1
|
Fulton RL, Downs DM. Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins. Adv Microb Physiol 2023; 83:117-179. [PMID: 37507158 PMCID: PMC10642521 DOI: 10.1016/bs.ampbs.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Metabolism is an integrated network of biochemical pathways that assemble to generate the robust, responsive physiologies of microorganisms. Despite decades of fundamental studies on metabolic processes and pathways, our understanding of the nuance and complexity of metabolism remains incomplete. The ability to predict and model metabolic network structure, and its influence on cellular fitness, is complicated by the persistence of genes of unknown function, even in the best-studied model organisms. This review describes the definition and continuing study of the Rid superfamily of proteins. These studies are presented with a perspective that illustrates how metabolic complexity can complicate the assignment of function to uncharacterized genes. The Rid superfamily of proteins has been divided into eight subfamilies, including the well-studied RidA subfamily. Aside from the RidA proteins, which are present in all domains of life and prevent metabolic stress, most members of the Rid superfamily have no demonstrated physiological role. Recent progress on functional assignment supports the hypothesis that, overall, proteins in the Rid superfamily modulate metabolic processes to ensure optimal organismal fitness.
Collapse
Affiliation(s)
- Ronnie L Fulton
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
2
|
Xiong Z, Tian X, Wang G, Song X, Xia Y, Zhang H, Ai L. Development of a high-throughput screening method for exopolysaccharide-producing Streptococcus thermophilus based on Congo red. Food Res Int 2022; 162:112094. [DOI: 10.1016/j.foodres.2022.112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
3
|
Li D, Tian Y, Liu X, Wang W, Li Y, Tan H, Zhang J. Reconstitution of a mini-gene cluster combined with ribosome engineering led to effective enhancement of salinomycin production in Streptomyces albus. Microb Biotechnol 2021; 14:2356-2368. [PMID: 33270372 PMCID: PMC8601195 DOI: 10.1111/1751-7915.13686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023] Open
Abstract
Salinomycin, an FDA-approved polyketide drug, was recently identified as a promising anti-tumour and anti-viral lead compound. It is produced by Streptomyces albus, and the biosynthetic gene cluster (sal) spans over 100 kb. The genetic manipulation of large polyketide gene clusters is challenging, and approaches delivering reliable efficiency and accuracy are desired. Herein, a delicate strategy to enhance salinomycin production was devised and evaluated. We reconstructed a minimized sal gene cluster (mini-cluster) on pSET152 including key genes responsible for tailoring modification, antibiotic resistance, positive regulation and precursor supply. These genes were overexpressed under the control of constitutive promoter PkasO* or Pneo . The pks operon was not included in the mini-cluster, but it was upregulated by SalJ activation. After the plasmid pSET152::mini-cluster was introduced into the wild-type strain and a chassis host strain obtained by ribosome engineering, salinomycin production was increased to 2.3-fold and 5.1-fold compared with that of the wild-type strain respectively. Intriguingly, mini-cluster introduction resulted in much higher production than overexpression of the whole sal gene cluster. The findings demonstrated that reconstitution of sal mini-cluster combined with ribosome engineering is an efficient novel approach and may be extended to other large polyketide biosynthesis.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuqing Tian
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Xiang Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wenxi Wang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yue Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Huarong Tan
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jihui Zhang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| |
Collapse
|
4
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Rodríguez Estévez M, Myronovskyi M, Rosenkränzer B, Paululat T, Petzke L, Ristau J, Luzhetskyy A. Novel Fredericamycin Variant Overproduced by a Streptomycin-resistant Streptomyces albus subsp. chlorinus Strain. Mar Drugs 2020; 18:E284. [PMID: 32481766 PMCID: PMC7345809 DOI: 10.3390/md18060284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
Streptomycetes are an important source of natural products potentially applicable in the pharmaceutical industry. Many of these drugs are secondary metabolites whose biosynthetic genes are very often poorly expressed under laboratory cultivation conditions. In many cases, antibiotic-resistant mutants exhibit increased production of natural drugs, which facilitates the identification and isolation of new substances. In this study, we report the induction of a type II polyketide synthase gene cluster in the marine strain Streptomyces albus subsp. chlorinus through the selection of streptomycin-resistant mutants, resulting in overproduction of the novel compound fredericamycin C2 (1). Fredericamycin C2 (1) is structurally related to the potent antitumor drug lead fredericamycin A.
Collapse
Affiliation(s)
- Marta Rodríguez Estévez
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (M.R.E.); (M.M.); (B.R.)
| | - Maksym Myronovskyi
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (M.R.E.); (M.M.); (B.R.)
| | - Birgit Rosenkränzer
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (M.R.E.); (M.M.); (B.R.)
| | - Thomas Paululat
- Organische Chemie II, Universität Siegen, 57068 Siegen, Germany;
| | - Lutz Petzke
- BASF SE, 67056 Ludwigshafen, Germany; (L.P.); (J.R.)
| | | | - Andriy Luzhetskyy
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (M.R.E.); (M.M.); (B.R.)
