. Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice. mSystems 2020; 5:e00246-20. [PMID: 32546670 PMCID: PMC7300359 DOI: 10.1128/msystems.00246-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/24/2020] [Indexed: 01/09/2023] Open
Abstract
Arctic regions, which are changing rapidly as they warm 2 to 3 times faster than the global average, still retain microbial habitats that serve as natural laboratories for understanding mechanisms of microbial adaptation to extreme conditions. Seawater-derived brines within both sea ice (sea-ice brine) and ancient layers of permafrost (cryopeg brine) support diverse microbes adapted to subzero temperatures and high salinities, yet little is known about viruses in these extreme environments, which, if analogous to other systems, could play important evolutionary and ecosystem roles. Here, we characterized viral communities and their functions in samples of cryopeg brine, sea-ice brine, and melted sea ice. Viral abundance was high in cryopeg brine (1.2 × 108 ml-1) and much lower in sea-ice brine (1.3 × 105 to 2.1 × 105 ml-1), which roughly paralleled the differences in cell concentrations in these samples. Five low-input, quantitative viral metagenomes were sequenced to yield 476 viral populations (i.e., species level; ≥10 kb), only 12% of which could be assigned taxonomy by traditional database approaches, indicating a high degree of novelty. Additional analyses revealed that these viruses: (i) formed communities that differed between sample type and vertically with sea-ice depth; (ii) infected hosts that dominated these extreme ecosystems, including Marinobacter, Glaciecola, and Colwellia; and (iii) encoded fatty acid desaturase (FAD) genes that likely helped their hosts overcome cold and salt stress during infection, as well as mediated horizontal gene transfer of FAD genes between microbes. Together, these findings contribute to understanding viral abundances and communities and how viruses impact their microbial hosts in subzero brines and sea ice.IMPORTANCE This study explores viral community structure and function in remote and extreme Arctic environments, including subzero brines within marine layers of permafrost and sea ice, using a modern viral ecogenomics toolkit for the first time. In addition to providing foundational data sets for these climate-threatened habitats, we found evidence that the viruses had habitat specificity, infected dominant microbial hosts, encoded host-derived metabolic genes, and mediated horizontal gene transfer among hosts. These results advance our understanding of the virosphere and how viruses influence extreme ecosystems. More broadly, the evidence that virally mediated gene transfers may be limited by host range in these extreme habitats contributes to a mechanistic understanding of genetic exchange among microbes under stressful conditions in other systems.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Shelly D Carpenter
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Zachary S Cooper
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
32
|
Lood C, Danis‐Wlodarczyk K, Blasdel BG, Jang HB, Vandenheuvel D, Briers Y, Noben J, van Noort V, Drulis‐Kawa Z, Lavigne R. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ Microbiol 2020; 22:2165-2181. [PMID: 32154616 PMCID: PMC7318152 DOI: 10.1111/1462-2920.14979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/06/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas virus vB_PaeM_PA5oct is proposed as a model jumbo bacteriophage to investigate phage-bacteria interactions and is a candidate for phage therapy applications. Combining hybrid sequencing, RNA-Seq and mass spectrometry allowed us to accurately annotate its 286,783 bp genome with 461 coding regions including four non-coding RNAs (ncRNAs) and 93 virion-associated proteins. PA5oct relies on the host RNA polymerase for the infection cycle and RNA-Seq revealed a gradual take-over of the total cell transcriptome from 21% in early infection to 93% in late infection. PA5oct is not organized into strictly contiguous regions of temporal transcription, but some genomic regions transcribed in early, middle and late phases of infection can be discriminated. Interestingly, we observe regions showing limited transcription activity throughout the infection cycle. We show that PA5oct upregulates specific bacterial operons during infection including operons pncA-pncB1-nadE involved in NAD biosynthesis, psl for exopolysaccharide biosynthesis and nap for periplasmic nitrate reductase production. We also observe a downregulation of T4P gene products suggesting mechanisms of superinfection exclusion. We used the proteome of PA5oct to position our isolate amongst other phages using a gene-sharing network. This integrative omics study illustrates the molecular diversity of jumbo viruses and raises new questions towards cellular regulation and phage-encoded hijacking mechanisms.
