1
|
Michoud G, Peter H, Busi SB, Bourquin M, Kohler TJ, Geers A, Ezzat L, Battin TJ. Mapping the metagenomic diversity of the multi-kingdom glacier-fed stream microbiome. Nat Microbiol 2025; 10:217-230. [PMID: 39747693 DOI: 10.1038/s41564-024-01874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
Glacier-fed streams (GFS) feature among Earth's most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms. A total of 2,855 bacterial MAGs were characterized by diverse strategies to exploit inorganic and organic energy sources, in part via functional redundancy and mixotrophy. We show that biofilms probably become more complex and switch from chemoautotrophy to heterotrophy as algal biomass increases in GFS owing to glacier shrinkage. Our MAG compendium sheds light on the success of microbial life in GFS and provides a resource for future research on a microbiome potentially impacted by climate change.
Collapse
Affiliation(s)
- Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, ENAC, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland.
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, ENAC, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | | | - Massimo Bourquin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, ENAC, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Tyler J Kohler
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Aileen Geers
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, ENAC, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Leila Ezzat
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Tom J Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, ENAC, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland.
| |
Collapse
|
2
|
Stojan I, Šantić D, Villena-Alemany C, Trumbić Ž, Matić F, Vrdoljak Tomaš A, Lepen Pleić I, Piwosz K, Kušpilić G, Ninčević Gladan Ž, Šestanović S, Šolić M. Ecology of aerobic anoxygenic phototrophs on a fine-scale taxonomic resolution in Adriatic Sea unravelled by unsupervised neural network. ENVIRONMENTAL MICROBIOME 2024; 19:28. [PMID: 38685092 PMCID: PMC11059731 DOI: 10.1186/s40793-024-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Aerobic anoxygenic phototrophs are metabolically highly active, diverse and widespread polyphyletic members of bacterioplankton whose photoheterotrophic capabilities shifted the paradigm about simplicity of the microbial food chain. Despite their considerable contribution to the transformation of organic matter in marine environments, relatively little is still known about their community structure and ecology at fine-scale taxonomic resolution. Up to date, there is no comprehensive (i.e. qualitative and quantitative) analysis of their community composition in the Adriatic Sea. RESULTS Analysis was based on pufM gene metabarcoding and quantitative FISH-IR approach with the use of artificial neural network. Significant seasonality was observed with regards to absolute abundances (maximum average abundances in spring 2.136 ± 0.081 × 104 cells mL-1, minimum in summer 0.86 × 104 cells mL-1), FISH-IR groups (Roseobacter clade prevalent in autumn, other Alpha- and Gammaproteobacteria in summer) and pufM sequencing data agglomerated at genus-level. FISH-IR results revealed heterogeneity with the highest average relative contribution of AAPs assigned to Roseobacter clade (37.66%), followed by Gammaproteobacteria (35.25%) and general Alphaproteobacteria (31.15%). Community composition obtained via pufM sequencing was dominated by Gammaproteobacteria clade NOR5/OM60, specifically genus Luminiphilus, with numerous rare genera present in relative abundances below 1%. The use of artificial neural network connected this community to biotic (heterotrophic bacteria, HNA and LNA bacteria, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, bacterial production) and abiotic environmental factors (temperature, salinity, chlorophyll a and nitrate, nitrite, ammonia, total nitrogen, silicate, and orthophosphate concentration). A type of neural network, neural gas analysis at order-, genus- and ASV-level, resulted in five distinct best matching units (representing particular environments) and revealed that high diversity was generally independent of temperature, salinity, and trophic status of the environment, indicating a potentially dissimilar behaviour of aerobic anoxygenic phototrophs compared to the general bacterioplankton. CONCLUSION This research represents the first comprehensive analysis of aerobic anoxygenic phototrophs in the Adriatic Sea on a trophic gradient during a year-round period. This study is also one of the first reports of their genus-level ecology linked to biotic and abiotic environmental factors revealed by unsupervised neural network algorithm, paving the way for further research of substantial contribution of this important bacterial functional group to marine ecosystems.
Collapse
Affiliation(s)
- Iva Stojan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Danijela Šantić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia.
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Frano Matić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Ana Vrdoljak Tomaš
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Kasia Piwosz
- Department of Fisheries, Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Grozdan Kušpilić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | | | - Stefanija Šestanović
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Mladen Šolić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| |
Collapse
|
3
|
Koblížek M, Ferrera I, Kolářová E, Duhamel S, Popendorf KJ, Gasol JM, Van Mooy BAS. Growth and mortality of aerobic anoxygenic phototrophs in the North Pacific Subtropical Gyre. Appl Environ Microbiol 2024; 90:e0003224. [PMID: 38551354 PMCID: PMC11022572 DOI: 10.1128/aem.00032-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/08/2024] [Indexed: 04/18/2024] Open
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria harvest light energy using bacteriochlorophyll-containing reaction centers to supplement their mostly heterotrophic metabolism. While their abundance and growth have been intensively studied in coastal environments, much less is known about their activity in oligotrophic open ocean regions. Therefore, we combined in situ sampling in the North Pacific Subtropical Gyre, north of O'ahu island, Hawaii, with two manipulation experiments. Infra-red epifluorescence microscopy documented that AAP bacteria represented approximately 2% of total bacteria in the euphotic zone with the maximum abundance in the upper 50 m. They conducted active photosynthetic electron transport with maximum rates up to 50 electrons per reaction center per second. The in situ decline of bacteriochlorophyll concentration over the daylight period, an estimate of loss rates due to predation, indicated that the AAP bacteria in the upper 50 m of the water column turned over at rates of 0.75-0.90 d-1. This corresponded well with the specific growth rate determined in dilution experiments where AAP bacteria grew at a rate 1.05 ± 0.09 d-1. An amendment of inorganic nitrogen to obtain N:P = 32 resulted in a more than 10 times increase in AAP abundance over 6 days. The presented data document that AAP bacteria are an active part of the bacterioplankton community in the oligotrophic North Pacific Subtropical Gyre and that their growth was mostly controlled by nitrogen availability and grazing pressure.IMPORTANCEMarine bacteria represent a complex assembly of species with different physiology, metabolism, and substrate preferences. We focus on a specific functional group of marine bacteria called aerobic anoxygenic phototrophs. These photoheterotrophic organisms require organic carbon substrates for growth, but they can also supplement their metabolic needs with light energy captured by bacteriochlorophyll. These bacteria have been intensively studied in coastal regions, but rather less is known about their distribution, growth, and mortality in the oligotrophic open ocean. Therefore, we conducted a suite of measurements in the North Pacific Subtropical Gyre to determine the distribution of these organisms in the water column and their growth and mortality rates. A nutrient amendment experiment showed that aerobic anoxygenic phototrophs were limited by inorganic nitrogen. Despite this, they grew more rapidly than average heterotrophic bacteria, but their growth was balanced by intense grazing pressure.