- Helmholtz-Institut für Pharmazeutische Forschung Saarland, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Fan JX, Song Y, Tang G, Ochi K, Shentu XP, Yu XP. Substantial improvement of tetraene macrolide production in Streptomyces diastatochromogenes by cumulative drug resistance mutations. PLoS One 2020; 15:e0232927. [PMID: 32396566 PMCID: PMC7217443 DOI: 10.1371/journal.pone.0232927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/25/2020] [Indexed: 11/19/2022] Open
Abstract
Tetraene macrolides remain one of the most reliable fungicidal agents as resistance of fungal pathogens to these antibiotics is relatively rare. The modes of action and biosynthesis of polyene macrolides had been the focus of research over the past few years. However, few studies have been carried out on the overproduction of polyene macrolides. In the present study, cumulative drug-resistance mutation was used to obtain a quintuple mutant G5-59 with huge tetraene macrolide overproduction from the starting strain Streptomyces diastatochromogenes 1628. Through DNA sequence analysis, the mutation points in the genes of rsmG, rpsL and rpoB were identified. Additionally, the growth characteristic and expression level of tetrRI gene (belonging to the large ATP binding regulator of LuxR family) involved in the biosynthesis of tetraene macrolides were analyzed. As examined with 5L fermentor, the quintuple mutant G5-59 grew very well and the maximum productivity of tetramycin A, tetramycin P and tetrin B was as high as 1735, 2811 and 1500 mg/L, which was 8.7-, 16- and 25-fold higher than that of the wild-type strain 1628, respectively. The quintuple mutant G5-59 could be useful for further improvement of tetraene macrolides production at industrial level.
Collapse
Affiliation(s)
- Jing-Xuan Fan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Gu Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Xu-Ping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
- * E-mail: (XPS); (XPY)
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
- * E-mail: (XPS); (XPY)
| |
Collapse
|
7
|
Bhattarai K, Bastola R, Baral B. Antibiotic drug discovery: Challenges and perspectives in the light of emerging antibiotic resistance. ADVANCES IN GENETICS 2020; 105:229-292. [PMID: 32560788 DOI: 10.1016/bs.adgen.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amid a rising threat of antimicrobial resistance in a global scenario, our huge investments and high-throughput technologies injected for rejuvenating the key therapeutic scaffolds to suppress these rising superbugs has been diminishing severely. This has grasped world-wide attention, with increased consideration being given to the discovery of new chemical entities. Research has now proven that the relatively tiny and simpler microbes possess enhanced capability of generating novel and diverse chemical constituents with huge therapeutic leads. The usage of these beneficial organisms could help in producing new chemical scaffolds that govern the power to suppress the spread of obnoxious superbugs. Here in this review, we have explicitly focused on several appealing strategies employed for the generation of new chemical scaffolds. Also, efforts on providing novel insights on some of the unresolved questions in the production of metabolites, metabolic profiling and also the serendipity of getting "hit molecules" have been rigorously discussed. However, we are highly aware that biosynthetic pathway of different classes of secondary metabolites and their biosynthetic route is a vast topic, thus we have avoided discussion on this topic.
Collapse
Affiliation(s)
- Keshab Bhattarai
- University of Tübingen, Tübingen, Germany; Center for Natural and Applied Sciences (CENAS), Kathmandu, Nepal
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal.
| |
Collapse
|
8
|
Nguyen CT, Dhakal D, Pham VTT, Nguyen HT, Sohng JK. Recent Advances in Strategies for Activation and Discovery/Characterization of Cryptic Biosynthetic Gene Clusters in Streptomyces. Microorganisms 2020; 8:E616. [PMID: 32344564 PMCID: PMC7232178 DOI: 10.3390/microorganisms8040616] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Streptomyces spp. are prolific sources of valuable natural products (NPs) that are of great interest in pharmaceutical industries such as antibiotics, anticancer chemotherapeutics, immunosuppressants, etc. Approximately two-thirds of all known antibiotics are produced by actinomycetes, most predominantly by Streptomyces. Nevertheless, in recent years, the chances of the discovery of novel and bioactive compounds from Streptomyces have significantly declined. The major hindrance for obtaining such bioactive compounds from Streptomyces is that most of the compounds are not produced in significant titers, or the biosynthetic gene clusters (BGCs) are cryptic. The rapid development of genome sequencing has provided access to a tremendous number of NP-BGCs embedded in the microbial genomes. In addition, the studies of metabolomics provide a portfolio of entire metabolites produced from the strain of interest. Therefore, through the integrated approaches of different-omics techniques, the connection between gene expression and metabolism can be established. Hence, in this review we summarized recent advancements in strategies for activating cryptic BGCs in Streptomyces by utilizing diverse state-of-the-art techniques.