Collapse
Affiliation(s)
- Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
| | - Katarzyna Danis‐Wlodarczyk
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Bob G. Blasdel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Ho Bin Jang
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Dieter Vandenheuvel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Yves Briers
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Jean‐Paul Noben
- Biomedical Research Institute and Transnational University LimburgHasselt UniversityDiepenbeekBelgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Zuzanna Drulis‐Kawa
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| |
Collapse
|
33
|
Abstract
The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation. High-latitude, perennially stratified (meromictic) lakes are likely to be especially vulnerable to climate warming because of the importance of ice in maintaining their water column structure and associated distribution of microbial communities. This study aimed to characterize viral abundance, diversity, and distribution in a meromictic lake of marine origin on the far northern coast of Ellesmere Island, in the Canadian High Arctic. We collected triplicate samples for double-stranded DNA (dsDNA) viromics from five depths that encompassed the major features of the lake, as determined by limnological profiling of the water column. Viral abundance and virus-to-prokaryote ratios were highest at greater depths, while bacterial and cyanobacterial counts were greatest in the surface waters. The viral communities from each zone of the lake defined by salinity, temperature, and dissolved oxygen concentrations were markedly distinct, suggesting that there was little exchange of viral types among lake strata. Ten viral assembled genomes were obtained from our libraries, and these also segregated with depth. This well-defined structure of viral communities was consistent with that of potential hosts. Viruses from the monimolimnion, a deep layer of ancient Arctic Ocean seawater, were more diverse and relatively abundant, with few similarities to available viral sequences. The Lake A viral communities also differed from published records from the Arctic Ocean and meromictic Ace Lake in Antarctica. This first characterization of viral diversity from this sentinel environment underscores the microbial richness and complexity of an ecosystem type that is increasingly exposed to major perturbations in the fast-changing Arctic. IMPORTANCE The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation.
Collapse
|
34
|
Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, Guidi L, Iudicone D, Karsenti E, Lombard F, Ogata H, Pesant S, Sullivan MB, Wincker P, de Vargas C. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 2020; 18:428-445. [PMID: 32398798 DOI: 10.1038/s41579-020-0364-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences-CSIC, Barcelona, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Université de Nantes, CNRS, UMR6004, LS2N, Nantes, France
| | - Gabriel Gorsky
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Eric Karsenti
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Stephane Pesant
- PANGAEA, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie Francois Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. .,Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
35
|
Paez-Espino D, Roux S, Chen IMA, Palaniappan K, Ratner A, Chu K, Huntemann M, Reddy TBK, Pons JC, Llabrés M, Eloe-Fadrosh EA, Ivanova NN, Kyrpides NC. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res 2020; 47:D678-D686. [PMID: 30407573 PMCID: PMC6323928 DOI: 10.1093/nar/gky1127] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
The Integrated Microbial Genome/Virus (IMG/VR) system v.2.0 (https://img.jgi.doe.gov/vr/) is the largest publicly available data management and analysis platform dedicated to viral genomics. Since the last report published in the 2016, NAR Database Issue, the data has tripled in size and currently contains genomes of 8389 cultivated reference viruses, 12 498 previously published curated prophages derived from cultivated microbial isolates, and 735 112 viral genomic fragments computationally predicted from assembled shotgun metagenomes. Nearly 60% of the viral genomes and genome fragments are clustered into 110 384 viral Operational Taxonomic Units (vOTUs) with two or more members. To improve data quality and predictions of host specificity, IMG/VR v.2.0 now separates prokaryotic and eukaryotic viruses, utilizes known prophage sequences to improve taxonomic assignments, and provides viral genome quality scores based on the estimated genome completeness. New features also include enhanced BLAST search capabilities for external queries. Finally, geographic map visualization to locate user-selected viral genomes or genome fragments has been implemented and download options have been extended. All of these features make IMG/VR v.2.0 a key resource for the study of viruses.