Collapse
Affiliation(s)
- Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science, Třeboň, Czechia
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO-CSIC), Fuengirola, Málaga, Spain
| | - Eva Kolářová
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science, Třeboň, Czechia
| | - Solange Duhamel
- Department of Cellular and Molecular Biology, University of Arizona, Tucson, Arizona, USA
| | - Kimberly J. Popendorf
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Coral Gables, Florida, USA
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
4
|
Deulofeu-Capo O, Sebastián M, Auladell A, Cardelús C, Ferrera I, Sánchez O, Gasol JM. Growth rates of marine prokaryotes are extremely diverse, even among closely related taxa. ISME COMMUNICATIONS 2024; 4:ycae066. [PMID: 38800126 PMCID: PMC11126302 DOI: 10.1093/ismeco/ycae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Marine prokaryotes play crucial roles in ocean biogeochemical cycles, being their contribution strongly influenced by their growth rates. Hence, elucidating the variability and phylogenetic imprint of marine prokaryotes' growth rates are crucial for better determining the role of individual taxa in biogeochemical cycles. Here, we estimated prokaryotic growth rates at high phylogenetic resolution in manipulation experiments using water from the northwestern Mediterranean Sea. Experiments were run in the four seasons with different treatments that reduced growth limiting factors: predators, nutrient availability, viruses, and light. Single-amplicon sequence variants (ASVs)-based growth rates were calculated from changes in estimated absolute abundances using total prokaryotic abundance and the proportion of each individual ASV. The trends obtained for growth rates in the different experiments were consistent with other estimates based on total cell-counts, catalyzed reporter deposition fluorescence in situ hybridization subcommunity cell-counts or metagenomic-operational taxonomic units (OTUs). Our calculations unveil a broad range of growth rates (0.3-10 d-1) with significant variability even within closely related ASVs. Likewise, the impact of growth limiting factors changed over the year for individual ASVs. High numbers of responsive ASVs were shared between winter and spring seasons, as well as throughout the year in the treatments with reduced nutrient limitation and viral pressure. The most responsive ASVs were rare in the in situ communities, comprising a large pool of taxa with the potential to rapidly respond to environmental changes. Essentially, our results highlight the lack of phylogenetic coherence in the range of growth rates observed, and differential responses to the various limiting factors, even for closely related taxa.
Collapse
Affiliation(s)
- Ona Deulofeu-Capo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Adrià Auladell
- Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Catalunya, Spain
| | - Clara Cardelús
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Puerto Pesquero s/n, Fuengirola 29640, Málaga, Spain
| | - Olga Sánchez
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya 08193, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| |
Collapse
|
5
|
Zhang Z, Liu Y, Zhao W, Ji M. Radiation impacts gene redundancy and biofilm regulation of cryoconite microbiomes in Northern Hemisphere glaciers. MICROBIOME 2023; 11:228. [PMID: 37848997 PMCID: PMC10583317 DOI: 10.1186/s40168-023-01621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/14/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Glaciers harbor diverse microorganisms adapted to extreme conditions with high radiation, fluctuating temperature, and low nutrient availability. In glacial ecosystems, cryoconite granules are hotspots of microbial metabolic activity and could influences the biogeochemical cycle on glacier surface. Climate change could influence glacier dynamics by changing regional meteorological factors (e.g., radiation, precipitation, temperature, wind, and evaporation). Moreover, meteorological factors not only influence glacier dynamics but also directly or indirectly influence cryoconite microbiomes. However, the relationship of the meteorological factors and cryoconite microbiome are poorly understood. RESULTS Here, we collected 88 metagenomes from 26 glaciers distributed in the Northern Hemisphere with corresponding public meteorological data to reveal the relationship between meteorological factors and variation of cryoconite microbiome. Our results showed significant differences in taxonomic and genomic characteristics between cryoconite generalists and specialists. Additionally, we found that the biogeography of both generalists and specialists was influenced by solar radiation. Specialists with smaller genome size and lower gene redundancy were more abundant under high radiation stress, implying that streamlined genomes are more adapted to high radiation conditions. Network analysis revealed that biofilm regulation is a ubiquitous function in response to radiation stress, and hub genes were associated with the formation and dispersion of biofilms. CONCLUSION These findings enhance our understanding of glacier cryoconite microbiome variation on a hemispheric scale and indicate the response mechanisms to radiation stress, which will support forecasts of the ecological consequences of future climate change. Video Abstract.
Collapse
Affiliation(s)
- Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mukan Ji
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
6
|
He J, Jia M, Wang J, Wu Z, Shao S, He Y, Zhang X, Buttino I, Liao Z, Yan X. Mytilus farming drives higher local bacterial diversity and facilitates the accumulation of aerobic anoxygenic photoheterotrophic related genera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158861. [PMID: 36419274 DOI: 10.1016/j.scitotenv.2022.158861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Research to assess the impacts of mariculture on the microbiota of the surrounding environment is still inadequate. Here, we examined the effects of Mytilus coruscus farming on the diversity of bacterial community in surrounding seawater using field investigations and indoor simulations, focusing on the variation of members of aerobic anoxygenic photoheterotrophic (AAP) bacteria. In the field, Mytilus farming shaped bacterial community and significantly increased their diversity, including biomass, OTUs, Shannon, relative abundance, number of enriched species, as compared with the non-farming area. Higher abundance of AAP related genera was observed in the Mytilus farming seawater. Under the controlled condition, the presence of M. coruscus significantly shaped the bacterial community composition and caused species composition to become similar after 10 days. Furthermore, the presence of M. coruscus consistently strengthened local diversity in seawater bacterial community, with linkages to the recruitment of AAP members as well. In addition, the tissue-related composition of M. coruscus significantly differed from those in seawater. Our findings highlight a ecological importance of Mytilus farming, as process that shape surrounding water-cultured bacterial community and offer experimental evidence for the accumulation of AAP-related genera in aquaculture systems.
Collapse
Affiliation(s)
- Jianyu He
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Mengxue Jia
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Jianxin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ziqi Wu
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Shuai Shao
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Yutang He
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Zhi Liao
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Xiaojun Yan
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China.
| |
Collapse
|
7
|
Zhao Z. The microbial origin of marine autochthonous fluorescent dissolved organic matter. Front Microbiol 2023; 14:1152795. [PMID: 37125160 PMCID: PMC10130435 DOI: 10.3389/fmicb.2023.1152795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Zhao Zhao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- *Correspondence: Zhao Zhao
| |
Collapse
|
8
|
Weigel BL, Miranda KK, Fogarty EC, Watson AR, Pfister CA. Functional Insights into the Kelp Microbiome from Metagenome-Assembled Genomes. mSystems 2022; 7:e0142221. [PMID: 35642511 PMCID: PMC9238374 DOI: 10.1128/msystems.01422-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic organisms evolved in a microbial world and often have intimate associations with diverse bacterial groups. Kelp, brown macroalgae in the order Laminariales, play a vital role in coastal ecosystems, yet we know little about the functional role of the microbial symbionts that cover their photosynthetic surfaces. Here, we reconstructed 79 bacterial metagenome-assembled genomes (MAGs) from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine their metabolic potential and functional roles. Despite the annual life history of bull kelp, nearly half of the bacterial MAGs were detected across multiple years. Diverse members of the kelp microbiome, spanning 6 bacterial phyla, contained genes for transporting and assimilating dissolved organic matter (DOM), which is secreted by kelp in large quantities and likely fuels the metabolism of these heterotrophic bacteria. Bacterial genomes also contained alginate lyase and biosynthesis genes, involved in polysaccharide degradation and biofilm formation, respectively. Kelp-associated bacterial genomes contained genes for dissimilatory nitrate reduction and urea hydrolysis, likely providing a reduced source of nitrogen to the host kelp. The genome of the most abundant member of the kelp microbiome and common macroalgal symbiont, Granulosicoccus, contained a full suite of genes for synthesizing cobalamin (vitamin B12), suggesting that kelp-associated bacteria have the potential to provide their host kelp with vitamins. Finally, kelp-associated Granulosicoccus contained genes that typify the aerobic anoxygenic phototrophic bacteria, including genes for bacteriochlorophyll synthesis and photosystem II reaction center proteins, making them the first known photoheterotrophic representatives of this genus. IMPORTANCE Kelp (brown algae in the order Laminariales) are foundational species that create essential habitat in temperate and arctic coastal marine ecosystems. These photosynthetic giants host millions of microbial taxa whose functions are relatively unknown, despite their potential importance for host-microbe interactions and nutrient cycling in kelp forest ecosystems. We reconstructed bacterial genomes from metagenomic samples collected from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine the functional gene content of specific members of the kelp microbiome. These bacterial genomes spanned 6 phyla and 19 families and included common alga-associated microbial symbionts such as Granulosicoccus. Key functions encoded in kelp-associated bacterial genomes included dissolved organic matter assimilation, alginate metabolism, vitamin B12 biosynthesis, and nitrogen reduction from nitrate and urea to ammonium, potentially providing the host kelp with vitamins and reduced nitrogen.