Collapse
Affiliation(s)
- Chung Thanh Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Jae-Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea
| |
Collapse
|
9
|
Lopatniuk M, Myronovskyi M, Nottebrock A, Busche T, Kalinowski J, Ostash B, Fedorenko V, Luzhetskyy A. Effect of “ribosome engineering” on the transcription level and production of S. albus indigenous secondary metabolites. Appl Microbiol Biotechnol 2019; 103:7097-7110. [DOI: 10.1007/s00253-019-10005-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 01/31/2023]
|
10
|
Shentu XP, Cao ZY, Xiao Y, Tang G, Ochi K, Yu XP. Substantial improvement of toyocamycin production in Streptomyces diastatochromogenes by cumulative drug-resistance mutations. PLoS One 2018; 13:e0203006. [PMID: 30161195 PMCID: PMC6117005 DOI: 10.1371/journal.pone.0203006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/13/2018] [Indexed: 12/03/2022] Open
Abstract
Toyocamycin is a member of the nucleoside antibiotic family and has been recognized as a promising fungicide for the control of plant diseases. However, low productivity of toyocamycin remains an important bottleneck in its industrial production. Therefore, dramatic improvements of strains for overproduction of toyocamycin are of great interest in applied microbiology research. In this study, we sequentially selected for mutations for multiple drug resistance to promote the overproduction of toyocamycin by Streptomyces diastatochromogenes 1628. The triple mutant strain, SD3145 (str str par), was obtained through sequential screenings. This strain showed an enhanced capacity to produce toyocamycin (1500 mg/L), 24-fold higher than the wild type in GYM liquid medium. This dramatic overproduction was attributed at least partially to the acquisition of an rsmG mutation and increased gene expression of toyA, which encodes a LuxR-family transcriptional regulator for toyocamycin biosynthesis. The expression of toyF and toyG, probably directly involved in toyocamycin biosynthesis, was also enhanced, contributing to toyocamycin overproduction. By addition of a small amount of scandium (ScCl3·6H2O), the mutant strain, SD3145, produced more toyocamycin (2664 mg/L) in TPM medium, which was the highest toyocamycin level produced in shake-flask fermentation by a streptomycete so far. We demonstrated that introduction of combined drug resistance mutations into S. diastatochromogenes 1628 resulted in an obvious increase in the toyocamycin production. The triple mutant strain, SD3145, generated in our study could be useful for improvement of industrial production of toyocamycin.
Collapse
Affiliation(s)
- Xu-Ping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhen-Yan Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yin Xiao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Gu Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
11
|
Pait IGU, Kitani S, Roslan FW, Ulanova D, Arai M, Ikeda H, Nihira T. Discovery of a new diol-containing polyketide by heterologous expression of a silent biosynthetic gene cluster from Streptomyces lavendulae FRI-5. J Ind Microbiol Biotechnol 2017; 45:77-87. [PMID: 29255990 DOI: 10.1007/s10295-017-1997-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
The genome of streptomycetes has the ability to produce many novel and potentially useful bioactive compounds, but most of which are not produced under standard laboratory cultivation conditions and are referred to as silent/cryptic secondary metabolites. Streptomyces lavendulae FRI-5 produces several types of bioactive compounds. However, this strain may also have the potential to biosynthesize more useful secondary metabolites. Here, we activated a silent biosynthetic gene cluster of an uncharacterized compound from S. lavendulae FRI-5 using heterologous expression. The engineered strain carrying the silent gene cluster produced compound 5, which was undetectable in the culture broth of S. lavendulae FRI-5. Using various spectroscopic analyses, we elucidated the chemical structure of compound 5 (named lavendiol) as a new diol-containing polyketide. The proposed assembly line of lavendiol shows a unique biosynthetic mechanism for polyketide compounds. The results of this study suggest the possibility of discovering more silent useful compounds from streptomycetes by genome mining and heterologous expression.
Collapse
Affiliation(s)
- Ivy Grace Umadhay Pait
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Farah Wahidah Roslan
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Dana Ulanova
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo) 2016; 70:25-40. [PMID: 27381522 DOI: 10.1038/ja.2016.82] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/22/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
As bacteria and fungi have been found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often silent under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. This review addresses current progress in the activation of these pathways, describing methods for activating silent genes. It especially focuses on genetic manipulation of transcription and translation (ribosome engineering), the utilization of elicitors, metabolism remodeling and co-cultivation. In particular, the principles and technical points of ribosome engineering and the significance of S-adenosylmethionine in bacterial physiology, especially secondary metabolism, are described in detail.