Collapse
Affiliation(s)
| | - Simon Roux
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - I-Min A Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Krishna Palaniappan
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Anna Ratner
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Ken Chu
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Marcel Huntemann
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - T B K Reddy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Joan Carles Pons
- Department of Mathematics and Computer Science, University of the Balearic Islands, Spain
| | - Mercè Llabrés
- Department of Mathematics and Computer Science, University of the Balearic Islands, Spain
| | | | | | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
36
|
Bezuidt OKI, Lebre PH, Pierneef R, León-Sobrino C, Adriaenssens EM, Cowan DA, Van de Peer Y, Makhalanyane TP. Phages Actively Challenge Niche Communities in Antarctic Soils. mSystems 2020; 5:e00234-20. [PMID: 32371471 PMCID: PMC7205518 DOI: 10.1128/msystems.00234-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
By modulating the structure, diversity, and trophic outputs of microbial communities, phages play crucial roles in many biomes. In oligotrophic polar deserts, the effects of katabatic winds, constrained nutrients, and low water availability are known to limit microbial activity. Although phages may substantially govern trophic interactions in cold deserts, relatively little is known regarding the precise ecological mechanisms. Here, we provide the first evidence of widespread antiphage innate immunity in Antarctic environments using metagenomic sequence data from hypolith communities as model systems. In particular, immunity systems such as DISARM and BREX are shown to be dominant systems in these communities. Additionally, we show a direct correlation between the CRISPR-Cas adaptive immunity and the metavirome of hypolith communities, suggesting the existence of dynamic host-phage interactions. In addition to providing the first exploration of immune systems in cold deserts, our results suggest that phages actively challenge niche communities in Antarctic polar deserts. We provide evidence suggesting that the regulatory role played by phages in this system is an important determinant of bacterial host interactions in this environment.IMPORTANCE In Antarctic environments, the combination of both abiotic and biotic stressors results in simple trophic levels dominated by microbiomes. Although the past two decades have revealed substantial insights regarding the diversity and structure of microbiomes, we lack mechanistic insights regarding community interactions and how phages may affect these. By providing the first evidence of widespread antiphage innate immunity, we shed light on phage-host dynamics in Antarctic niche communities. Our analyses reveal several antiphage defense systems, including DISARM and BREX, which appear to dominate in cold desert niche communities. In contrast, our analyses revealed that genes which encode antiphage adaptive immunity were underrepresented in these communities, suggesting lower infection frequencies in cold edaphic environments. We propose that by actively challenging niche communities, phages play crucial roles in the diversification of Antarctic communities.
Collapse
Affiliation(s)
- Oliver K I Bezuidt
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Pedro Humberto Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Yves Van de Peer
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
37
|
Dupont S, Lokmer A, Corre E, Auguet JC, Petton B, Toulza E, Montagnani C, Tanguy G, Pecqueur D, Salmeron C, Guillou L, Desnues C, La Scola B, Bou Khalil J, de Lorgeril J, Mitta G, Gueguen Y, Escoubas JM. Oyster hemolymph is a complex and dynamic ecosystem hosting bacteria, protists and viruses. Anim Microbiome 2020; 2:12. [PMID: 33499958 PMCID: PMC7807429 DOI: 10.1186/s42523-020-00032-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The impact of the microbiota on host fitness has so far mainly been demonstrated for the bacterial microbiome. We know much less about host-associated protist and viral communities, largely due to technical issues. However, all microorganisms within a microbiome potentially interact with each other as well as with the host and the environment, therefore likely affecting the host health. RESULTS We set out to explore how environmental and host factors shape the composition and diversity of bacterial, protist and viral microbial communities in the Pacific oyster hemolymph, both in health and disease. To do so, five oyster families differing in susceptibility to the Pacific oyster mortality syndrome were reared in hatchery and transplanted into a natural environment either before or during a disease outbreak. Using metabarcoding and shotgun metagenomics, we demonstrate that hemolymph can be considered as an ecological niche hosting bacterial, protist and viral communities, each of them shaped by different factors and distinct from the corresponding communities in the surrounding seawater. Overall, we found that hemolymph microbiota is more strongly shaped by the environment than by host genetic background. Co-occurrence network analyses suggest a disruption of the microbial network after transplantation into natural environment during both non-infectious and infectious periods. Whereas we could not identify a common microbial community signature for healthy animals, OsHV-1 μVar virus dominated the hemolymph virome during the disease outbreak, without significant modifications of other microbiota components. CONCLUSION Our study shows that oyster hemolymph is a complex ecosystem containing diverse bacteria, protists and viruses, whose composition and dynamics are primarily determined by the environment. However, all of these are also shaped by oyster genetic backgrounds, indicating they indeed interact with the oyster host and are therefore not only of transient character. Although it seems that the three microbiome components respond independently to environmental conditions, better characterization of hemolymph-associated viruses could change this picture.