Collapse
Affiliation(s)
- Brooke L. Weigel
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA
| | | | - Emily C. Fogarty
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Andrea R. Watson
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Catherine A. Pfister
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Gazulla CR, Auladell A, Ruiz-González C, Junger PC, Royo-Llonch M, Duarte CM, Gasol JM, Sánchez O, Ferrera I. Global diversity and distribution of aerobic anoxygenic phototrophs in the tropical and subtropical oceans. Environ Microbiol 2022; 24:2222-2238. [PMID: 35084095 DOI: 10.1111/1462-2920.15835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023]
Abstract
The aerobic anoxygenic phototrophic (AAP) bacteria are common in most marine environments but their global diversity and biogeography remain poorly characterized. Here, we analyzed AAP communities across 113 globally-distributed surface ocean stations sampled during the Malaspina Expedition in the tropical and subtropical ocean. By means of amplicon sequencing of the pufM gene, a genetic marker for this functional group, we show that AAP communities along the surface ocean were mainly composed of members of the Halieaceae (Gammaproteobacteria), which were adapted to a large range of environmental conditions, and of different clades of the Alphaproteobacteria, which seemed to dominate under particular circumstances, such as in the oligotrophic gyres. AAP taxa were spatially structured within each of the studied oceans, with communities from adjacent stations sharing more taxonomic similarities. AAP communities were composed of a large pool of rare members and several habitat specialists. When compared to the surface ocean prokaryotic and picoeukaryotic communities, it appears that AAP communities display an idiosyncratic global biogeographical pattern, dominated by selection processes and less influenced by dispersal limitation. Our study contributes to the understanding of how AAP communities are distributed in the horizontal dimension and the mechanisms underlying their distribution across the global surface ocean.
Collapse
Affiliation(s)
- Carlota R Gazulla
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, 08193, Spain.,Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain
| | - Clara Ruiz-González
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain
| | - Pedro C Junger
- Department of Hydrobiology (DHB), Laboratory of Microbial Processes and Biodiversity (LMPB), Universidade Federal de São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Marta Royo-Llonch
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain.,Centre for Marine Ecosystems Research, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Olga Sánchez
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, 08193, Spain
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, 29640 Fuengirola, Málaga, Spain
| |
Collapse
|
10
|
Lineage-Specific Growth Curves Document Large Differences in Response of Individual Groups of Marine Bacteria to the Top-Down and Bottom-Up Controls. mSystems 2021; 6:e0093421. [PMID: 34581594 PMCID: PMC8547455 DOI: 10.1128/msystems.00934-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Marine bacterioplankton represent a diverse assembly of species differing largely in their abundance, physiology, metabolic activity, and role in microbial food webs. To analyze their sensitivity to bottom-up and top-down controls, we performed a manipulation experiment where grazers were removed, with or without the addition of phosphate. Using amplicon-reads normalization by internal standard (ARNIS), we reconstructed growth curves for almost 300 individual phylotypes. Grazer removal caused a rapid growth of most bacterial groups, which grew at rates of 0.6 to 3.5 day−1, with the highest rates (>4 day−1) recorded among Rhodobacteraceae, Oceanospirillales, Alteromonadaceae, and Arcobacteraceae. Based on their growth response, the phylotypes were divided into three basic groups. Most of the phylotypes responded positively to both grazer removal as well as phosphate addition. The second group (containing, e.g., Rhodobacterales and Rhizobiales) responded to the grazer removal but not to the phosphate addition. Finally, some clades, such as SAR11 and Flavobacteriaceae, responded only to phosphate amendment but not to grazer removal. Our results show large differences in bacterial responses to experimental manipulations at the phylotype level and document different life strategies of marine bacterioplankton. In addition, growth curves of 130 phylogroups of aerobic anoxygenic phototrophs were reconstructed based on changes of the functional pufM gene. The use of functional genes together with rRNA genes may significantly expand the scientific potential of the ARNIS technique. IMPORTANCE Growth is one of the main manifestations of life. It is assumed generally that bacterial growth is constrained mostly by nutrient availability (bottom-up control) and grazing (top-down control). Since marine bacteria represent a very diverse assembly of species with different metabolic properties, their growth characteristics also largely differ accordingly. Currently, the growth of marine microorganisms is typically evaluated using microscopy in combination with fluorescence in situ hybridization (FISH). However, these laborious techniques are limited in their throughput and taxonomical resolution. Therefore, we combined a classical manipulation experiment with next-generation sequencing to resolve the growth dynamics of almost 300 bacterial phylogroups in the coastal Adriatic Sea. The analysis documented that most of the phylogroups responded positively to both grazer removal and phosphate addition. We observed significant differences in growth kinetics among closely related species, which could not be distinguished by the classical FISH technique.