Collapse
|
13
|
Shippy DC, Fadl AA. RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Microb Pathog 2015; 89:100-7. [PMID: 26427881 DOI: 10.1016/j.micpath.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amin A Fadl
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Ochi K, Tanaka Y, Tojo S. Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. ACTA ACUST UNITED AC 2014; 41:403-14. [DOI: 10.1007/s10295-013-1349-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023]
Abstract
Abstract
Since bacteria were found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often “silent” under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. We review current progress on this topic, describing concepts for activating silent genes. We especially focus on genetic manipulation of transcription and translation, as well as the utilization of rare earth elements as a novel method to activate the silent genes. The possible roles of silent genes in bacterial physiology are also discussed.
Collapse
Affiliation(s)
- Kozo Ochi
- grid.417545.6 000000010665883X Department of Life Science Hiroshima Institute of Technology Miyake 2-1-1 731-5193 Saeki-ku Hiroshima Japan
| | - Yukinori Tanaka
- grid.417545.6 000000010665883X Department of Life Science Hiroshima Institute of Technology Miyake 2-1-1 731-5193 Saeki-ku Hiroshima Japan
| | - Shigeo Tojo
- grid.417545.6 000000010665883X Department of Life Science Hiroshima Institute of Technology Miyake 2-1-1 731-5193 Saeki-ku Hiroshima Japan
| |
Collapse
|
15
|
Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol 2013; 195:2959-70. [PMID: 23603745 DOI: 10.1128/jb.00147-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.
Collapse
|
16
|
Ochi K, Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 2012; 97:87-98. [PMID: 23143535 PMCID: PMC3536979 DOI: 10.1007/s00253-012-4551-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 11/29/2022]
Abstract
Genome sequencing of Streptomyces, myxobacteria, and fungi showed that although each strain contains genes that encode the enzymes to synthesize a plethora of potential secondary metabolites, only a fraction are expressed during fermentation. Interest has therefore grown in the activation of these cryptic pathways. We review current progress on this topic, describing concepts for activating silent genes, utilization of “natural” mutant-type RNA polymerases and rare earth elements, and the applicability of ribosome engineering to myxobacteria and fungi, the microbial groups known as excellent searching sources, as well as actinomycetes, for secondary metabolites.
Collapse
Affiliation(s)
- Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima, 731-5193, Japan.
| | | |
Collapse
|
17
|
Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 2012; 97:4361-8. [PMID: 22821440 DOI: 10.1007/s00253-012-4290-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
Xylanase is the enzyme complex that is responsible for the degradation of xylan; however, novel xylanase producers remain to be explored in marine environment. In this study, a Streptomyces strain M11 which exhibited xylanase activity was isolated from marine sediment. The 16S rDNA sequence of M11 showed the highest identity (99 %) to that of Streptomyces viridochromogenes. The xylanase produced from M11 exhibited optimum activity at pH 6.0, and the optimum temperature was 70 °C. M11 xylanase activity was stable in the pH range of 6.0-9.0 and at 60 °C for 60 min. Xylanase activity was observed to be stable in the presence of up to 5 M NaCl. Antibiotic-resistant mutants of M11 were isolated, and among the various antibiotics tested, streptomycin showed the best effect on obtaining xylanase overproducer. Mutant M11-1(10) isolated from 10 μg/ml streptomycin-containing plate showed 14 % higher xylanase activities than that of the wild-type strain. An analysis of gene rpsL (encoding ribosomal protein S12) showed that rpsL from M11-1(10) contains a K88R mutation. This is the first report to show that marine-derived S. viridochromogenes strain can be used as a xylanase producer, and utilization of ribosome engineering for the improvement of xylanase production in Streptomyces was also first successfully demonstrated.
Collapse
|
18
|
Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3(2). J Antibiot (Tokyo) 2010; 63:477-81. [PMID: 20551989 DOI: 10.1038/ja.2010.53] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome sequencing projects have revealed many biosynthesis gene clusters for the production of as-yet unknown secondary metabolites, especially in actinomycetes. Here, we report that the rare earth elements, scandium and/or lanthanum, markedly activate, ranging from 2.5- to 12-fold, the expression of nine genes belonging to nine secondary metabolite-biosynthetic gene clusters of Streptomyces coelicolor A3(2) when added to the medium at low concentrations. HPLC analysis of ethyl acetate-extractable metabolites indicated the detectability of several compounds only in the rare earth-treated cultures. This approach should facilitate discovery of new biologically active compounds and the study of secondary metabolite production.
Collapse
|