Collapse
Affiliation(s)
- S Dupont
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - A Lokmer
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, List auf Sylt, Germany.,Current affiliation UMR 7206 Eco-anthropologie et Ethnologie, CNRS - MNHN Univ. Paris Diderot Sorbonne Paris Cité, Paris, France
| | - E Corre
- Sorbonne Université, CNRS, FR2424 ABiMS (Analysis and Bioanalysis for Marine Sciences), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - J-C Auguet
- MARBEC, Université Montpellier, CNRS, IFREMER, IRD, CC093, place Eugène Bataillon, 34095, Montpellier, France
| | - B Petton
- Ifremer, LEMAR UMR 6539, 11 presqu'île du Vivier, 29840, Argenton-en-Landunvez, France
| | - E Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - C Montagnani
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - G Tanguy
- Sorbonne Université, CNRS, FR2424, Genomer, Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - D Pecqueur
- Observatoire Océanologique de Banyuls sur Mer, FR 3724, BioPIC, CNRS/SU, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - C Salmeron
- Observatoire Océanologique de Banyuls sur Mer, FR 3724, BioPIC, CNRS/SU, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - L Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - C Desnues
- Aix-Marseille Université, IRD 257, Assistance-Publique des Hôpitaux de Marseille, UMR Microbes, Evolution, Phylogeny and Infections (MEPHI), IHU Méditerranée Infection, 13005, Marseille, France.,Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography, UM 110, 13288, Marseille, France
| | - B La Scola
- Microbes, Evolution, Phylogeny and Infection (MEΦI), Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France.,Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - J Bou Khalil
- Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - J de Lorgeril
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - G Mitta
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - Y Gueguen
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - J-M Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France.
| |
Collapse
|
38
|
Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4020023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses. Employing viromics to characterize soil systems presents new challenges, however. Ones that only recently are being addressed. Here we provide a guide to implementing these three approaches to studying environmental viruses, highlighting benefits, difficulties, and potential contamination, all toward fostering greater focus on viruses in the study of soil ecology.
Collapse
|
39
|
Arndt D, Marcu A, Liang Y, Wishart DS. PHAST, PHASTER and PHASTEST: Tools for finding prophage in bacterial genomes. Brief Bioinform 2020; 20:1560-1567. [PMID: 29028989 DOI: 10.1093/bib/bbx121] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
PHAST (PHAge Search Tool) and its successor PHASTER (PHAge Search Tool - Enhanced Release) have become two of the most widely used web servers for identifying putative prophages in bacterial genomes. Here we review the main capabilities of these web resources, provide some practical guidance regarding their use and discuss possible future improvements. PHAST, which was first described in 2011, made its debut just as whole bacterial genome sequencing and was becoming inexpensive and relatively routine. PHAST quickly gained popularity among bacterial genome researchers because of its web accessibility, its ease of use along with its enhanced accuracy and rapid processing times. PHASTER, which appeared in 2016, provided a number of much-needed enhancements to the PHAST server, including greater processing speed (to cope with very large submission volumes), increased database sizes, a more modern user interface, improved graphical displays and support for metagenomic submissions. Continuing developments in the field, along with increased interest in automated phage and prophage finding, have already led to several improvements to the PHASTER server and will soon lead to the development of a successor to PHASTER (to be called PHASTEST).