Collapse
|
11
|
Tanvir RU, Zhang J, Canter T, Chen D, Lu J, Hu Z. Harnessing Solar Energy using Phototrophic Microorganisms: A Sustainable Pathway to Bioenergy, Biomaterials, and Environmental Solutions. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2021; 146:1-111181. [PMID: 34526853 PMCID: PMC8437043 DOI: 10.1016/j.rser.2021.111181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phototrophic microorganisms (microbial phototrophs) use light as an energy source to carry out various metabolic processes producing biomaterials and bioenergy and supporting their own growth. Among them, microalgae and cyanobacteria have been utilized extensively for bioenergy, biomaterials, and environmental applications. Their superior photosynthetic efficiency, lipid content, and shorter cultivation time compared to terrestrial biomass make them more suitable for efficient production of bioenergy and biomaterials. Other phototrophic microorganisms, especially anoxygenic phototrophs, demonstrated the ability to survive and flourish while producing renewable energy and high-value products under harsh environmental conditions. This review presents a comprehensive overview of microbial phototrophs on their (i) production of bioenergy and biomaterials, (ii) emerging and innovative applications for environmental conservation, mitigation, and remediation, and (iii) physical, genetic, and metabolic pathways to improve light harvesting and biomass/biofuel/biomaterial production. Both physical (e.g., incremental irradiation) and genetic approaches (e.g., truncated antenna) are implemented to increase the light-harvesting efficiency. Increases in biomass yield and metabolic products are possible through the manipulation of metabolic pathways and selection of a proper strain under optimal cultivation conditions and downstream processing, including harvesting, extraction, and purification. Finally, the current barriers in harnessing solar energy using phototrophic microorganisms are presented, and future research perspectives are discussed, such as integrating phototrophic microorganisms with emerging technologies.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Timothy Canter
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dick Chen
- Dual Enrollment Program, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency (EPA), Cincinnati, Ohio, 45268, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
12
|
Tang K, Yuan B, Jia L, Pan X, Feng F, Jin K. Spatial and temporal distribution of aerobic anoxygenic phototrophic bacteria: key functional groups in biological soil crusts. Environ Microbiol 2021; 23:3554-3567. [PMID: 33687799 DOI: 10.1111/1462-2920.15459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/07/2021] [Indexed: 11/27/2022]
Abstract
Several significant ecosystem services are performed by biological soil crusts (BSCs) in drylands, wherein photoautotrophic microorganisms are commonly critical contributors. However, aerobic anoxygenic phototrophic bacteria (AAnPB) are rarely reported in BSCs, despite being the second major branch of Earth's phototrophic microbes. Here, we collected different types of BSCs and their subsoils from temperate deserts, investigated distributions of AAnPB communities among BSCs using cultivation and high-throughput sequencing approaches, predicted keystone species by co-occurrence network analysis, and verified their effects on BSCs formation through microcosm experiments. The absolute abundances and diversity of AAnPB were higher in BSCs and were closely related with BSCs successional stages, as well as soil organic carbon contents. AAnPB communities in both BSCs and their subsoils were dominated by Proteobacteria and Alphaproteobacteria, specifically Acetobacteraceae, Rhodospirillaceae, Roseiflexaceae, Sphingomonadaceae and Caulobacteraceae families. Mean annual precipitation, pH and available nutrients were the primary factors that shaped AAnPB community structures. The predicted keystone species belonged to the families Acetobacteraceae, Rhodospirillaceae and Sphingomonadanceae. Microcosm experiments demonstrated that inoculation with strains from the three families greatly accelerated the formation and development of BSCs. These observations suggest that AAnPB are likely important functional groups in BSCs that significantly contribute to their formation and important ecosystem services.
Collapse
Affiliation(s)
- Kai Tang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot, 010010, China.,Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bo Yuan
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,College of Life Science, Inner Mongolia Normal University, Hohhot, 010018, China
| | - Lijuan Jia
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot, 010010, China.,Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xin Pan
- College of Computer and information Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fuying Feng
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Ke Jin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot, 010010, China
| |
Collapse
|
13
|
Kanamuro M, Sato-Takabe Y, Muramatsu S, Hirose S, Muramatsu Y, Takaichi S, Hanada S. Litoreibacter roseus sp. nov., a novel bacteriochlorophyll a-containing bacterium. Int J Syst Evol Microbiol 2021; 71. [PMID: 33661089 DOI: 10.1099/ijsem.0.004679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly aerobic, bacteriochlorophyll (BChl) a-containing alphaproteobacterium, designated strain K6T, was isolated from seawater around an aquaculture site in the Uwa Sea in Japan. The novel strain grew optimally at 30 °C at pH 7.0-7.5 and in the presence of 2.0 % (w/v) NaCl. The nonmotile and coccoid or rod-shaped cells formed pink-pigmented colonies on agar plates containing organic compounds. Cells showed an in vivo absorption maximum at 870 nm in the near-infrared region, indicating the presence of BChl a in the light-harvesting 1 complex. The new bacterial strain was Gram-stain-negative and oxidase- and catalase-positive. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain K6T was closely related to species in the genus Litoreibacter. The closest phylogenetic relatives of strain K6T were Litoreibacter ponti GJSW-31T (98.56 % sequence similarity), Litoreibacter janthinus KMM 3842T (97.63 %) and Litoreibacter albidus KMM 3851T (96.88 %). The G+C content of the genomic DNA was 58.26 mol%. The average nucleotide identity value of strain K6T with the type strain of L. ponti was 77.16 % (SD 4.79 %). The digital DNA-DNA hybridization value of strain K6T with the type strain of L. ponti was 19.40 %. The respiratory quinone was ubiquinone-10. The major cellular fatty acids were C18 : 1 ω7c, C16 : 0 and 11-methyl C18 : 1 ω7c. The dominant polar lipids were phosphatidylcholine and phosphatidylglycerol. On the basis of the genetic and phenotypic data obtained in the present study, we propose a new species in the genus Litoreibacter: Litoreibacter roseus sp. nov., whose type strain is K6T (=DSM 110109T=NBRC 114114T). Strain K6T represents the first confirmed species that produces BChl a within the genus Litoreibacter.
Collapse
Affiliation(s)
- Masataka Kanamuro
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yuki Sato-Takabe
- Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan.,Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - So Muramatsu
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Setsuko Hirose
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yuki Muramatsu
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
14
|
Baker KD, Kellogg CTE, McClelland JW, Dunton KH, Crump BC. The Genomic Capabilities of Microbial Communities Track Seasonal Variation in Environmental Conditions of Arctic Lagoons. Front Microbiol 2021; 12:601901. [PMID: 33643234 PMCID: PMC7906997 DOI: 10.3389/fmicb.2021.601901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
In contrast to temperate systems, Arctic lagoons that span the Alaska Beaufort Sea coast face extreme seasonality. Nine months of ice cover up to ∼1.7 m thick is followed by a spring thaw that introduces an enormous pulse of freshwater, nutrients, and organic matter into these lagoons over a relatively brief 2–3 week period. Prokaryotic communities link these subsidies to lagoon food webs through nutrient uptake, heterotrophic production, and other biogeochemical processes, but little is known about how the genomic capabilities of these communities respond to seasonal variability. Replicate water samples from two lagoons and one coastal site near Kaktovik, AK were collected in April (full ice cover), June (ice break up), and August (open water) to represent winter, spring, and summer, respectively. Samples were size fractionated to distinguish free-living and particle-attached microbial communities. Multivariate analysis of metagenomes indicated that seasonal variability in gene abundances was greater than variability between size fractions and sites, and that June differed significantly from the other months. Spring (June) gene abundances reflected the high input of watershed-sourced nutrients and organic matter via spring thaw, featuring indicator genes for denitrification possibly linked to greater organic carbon availability, and genes for processing phytoplankton-derived organic matter associated with spring blooms. Summer featured fewer indicator genes, but had increased abundances of anoxygenic photosynthesis genes, possibly associated with elevated light availability. Winter (April) gene abundances suggested low energy inputs and autotrophic bacterial metabolism, featuring indicator genes for chemoautotrophic carbon fixation, methane metabolism, and nitrification. Winter indicator genes for nitrification belonged to Thaumarchaeota and Nitrosomonadales, suggesting these organisms play an important role in oxidizing ammonium during the under-ice period. This study shows that high latitude estuarine microbial assemblages shift metabolic capabilities as they change phylogenetic composition between these extreme seasons, providing evidence that these communities may be resilient to large hydrological events in a rapidly changing Arctic.