Collapse
|
40
|
Malki K, Rosario K, Sawaya NA, Székely AJ, Tisza MJ, Breitbart M. Prokaryotic and Viral Community Composition of Freshwater Springs in Florida, USA. mBio 2020; 11:e00436-20. [PMID: 32265327 PMCID: PMC7157768 DOI: 10.1128/mbio.00436-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aquifers, which are essential underground freshwater reservoirs worldwide, are understudied ecosystems that harbor diverse forms of microbial life. This study investigated the abundance and composition of prokaryotic and viral communities in the outflow of five springs across northern Florida, USA, as a proxy of microbial communities found in one of the most productive aquifers in the world, the Floridan aquifer. The average abundances of virus-like particles and prokaryotic cells were slightly lower than those reported from other groundwater systems, ranging from 9.6 × 103 ml-1 to 1.1 × 105 ml-1 and 2.2 × 103 ml-1 to 3.4 × 104 ml-1, respectively. Despite all of the springs being fed by the Floridan aquifer, sequencing of 16S rRNA genes and viral metagenomes (viromes) revealed unique communities in each spring, suggesting that groundwater microbial communities are influenced by land usage in recharge zones. The prokaryotic communities were dominated by Bacteria, and though the most abundant phyla (Proteobacteria, Cyanobacteria, and Bacteroidetes) were found in relatively high abundance across springs, variation was seen at finer taxonomic resolution. The viral sequences were most similar to those described from other aquatic environments. Sequencing resulted in the completion of 58 novel viral genomes representing members of the order Caudovirales as well as prokaryotic and eukaryotic single-stranded DNA (ssDNA) viruses. Sequences similar to those of ssDNA viruses were detected at all spring sites and dominated the identifiable sequences at one spring site, showing that these small viruses merit further investigation in groundwater systems.IMPORTANCE Aquifer systems may hold up to 40% of the total microbial biomass on Earth. However, little is known about the composition of microbial communities within these critical freshwater ecosystems. Here, we took advantage of Florida's first-magnitude springs (the highest spring classification based on water discharge), each discharging at least 246 million liters of water each day from the Floridan aquifer system (FAS), to investigate prokaryotic and viral communities from the aquifer. The FAS serves as a major source of potable water in the Southeastern United States, providing water for large cities and citizens in three states. Unfortunately, the health of the FAS and its associated springs has declined in the past few decades due to nutrient loading, increased urbanization and agricultural activity in aquifer recharge zones, and saltwater intrusion. This is the first study to describe the prokaryotic and viral communities in Florida's first-magnitude springs, providing a baseline against which to compare future ecosystem change.
Collapse
Affiliation(s)
- Kema Malki
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Natalie A Sawaya
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Anna J Székely
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
| | - Michael J Tisza
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, Maryland, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| |
Collapse
|
41
|
Garin-Fernandez A, Glöckner FO, Wichels A. Genomic characterization of filamentous phage vB_VpaI_VP-3218, an inducible prophage of Vibrio parahaemolyticus. Mar Genomics 2020; 53:100767. [PMID: 32171709 DOI: 10.1016/j.margen.2020.100767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
The seawater temperature rise can promote the growth of potentially pathogenic Vibrio species. In the North Sea, V. parahaemolyticus strains have been isolated and characterized. These strains contain prophages that may contribute to the emergence of pathogenic strains in the marine environment. Here, we present the genome structure and possible biological functions of the inducible phage vB_VpaI_VP-3218, a novel filamentous phage carried by the V. parahaemolyticus strain VN-3218. Prophages of the strain VN-3218 were induced with mitomycin C and the DNA from the phage induction was sequenced. Two incomplete prophages were identified, only one complete phage genome with length of 11,082 bp was characterized. The phage vB_VpaI_VP-3218 belongs to the Inoviridae family and shows close homology to the Saetivirus genus. This phage can integrate into the chromosomal host genome and carries host-related regions absent in similar phage genomes, suggesting that this phage might integrate in other Vibrio host genomes from the environment. Furthermore, this phage might have a role in pathogenicity due to potential zonula occludens toxin genes. Based on its genomic similarity, the genome of vB_VpaI_VP-3218 phage probably integrates into the lysogen's chromosome and replicates as episome. This study complements prophage induction and bioinformatic studies applied to non-model species of potentially pathogenic Vibrio species. The characterization of this phage provides new insights with respect to the presence of filamentous phages in environmental V. parahaemolyticus strains, which might have a role in the emergence of new pathogenic strains in the North Sea.
Collapse
Affiliation(s)
- Alexa Garin-Fernandez
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Helgoland, Germany; Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Frank Oliver Glöckner
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany; Jacobs University Bremen gGmbH, Bremen, Germany
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Helgoland, Germany
| |
Collapse
|
42
|
Beaulaurier J, Luo E, Eppley JM, Uyl PD, Dai X, Burger A, Turner DJ, Pendelton M, Juul S, Harrington E, DeLong EF. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res 2020; 30:437-446. [PMID: 32075851 PMCID: PMC7111524 DOI: 10.1101/gr.251686.119] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Viruses are the most abundant biological entities on Earth and play key roles in host ecology, evolution, and horizontal gene transfer. Despite recent progress in viral metagenomics, the inherent genetic complexity of virus populations still poses technical difficulties for recovering complete virus genomes from natural assemblages. To address these challenges, we developed an assembly-free, single-molecule nanopore sequencing approach, enabling direct recovery of complete virus genome sequences from environmental samples. Our method yielded thousands of full-length, high-quality draft virus genome sequences that were not recovered using standard short-read assembly approaches. Additionally, our analyses discriminated between populations whose genomes had identical direct terminal repeats versus those with circularly permuted repeats at their termini, thus providing new insight into native virus reproduction and genome packaging. Novel DNA sequences were discovered, whose repeat structures, gene contents, and concatemer lengths suggest they are phage-inducible chromosomal islands, which are packaged as concatemers in phage particles, with lengths that match the size ranges of co-occurring phage genomes. Our new virus sequencing strategy can provide previously unavailable information about the genome structures, population biology, and ecology of naturally occurring viruses and viral parasites.
Collapse
Affiliation(s)
- John Beaulaurier
- Oxford Nanopore Technologies Incorporated, San Francisco, California 94080, USA
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Paul Den Uyl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Xiaoguang Dai
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Andrew Burger
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Daniel J Turner
- Oxford Nanopore Technologies Limited, Oxford, OX4 4DQ, United Kingdom
| | - Matthew Pendelton
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Sissel Juul
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Eoghan Harrington
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822, USA
| |
Collapse
|
43
|
Barylski J, Enault F, Dutilh BE, Schuller MBP, Edwards RA, Gillis A, Klumpp J, Knezevic P, Krupovic M, Kuhn JH, Lavigne R, Oksanen HM, Sullivan MB, Jang HB, Simmonds P, Aiewsakun P, Wittmann J, Tolstoy I, Brister JR, Kropinski AM, Adriaenssens EM. Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. Syst Biol 2020; 69:110-123. [PMID: 31127947 PMCID: PMC7409376 DOI: 10.1093/sysbio/syz036] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.
Collapse
Affiliation(s)
- Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Collegium Biologicum - Umultowska 89, 61-614 Poznań, Poland
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Margo BP Schuller
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud 2-L7.05.12, 1348 Louvain-la-Neuve, Belgium
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Leuven, Belgium
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56 (Viikinkaari 9B), 00014 Helsinki, Finland
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK
| | - Pakorn Aiewsakun
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Johannes Wittmann
- Leibniz-Institut DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894, USA
| | - Andrew M Kropinski
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- Department of Pathobiology, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Evelien M Adriaenssens
- Department of Functional & Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich NR4 7UQ Norwich, UK
| |
Collapse
|
44
|
Bekliz M, Brandani J, Bourquin M, Battin TJ, Peter H. Benchmarking protocols for the metagenomic analysis of stream biofilm viromes. PeerJ 2019; 7:e8187. [PMID: 31879573 PMCID: PMC6927355 DOI: 10.7717/peerj.8187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Viruses drive microbial diversity, function and evolution and influence important biogeochemical cycles in aquatic ecosystems. Despite their relevance, we currently lack an understanding of their potential impacts on stream biofilm structure and function. This is surprising given the critical role of biofilms for stream ecosystem processes. Currently, the study of viruses in stream biofilms is hindered by the lack of an optimized protocol for their extraction, concentration and purification. Here, we evaluate a range of methods to separate viral particles from stream biofilms, and to concentrate and purify them prior to DNA extraction and metagenome sequencing. Based on epifluorescence microscopy counts of viral-like particles (VLP) and DNA yields, we optimize a protocol including treatment with tetrasodium pyrophosphate and ultra-sonication to disintegrate biofilms, tangential-flow filtration to extract and concentrate VLP, followed by ultracentrifugation in a sucrose density gradient to isolate VLP from the biofilm slurry. Viromes derived from biofilms sampled from three different streams were dominated by Siphoviridae, Myoviridae and Podoviridae and provide first insights into the viral diversity of stream biofilms. Our protocol optimization provides an important step towards a better understanding of the ecological role of viruses in stream biofilms.