Collapse
Affiliation(s)
- Kristina D Baker
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | | - James W McClelland
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, United States
| | - Kenneth H Dunton
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
15
|
Tang K, Yang LH, Chen YP, Tao Y, Feng FY, Meng JY. Aerophototrophica crusticola gen. nov., sp. nov., isolated from desert biocrusts. Int J Syst Evol Microbiol 2021; 71. [PMID: 33528345 DOI: 10.1099/ijsem.0.004677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pink-pigmented, Gram-stain-negative, rod-shaped, strictly aerobic bacterial strain MIMtkB3T, was isolated from moss crusts in Hunshandake desert of China. Cells grew at 15-45 °C (optimum of 28 °C), at pH of 6.0-8.5 (optimum of 7.0) and with 0-1.0 % (w/v) NaCl (optimum of 0 %). The strain could biosynthesize the green-coloured pigment bacteriochlorophyll a (BChl a). The respiratory quinone was ubiquinone Q-10, while C18 : 1 ω7c and C18 : 1 2OH were the major fatty acids. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, one unidentified phospholipid, three unidentified glycolipid and one unidentified lipid were the major polar lipids. Strain MIMtkB3T was most closely related to Oleisolibacter albus NAU-10T, Niveispirillum fermenti CC-LY736T, and Rhodocista centenaria SW of the family Rhodospirillaceae with 16S rRNA gene similarities of 93.09, 92.02 and 91.73%, respectively. The genomic DNA G+C content calculated on complete genome sequencing was 69.3 mol%. The average nucleotide identity between strain MIMtkB3T and its closely related type strains in Rhodospirillaceae was below 77.96 % and digital DNA-DNA hybridization lower than 24.70 %. Full light utilization pathway of aerobic anoxygenic phototrophic bacteria was identified in the genome. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, strain MIMtkB3T represents a novel genus of the family Rhodospirillaceae, for which the name Aerophototrophica crusticola gen. nov., sp. nov. is proposed. The type strain is MIMtkB3T (=KCTC 42633T=MCCC 1K00570T).
Collapse
Affiliation(s)
- Kai Tang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot 010010, PR China.,Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Li-Hua Yang
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Yu-Ping Chen
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Yu Tao
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Fu-Ying Feng
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Jian-Yu Meng
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| |
Collapse
|
16
|
Silva L, Calleja ML, Ivetic S, Huete-Stauffer T, Roth F, Carvalho S, Morán XAG. Heterotrophic bacterioplankton responses in coral- and algae-dominated Red Sea reefs show they might benefit from future regime shift. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141628. [PMID: 32896805 DOI: 10.1016/j.scitotenv.2020.141628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
In coral reefs, dissolved organic matter (DOM) cycling is a critical process for sustaining ecosystem functioning. However, global and local stressors have caused persistent shifts from coral- to algae-dominated benthic communities. The influence of such phase shifts on DOM nature and its utilization by heterotrophic bacterioplankton remains poorly studied. Every second month for one year, we retrieved seawater samples enriched in DOM produced by coral- and algae-dominated benthic communities in a central Red Sea reef during a full annual cycle. Seawater incubations were conducted in the laboratory under in situ temperature and light conditions by inoculating enriched DOM samples with bacterial assemblages collected in the surrounding waters. Dissolved organic carbon (DOC) concentrations were higher in the warmer months (May-September) in both communities, resulting in higher specific growth rates and bacterial growth efficiencies (BGE). However, these high summer values were significantly enhanced in algal-DOM relative to coral-DOM, suggesting the potential for bacterioplankton biomass increase in reefs with algae replacing healthy coral cover under warmer conditions. The potential exacerbation of heterotrophic bacterial activity in the ongoing widespread regime shift from coral- to algae-dominated communities may have detrimental consequences for the overall health of tropical coral reefs.
Collapse
Affiliation(s)
- Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia.
| | - Maria Ll Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | | | - Tamara Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Florian Roth
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Baltic Sea Centre, Stockholm University, 11418 Stockholm, Sweden; Tvärminne Zoological Station, University of Helsinki, 00100 Helsinki, Finland
| | - Susana Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Sánchez O, Ferrera I, Mabrito I, Gazulla CR, Sebastián M, Auladell A, Marín-Vindas C, Cardelús C, Sanz-Sáez I, Pernice MC, Marrasé C, Sala MM, Gasol JM. Seasonal impact of grazing, viral mortality, resource availability and light on the group-specific growth rates of coastal Mediterranean bacterioplankton. Sci Rep 2020; 10:19773. [PMID: 33188261 PMCID: PMC7666142 DOI: 10.1038/s41598-020-76590-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Estimation of prokaryotic growth rates is critical to understand the ecological role and contribution of different microbes to marine biogeochemical cycles. However, there is a general lack of knowledge on what factors control the growth rates of different prokaryotic groups and how these vary between sites and along seasons at a given site. We carried out several manipulation experiments during the four astronomical seasons in the coastal NW Mediterranean in order to evaluate the impact of grazing, viral mortality, resource competition and light on the growth and loss rates of prokaryotes. Gross and net growth rates of different bacterioplankton groups targeted by group-specific CARD-FISH probes and infrared microscopy (for aerobic anoxygenic phototrophs, AAP), were calculated from changes in cell abundances. Maximal group-specific growth rates were achieved when both predation pressure and nutrient limitation were experimentally minimized, while only a minimal effect of viral pressure on growth rates was observed; nevertheless, the response to predation removal was more remarkable in winter, when the bacterial community was not subjected to nutrient limitation. Although all groups showed increases in their growth rates when resource competition as well as grazers and viral pressure were reduced, Alteromonadaceae consistently presented the highest rates in all seasons. The response to light availability was generally weaker than that to the other factors, but it was variable between seasons. In summer and spring, the growth rates of AAP were stimulated by light whereas the growth of the SAR11 clade (likely containing proteorhodopsin) was enhanced by light in all seasons. Overall, our results set thresholds on bacterioplankton group-specific growth and mortality rates and contribute to estimate the seasonally changing contribution of various bacterioplankton groups to the function of microbial communities. Our results also indicate that the least abundant groups display the highest growth rates, contributing to the recycling of organic matter to a much greater extent than what their abundances alone would predict.
Collapse
Affiliation(s)
- Olga Sánchez
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain.
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, 29640, Fuengirola, Málaga, Spain. .,Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.
| | - Isabel Mabrito
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain
| | - Carlota R Gazulla
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain.,Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.,Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, 35214, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Carolina Marín-Vindas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.,Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, 40101, Costa Rica
| | - Clara Cardelús
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Isabel Sanz-Sáez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Massimo C Pernice
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Cèlia Marrasé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - M Montserrat Sala
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| |
Collapse
|
18
|
Baquiran JIP, Nada MAL, Campos CLD, Sayco SLG, Cabaitan PC, Rosenberg Y, Ayalon I, Levy O, Conaco C. The Prokaryotic Microbiome of Acropora digitifera is Stable under Short-Term Artificial Light Pollution. Microorganisms 2020; 8:E1566. [PMID: 33053643 PMCID: PMC7601249 DOI: 10.3390/microorganisms8101566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Corals harbor a great diversity of symbiotic microorganisms that play pivotal roles in host nutrition, reproduction, and development. Changes in the ocean environment, such as increasing exposure to artificial light at night (ALAN), may alter these relationships and result in a decline in coral health. In this study, we examined the microbiome associated with gravid specimens of the reef-building coral Acropora digitifera. We also assessed the temporal effects of ALAN on the coral-associated microbial community using high-throughput sequencing of the 16S rRNA gene V4 hypervariable region. The A. digitifera microbial community was dominated by phyla Proteobacteria, Firmicutes, and Bacteroidetes. Exposure to ALAN had no large-scale effect on the coral microbiome, although taxa affiliated with Rhodobacteraceae, Caulobacteraceae, Burkholderiaceae, Lachnospiraceae, and Ruminococcaceae were significantly enriched in corals subjected to ALAN. We further noted an increase in the relative abundance of the family Endozoicomonadaceae (Endozoicomonas) as the spawning period approached, regardless of light treatment. These findings highlight the stability of the A. digitifera microbial community under short-term artificial light pollution and provide initial insights into the response of the collective holobiont to ALAN.