Collapse
Affiliation(s)
- Meriem Bekliz
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Jade Brandani
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Massimo Bourquin
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Tom J. Battin
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Garin-Fernandez A, Wichels A. Looking for the hidden: Characterization of lysogenic phages in potential pathogenic Vibrio species from the North Sea. Mar Genomics 2019; 51:100725. [PMID: 31757758 DOI: 10.1016/j.margen.2019.100725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
The incidence of potentially pathogenic Vibrio species in the marine environment around Europe, is correlated with the increase of surface seawater temperature. Despite their importance, little is known about the trigger factors of potential outbreak-causing strains in this region. As prophages may compose a major reservoir of virulence traits in marine ecosystems, this study aims to identify and characterize the genomes of lysogenic Vibrio phages exemplarily from the North Sea. Therefore, 31 isolates from potentially pathogenic Vibrio species from the North Sea were screened for inducible prophages with mitomycin C. From them, one V. cholerae isolate and 40% V. parahaemolyticus isolates carried inducible prophages. Three lysogenic phages were selected for genomic characterization. The phage vB_VpaM_VP-3212 (unclassified Myoviridae) has a genome with a length of 36.81 Kbp and 55 CDS were identified. This lysogenic phage of V. parahaemolyticus contains genes related to replicative transposition mechanism, such as transposase and mobile elements similar to Mu-like viruses. The phage vB_VpaP_VP-3220 (Podoviridae, unclassified Nona33virus) has a genome length of 58,14 Kbp and contains 63 CDS. This V. parahaemolyticus phage probably uses a headful (pac) packaging replication mechanism. The phage vB_VchM_VP-3213 (unclassified Myoviridae) has a genome with a length of 41 Kbp and 63 CDS were identified, including integrase and Xer system for lysogenic recombination. This lysogenic phage of V. cholerae has similar genomic features as lambdoid phages. Although no pathogenicity genes were identified, their similarity among other phage genomes indicates that these phages can affect the development of pathogenic Vibrio strains in marine environments.
Collapse
Affiliation(s)
- Alexa Garin-Fernandez
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany; Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany
| |
Collapse
|
46
|
Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. MICROBIOME 2019; 7:135. [PMID: 31630686 DOI: 10.1101/670067v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 05/22/2023]
Abstract
The persistent inertia in the ability to culture environmentally abundant microbes from aquatic ecosystems represents an obstacle in disentangling the complex web of ecological interactions spun by a diverse assortment of participants (pro- and eukaryotes and their viruses). In aquatic microbial communities, the numerically most abundant actors, the viruses, remain the most elusive, and especially in freshwaters their identities and ecology remain unknown. Here, using ultra-deep metagenomic sequencing from pelagic freshwater habitats, we recovered complete genomes of > 2000 phages, including small "miniphages" and large "megaphages" infecting iconic freshwater prokaryotic lineages. For instance, abundant freshwater Actinobacteria support infection by a very broad size range of phages (13-200 Kb). We describe many phages encoding genes that likely afford protection to their host from reactive oxygen species (ROS) in the aquatic environment and in the oxidative burst in protist phagolysosomes (phage-mediated ROS defense). Spatiotemporal abundance analyses of phage genomes revealed evanescence as the primary dynamic in upper water layers, where they displayed short-lived existences. In contrast, persistence was characteristic for the deeper layers where many identical phage genomes were recovered repeatedly. Phage and host abundances corresponded closely, with distinct populations displaying preferential distributions in different seasons and depths, closely mimicking overall stratification and mixis.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
47
|
Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. MICROBIOME 2019; 7:135. [PMID: 31630686 PMCID: PMC6802176 DOI: 10.1186/s40168-019-0752-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 05/20/2023]
Abstract
The persistent inertia in the ability to culture environmentally abundant microbes from aquatic ecosystems represents an obstacle in disentangling the complex web of ecological interactions spun by a diverse assortment of participants (pro- and eukaryotes and their viruses). In aquatic microbial communities, the numerically most abundant actors, the viruses, remain the most elusive, and especially in freshwaters their identities and ecology remain unknown. Here, using ultra-deep metagenomic sequencing from pelagic freshwater habitats, we recovered complete genomes of > 2000 phages, including small "miniphages" and large "megaphages" infecting iconic freshwater prokaryotic lineages. For instance, abundant freshwater Actinobacteria support infection by a very broad size range of phages (13-200 Kb). We describe many phages encoding genes that likely afford protection to their host from reactive oxygen species (ROS) in the aquatic environment and in the oxidative burst in protist phagolysosomes (phage-mediated ROS defense). Spatiotemporal abundance analyses of phage genomes revealed evanescence as the primary dynamic in upper water layers, where they displayed short-lived existences. In contrast, persistence was characteristic for the deeper layers where many identical phage genomes were recovered repeatedly. Phage and host abundances corresponded closely, with distinct populations displaying preferential distributions in different seasons and depths, closely mimicking overall stratification and mixis.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