Collapse
Affiliation(s)
- Jake Ivan P. Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Michael Angelou L. Nada
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Celine Luisa D. Campos
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Sherry Lyn G. Sayco
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Patrick C. Cabaitan
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.R.); (I.A.); (O.L.)
| | - Inbal Ayalon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.R.); (I.A.); (O.L.)
- Israel The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, P.O. Box 469, Eilat 88103, Israel
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.R.); (I.A.); (O.L.)
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| |
Collapse
|
19
|
Arandia-Gorostidi N, González JM, Huete-Stauffer TM, Ansari MI, Morán XAG, Alonso-Sáez L. Light supports cell-integrity and growth rates of taxonomically diverse coastal photoheterotrophs. Environ Microbiol 2020; 22:3823-3837. [PMID: 32643243 DOI: 10.1111/1462-2920.15158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
Abstract
Despite the widespread distribution of proteorhodopsin (PR)-containing bacteria in the oceans, the use of light-derived energy to promote bacterial growth has only been shown in a few bacterial isolates, and there is a paucity of data describing the metabolic effects of light on environmental photoheterotrophic taxa. Here, we assessed the effects of light on the taxonomic composition, cell integrity and growth responses of microbial communities in monthly incubations between spring and autumn under different environmental conditions. The photoheterotrophs expressing PR in situ were dominated by Pelagibacterales and SAR116 in July and November, while members of Euryarchaeota, Gammaproteobacteria and Bacteroidetes dominated the PR expression in spring. Cell-membrane integrity decreased under dark conditions throughout most of the assessment, with maximal effects in summer, under low-nutrient conditions. A positive effect of light on growth was observed in one incubation (out of nine), coinciding with a declining phytoplankton bloom. Light-enhanced growth was found in Gammaproteobacteria (Alteromonadales) and Bacteroidetes (Polaribacter and Tenacibaculum). Unexpectedly, some Pelagibacterales also exhibited higher growth rates under light conditions. We propose that the energy harvested by PRs helps to maintain cell viability in dominant coastal photoheterotrophic oligotrophs while promoting the growth of some widespread taxa benefiting from the decline of phytoplankton blooms.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Tamara M Huete-Stauffer
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohd I Ansari
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xosé Anxelu G Morán
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Laura Alonso-Sáez
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, Sukarrieta, Bizkaia, 48395, Spain
| |
Collapse
|
20
|
Light and Primary Production Shape Bacterial Activity and Community Composition of Aerobic Anoxygenic Phototrophic Bacteria in a Microcosm Experiment. mSphere 2020; 5:5/4/e00354-20. [PMID: 32611696 PMCID: PMC7333569 DOI: 10.1128/msphere.00354-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phytoplankton is a key component of aquatic microbial communities, and metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon (DOC). Yet, the impact of primary production on bacterial activity and community composition remains largely unknown, as, for example, in the case of aerobic anoxygenic phototrophic (AAP) bacteria that utilize both phytoplankton-derived DOC and light as energy sources. Here, we studied how reduction of primary production in a natural freshwater community affects the bacterial community composition and its activity, focusing primarily on AAP bacteria. The bacterial respiration rate was the lowest when photosynthesis was reduced by direct inhibition of photosystem II and the highest in ambient light condition with no photosynthesis inhibition, suggesting that it was limited by carbon availability. However, bacterial assimilation rates of leucine and glucose were unaffected, indicating that increased bacterial growth efficiency (e.g., due to photoheterotrophy) can help to maintain overall bacterial production when low primary production limits DOC availability. Bacterial community composition was tightly linked to light intensity, mainly due to the increased relative abundance of light-dependent AAP bacteria. This notion shows that changes in bacterial community composition are not necessarily reflected by changes in bacterial production or growth and vice versa. Moreover, we demonstrated for the first time that light can directly affect bacterial community composition, a topic which has been neglected in studies of phytoplankton-bacteria interactions.IMPORTANCE Metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon in aquatic environments, and yet how changes in the rate of primary production affect the bacterial activity and community composition remains understudied. Here, we experimentally limited the rate of primary production either by lowering light intensity or by adding a photosynthesis inhibitor. The induced decrease had a greater influence on bacterial respiration than on bacterial production and growth rate, especially at an optimal light intensity. This suggests that changes in primary production drive bacterial activity, but the effect on carbon flow may be mitigated by increased bacterial growth efficiencies, especially of light-dependent AAP bacteria. Bacterial activities were independent of changes in bacterial community composition, which were driven by light availability and AAP bacteria. This direct effect of light on composition of bacterial communities has not been documented previously.
Collapse
|
21
|
Giebel HA, Wolterink M, Brinkhoff T, Simon M. Complementary energy acquisition via aerobic anoxygenic photosynthesis and carbon monoxide oxidation by Planktomarina temperata of the Roseobacter group. FEMS Microbiol Ecol 2020; 95:5437672. [PMID: 31055603 DOI: 10.1093/femsec/fiz050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
In marine pelagic ecosystems energy is often the limiting factor for growth of heterotrophic bacteria. Aerobic anoxygenic photosynthesis (AAP) and oxidation of carbon monoxide (CO) are modes to acquire complementary energy, but their significance in abundant and characteristic pelagic marine bacteria has not been well studied. In long-term batch culture experiments we found that Planktomarina temperata RCA23, representing the largest and most prominent subcluster of the Roseobacter group, maintains 2-3-fold higher cell numbers in the stationary and declining phase when grown in a light-dark cycle relative to dark conditions. Light enables P. temperata to continue to replicate its DNA during the stationary phase relative to a dark control such that when reinoculated into fresh medium growth resumed two days earlier than in control cultures. In cultures grown in the dark and supplemented with CO, cell numbers in the stationary phase remained significantly higher than in an unsupplemented control. Furthermore, repeated spiking with CO until day 372 resulted in significant CO consumption relative to an unsupplemented control. P. temperata represents a prominent marine pelagic bacterium for which AAP and CO consumption, to acquire complementary energy, have been documented.
Collapse
Affiliation(s)
- Helge-Ansgar Giebel
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Mathias Wolterink
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
22
|
Ruiz-González C, Garcia-Chaves MC, Ferrera I, Niño-García JP, Del Giorgio PA. Taxonomic differences shape the responses of freshwater aerobic anoxygenic phototrophic bacterial communities to light and predation. Mol Ecol 2020; 29:1267-1283. [PMID: 32147876 DOI: 10.1111/mec.15404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/29/2022]
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria are a phylogenetically diverse and ubiquitous group of prokaryotes that use organic matter but can harvest light using bacteriochlorophyll a. Although the factors regulating AAP ecology have long been investigated through field surveys, the few available experimental studies have considered AAPs as a group, thus disregarding the potential differential responses between taxonomically distinct AAP assemblages. Here, we used sequencing of the pufM gene to describe the diversity of AAPs in 10 environmentally distinct temperate lakes, and to investigate the taxonomic responses of AAP communities in these lakes when subjected to similar experimental manipulations of light and predator removal. The studied communities were clearly dominated by Limnohabitans AAP but presented a clear taxonomic segregation between lakes presumably driven by local conditions, which was maintained after experimental manipulations. Predation reduction (but not light exposure) caused significant compositional shifts across most assemblages, but the magnitude of these changes could not be clearly related to changes in bulk AAP abundances or taxonomic richness of AAP assemblages during experiments. Only a few operational taxonomic units, which differed taxonomically between lakes, were found to respond positively during experimental treatments. Our results highlight that different freshwater AAP communities respond differently to similar control mechanisms, highlighting that in-depth knowledge on AAP diversity is essential to understand the ecology and potential role of these photoheterotrophs.
Collapse
Affiliation(s)
- Clara Ruiz-González
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain.,Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Carolina Garcia-Chaves
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Isabel Ferrera
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain.,Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Málaga, Spain
| | - Juan Pablo Niño-García
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Paul A Del Giorgio
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
23
|
Zervas A, Zeng Y, Madsen AM, Hansen LH. Genomics of Aerobic Photoheterotrophs in Wheat Phyllosphere Reveals Divergent Evolutionary Patterns of Photosynthetic Genes in Methylobacterium spp. Genome Biol Evol 2020; 11:2895-2908. [PMID: 31626703 PMCID: PMC6798729 DOI: 10.1093/gbe/evz204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 01/02/2023] Open
Abstract
Phyllosphere is a habitat to a variety of viruses, bacteria, fungi, and other microorganisms, which play a fundamental role in maintaining the health of plants and mediating the interaction between plants and ambient environments. A recent addition to this catalogue of microbial diversity was the aerobic anoxygenic phototrophs (AAPs), a group of widespread bacteria that absorb light through bacteriochlorophyll α (BChl a) to produce energy without fixing carbon or producing molecular oxygen. However, culture representatives of AAPs from phyllosphere and their genome information are lacking, limiting our capability to assess their potential ecological roles in this unique niche. In this study, we investigated the presence of AAPs in the phyllosphere of a winter wheat (Triticum aestivum L.) in Denmark by employing bacterial colony based infrared imaging and MALDI-TOF mass spectrometry (MS) techniques. A total of ∼4,480 colonies were screened for the presence of cellular BChl a, resulting in 129 AAP isolates that were further clustered into 21 groups based on MALDI-TOF MS profiling, representatives of which were sequenced using the Illumina NextSeq and Oxford Nanopore MinION platforms. Seventeen draft and four complete genomes of AAPs were assembled belonging in Methylobacterium, Rhizobium, Roseomonas, and a novel Alsobacter. We observed a diverging pattern in the evolutionary rates of photosynthesis genes among the highly homogenous AAP strains of Methylobacterium (Alphaproteobacteria), highlighting an ongoing genomic innovation at the gene cluster level.
Collapse
Affiliation(s)
- Athanasios Zervas
- Section of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Yonghui Zeng
- Section of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Denmark
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Lars H Hansen
- Section of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Environmental Microbial Genomics Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
24
|
Seasonal dynamics of aerobic anoxygenic phototrophs in freshwater lake Vlkov. Folia Microbiol (Praha) 2019; 64:705-710. [DOI: 10.1007/s12223-019-00735-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/15/2019] [Indexed: 11/25/2022]
|
25
|
Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. THE ISME JOURNAL 2019; 13:1975-1987. [PMID: 30914777 PMCID: PMC6776013 DOI: 10.1038/s41396-019-0401-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 01/22/2023]
Abstract
We studied the long-term temporal dynamics of the aerobic anoxygenic phototrophic (AAP) bacteria, a relevant functional group in the coastal marine microbial food web, using high-throughput sequencing of the pufM gene coupled with multivariate, time series and co-occurrence analyses at the Blanes Bay Microbial Observatory (NW Mediterranean). Additionally, using metagenomics, we tested whether the used primers captured accurately the seasonality of the most relevant AAP groups. Phylogroup K (Gammaproteobacteria) was the greatest contributor to community structure over all seasons, with phylogroups E and G (Alphaproteobacteria) being prevalent in spring. Diversity indices showed a clear seasonal trend, with maximum values in winter, which was inverse to that of AAP abundance. Multivariate analyses revealed sample clustering by season, with a relevant proportion of the variance explained by day length, temperature, salinity, phototrophic nanoflagellate abundance, chlorophyll a, and silicate concentration. Time series analysis showed robust rhythmic patterns of co-occurrence, but distinct seasonal behaviors within the same phylogroup, and even within different amplicon sequence variants (ASVs) conforming the same operational taxonomic unit (OTU). Altogether, our results picture the AAP assemblage as highly seasonal and recurrent but containing ecotypes showing distinctive temporal niche partitioning, rather than being a cohesive functional group.
Collapse
Affiliation(s)
- Adrià Auladell
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain.
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalunya, Spain
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Isabel Ferrera
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain.
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Fuengirola, Málaga, Spain.
| |
Collapse
|
26
|
Qiu D, Huang L, Liu X, Lin S. Flourishing deep-sea AAP bacteria detected by flow cytometric sorting and molecular analysis. PLoS One 2019; 14:e0218753. [PMID: 31216335 PMCID: PMC6583994 DOI: 10.1371/journal.pone.0218753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/09/2019] [Indexed: 11/24/2022] Open
Abstract
Pigmented bacteria cells, including aerobic anoxygenic phototrophic (AAP) bacteria, contribute significantly to secondary production and aquatic carbon cycling but their distribution in the deep sea is still not well understood, especially in the South China Sea. In this study, microscopic, flow cytometric, and molecular analyses were carried out to investigate the abundance and diversity of AAP bacteria at seven stations in the South China Sea. The results revealed the existence of bacteriochlorophyll-containing bacteria below 500 m from two of seven stations. Flow cytometric analysis detected red and infra-red fluorescence under blue (488 nm) light excitation from fluorescent cells. Blue light-excited red fluorescence of these cells from the 1000 m depth at station E403 were verified using epifluorescence microscopy. Based on fluorescence and side scatter features, fluorescent cells were sorted and subjected to molecular analysis. DNA was extracted from these sorted cells from both stations for PCR amplification using 16S rDNA primers. Sequencing of the PCR products showed that the sorted cells from the 1000 m depth at station E403 belonged to the genus Porphyrobacter. The cell population sorted from 500 m at station E703 contained Sphingomonas and a Methylobacterium-like taxon. All these three taxa belong to aerobic anoxygenic phototrophic alpha-proteobacteria. Using flow cytometric analysis, we found that the abundance of Porphyrobacter sp. at 1000 m was 2.71–2.95×104 cells mL-1 whereas cell counts of Sphingomonas sp. and Methylobacterium at 500 m were about 3.75–4.12×105 cells mL-1. These results indicate that albeit not ubiquitous in deep water, bacteriochlorophyll-containing bacteria can be abundant in the deep-sea aphotic zone.