48
|
Dávila-Ramos S, Castelán-Sánchez HG, Martínez-Ávila L, Sánchez-Carbente MDR, Peralta R, Hernández-Mendoza A, Dobson ADW, Gonzalez RA, Pastor N, Batista-García RA. A Review on Viral Metagenomics in Extreme Environments. Front Microbiol 2019; 10:2403. [PMID: 31749771 PMCID: PMC6842933 DOI: 10.3389/fmicb.2019.02403] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Viruses are the most abundant biological entities in the biosphere, and have the ability to infect Bacteria, Archaea, and Eukaryotes. The virome is estimated to be at least ten times more abundant than the microbiome with 107 viruses per milliliter and 109 viral particles per gram in marine waters and sediments or soils, respectively. Viruses represent a largely unexplored genetic diversity, having an important role in the genomic plasticity of their hosts. Moreover, they also play a significant role in the dynamics of microbial populations. In recent years, metagenomic approaches have gained increasing popularity in the study of environmental viromes, offering the possibility of extending our knowledge related to both virus diversity and their functional characterization. Extreme environments represent an interesting source of both microbiota and their virome due to their particular physicochemical conditions, such as very high or very low temperatures and >1 atm hydrostatic pressures, among others. Despite the fact that some progress has been made in our understanding of the ecology of the microbiota in these habitats, few metagenomic studies have described the viromes present in extreme ecosystems. Thus, limited advances have been made in our understanding of the virus community structure in extremophilic ecosystems, as well as in their biotechnological potential. In this review, we critically analyze recent progress in metagenomic based approaches to explore the viromes in extreme environments and we discuss the potential for new discoveries, as well as methodological challenges and perspectives.
Collapse
Affiliation(s)
- Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Hugo G. Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Raúl Peralta
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Ramón A. Gonzalez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
49
|
De Corte D, Martínez JM, Cretoiu MS, Takaki Y, Nunoura T, Sintes E, Herndl GJ, Yokokawa T. Viral Communities in the Global Deep Ocean Conveyor Belt Assessed by Targeted Viromics. Front Microbiol 2019; 10:1801. [PMID: 31496997 PMCID: PMC6712177 DOI: 10.3389/fmicb.2019.01801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022] Open
Abstract
Viruses are an abundant, diverse and dynamic component of marine and terrestrial ecosystems. In the ocean, viruses play a key role in the biogeochemical cycles and controlling microbial abundance, diversity and evolution. Recent metagenomics studies assessed the structure of the viral community in the upper ocean. However, little is known about the compositional changes in viral communities along the deep ocean conveyor belt. To assess potential changes in the viral community in the global deep-water circulation system, water samples were collected in the core of the North Atlantic Deep Water (NADW) (∼2,500 m) and Pacific Antarctic Bottom Water (∼4,000 m). Microbial and viral abundance were evaluated by flow cytometry. Subsequently, flow cytometry was used to sort virus-like particles and next generation sequencing was applied to build DNA libraries from the sorted virus populations. The viral communities were highly diverse across different oceanic regions with high dissimilarity between samples. Only 18% of the viral protein clusters were shared between the NADW and the Pacific Antarctic Bottom Water. Few viral groups, mainly associated with uncultured environmental and uncultured Mediterranean viruses were ubiquitously distributed along the global deep-water circulation system. Thus, our results point to a few groups of widely distributed abundant viruses in addition to the presence of rare and diverse types of viruses at a local scale.
Collapse
Affiliation(s)
- Daniele De Corte
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | | | | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Eva Sintes
- Department of Limnology and Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria.,Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma, Spain
| | - Gerhard J Herndl
- Department of Limnology and Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Utrecht, Netherlands
| | - Taichi Yokokawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
50
|
Trubl G, Roux S, Solonenko N, Li YF, Bolduc B, Rodríguez-Ramos J, Eloe-Fadrosh EA, Rich VI, Sullivan MB. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. PeerJ 2019; 7:e7265. [PMID: 31309007 PMCID: PMC6612421 DOI: 10.7717/peerj.7265] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022] Open
Abstract
Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at protocols.io, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.
Collapse
Affiliation(s)
- Gareth Trubl
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Current affiliation: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Simon Roux
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, United States of America
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Yueh-Fen Li
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Josué Rodríguez-Ramos
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Current affiliation: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Emiley A Eloe-Fadrosh
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, United States of America
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|