Collapse
Affiliation(s)
- Dajun Qiu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| | - Liangmin Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| |
Collapse
|
27
|
Gómez-Consarnau L, Needham DM, Weber PK, Fuhrman JA, Mayali X. Influence of Light on Particulate Organic Matter Utilization by Attached and Free-Living Marine Bacteria. Front Microbiol 2019; 10:1204. [PMID: 31214143 PMCID: PMC6558058 DOI: 10.3389/fmicb.2019.01204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Light plays a central role on primary productivity of aquatic systems. Yet, its potential impact on the degradation of photosynthetically produced biomass is not well understood. We investigated the patterns of light-induced particle breakdown and bacterial assimilation of detrital C and N using 13C and 15N labeled freeze-thawed diatom cells incubated in laboratory microcosms with a marine microbial community freshly collected from the Pacific Ocean. Particles incubated in the dark resulted in increased bacterial counts and dissolved organic carbon concentrations compared to those incubated in the light. Light also influenced the attached and free-living microbial community structure as detected by 16S rRNA gene amplicon sequencing. For example, Sphingobacteriia were enriched on dark-incubated particles and taxa from the family Flavobacteriaceae and the genus Pseudoalteromonas were numerically enriched on particles in the light. Isotope incorporation analysis by phylogenetic microarray and NanoSIMS (a method called Chip-SIP) identified free-living and attached microbial taxa able to incorporate N and C from the particles. Some taxa, including members of the Flavobacteriaceae and Cryomorphaceae, exhibited increased isotope incorporation in the light, suggesting the use of photoheterotrophic metabolisms. In contrast, some members of Oceanospirillales and Rhodospirillales showed decreased isotope incorporation in the light, suggesting that their heterotrophic metabolism, particularly when occurring on particles, might increase at night or may be inhibited by sunlight. These results show that light influences particle degradation and C and N incorporation by attached bacteria, suggesting that the transfer between particulate and free-living phases are likely affected by external factors that change with the light regime, such as time of day, water column depth and season.
Collapse
Affiliation(s)
- Laura Gómez-Consarnau
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xavier Mayali
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
28
|
Teira E, Logares R, Gutiérrez‐Barral A, Ferrera I, Varela MM, Morán XAG, Gasol JM. Impact of grazing, resource availability and light on prokaryotic growth and diversity in the oligotrophic surface global ocean. Environ Microbiol 2019; 21:1482-1496. [DOI: 10.1111/1462-2920.14581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Eva Teira
- Departamento de Ecoloxía e Bioloxía AnimalUniversidade de Vigo Vigo Spain
| | - Ramiro Logares
- Departamento de Biologia Marina i OceanografiaInstitut de Ciències del Mar, CSIC Barcelona Catalonia Spain
| | | | - Isabel Ferrera
- Departamento de Biologia Marina i OceanografiaInstitut de Ciències del Mar, CSIC Barcelona Catalonia Spain
- Instituto Español de OceanografíaCentro Oceanográfico de Málaga Fuengirola Spain
| | - Marta M. Varela
- Instituto Español de OceanografíaCentro Oceanográfico de A Coruña A Coruña Spain
| | - Xosé Anxelu G. Morán
- Red Sea Research Center, Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Josep M. Gasol
- Departamento de Biologia Marina i OceanografiaInstitut de Ciències del Mar, CSIC Barcelona Catalonia Spain
- Centre for Marine Ecosystems ResearchEdith Cowan University Joondalup Western Australia Australia
| |
Collapse
|
29
|
Vigneron A, Cruaud P, Mohit V, Martineau MJ, Culley AI, Lovejoy C, Vincent WF. Multiple Strategies for Light-Harvesting, Photoprotection, and Carbon Flow in High Latitude Microbial Mats. Front Microbiol 2018; 9:2881. [PMID: 30564204 PMCID: PMC6288179 DOI: 10.3389/fmicb.2018.02881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022] Open
Abstract
Microbial mats are ubiquitous in polar freshwater ecosystems and sustain high concentrations of biomass despite the extreme seasonal variations in light and temperature. Here we aimed to resolve genomic adaptations for light-harvesting, bright-light protection, and carbon flow in mats that undergo seasonal freeze-up. To bracket a range of communities in shallow water habitats, we sampled cyanobacterial mats in the thawed littoral zone of two lakes situated at the northern and southern limits of the Canadian Arctic permafrost zone. We applied a multiphasic approach using pigment profiles from high performance liquid chromatography, Illumina MiSeq sequencing of the 16S and 18S rRNA genes, and metagenomic analysis. The mats shared a taxonomic and functional core microbiome, dominated by oxygenic cyanobacteria with light-harvesting and photoprotective pigments, bacteria with bacteriochlorophyll, and bacteria with light-driven Type I rhodopsins. Organisms able to use light for energy related processes represented up to 85% of the total microbial community, with 15–30% attributable to cyanobacteria and 55–70% attributable to other bacteria. The proportion of genes involved in anaplerotic CO2 fixation was greater than for genes associated with oxygenic photosynthesis. Diverse heterotrophic bacteria, eukaryotes (including metazoans and fungi) and viruses co-occurred in both communities. The results indicate a broad range of strategies for capturing sunlight and CO2, and for the subsequent flow of energy and carbon in these complex, light-driven microbial ecosystems.
Collapse
Affiliation(s)
- Adrien Vigneron
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
| | - Vani Mohit
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Marie-Josée Martineau
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada
| | - Alexander I Culley
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Warwick F Vincent
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| |
Collapse
|
30
|
Sato-Takabe Y, Hamasaki K, Suzuki S. High temperature accelerates growth of aerobic anoxygenic phototrophic bacteria in seawater. Microbiologyopen 2018; 8:e00710. [PMID: 30054976 PMCID: PMC6528613 DOI: 10.1002/mbo3.710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 11/22/2022] Open
Abstract
Temperature is an important controlling factor in the growth activity of all microorganisms. Aerobic anoxygenic phototrophic (AAP) bacteria actively grow in the ocean and are known as one of the main driving forces in organic matter cycling in surface seawater environments. Whether temperature change affects AAP bacteria activity from an ecological viewpoint remains an open question. To date, no known studies have reported the effect of temperature change on AAP bacteria growth in the ocean. We here show that the growth rate of AAP bacteria exceeded that of other bacterial types at high water temperatures in the absence of grazers. The slope of the regression line of the net growth rate of AAP bacteria as a function of water temperature was the same as that for non‐AAP bacteria at all temperatures (10, 20, and 30°C); however, when grazers were eliminated, it was 4.7 times higher than that of non‐AAP bacteria. This result suggests that AAP bacteria are more responsive to water temperature increases than other bacteria and that AAP bacteria might become more dominant than other bacteria under elevated water temperatures.
Collapse
Affiliation(s)
- Yuki Sato-Takabe
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Koji Hamasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
31
|
Piwosz K, Kaftan D, Dean J, Šetlík J, Koblížek M. Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacteriumDinoroseobacter shibae. Environ Microbiol 2017; 20:724-733. [DOI: 10.1111/1462-2920.14003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Kasia Piwosz
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| | - David Kaftan
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| | - Jason Dean
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| | - Jiří Šetlík
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| | - Michal Koblížek
- Center Algatech; Institute of Microbiology CAS; Třeboň 37981 Czech Republic
| |
Collapse
|