1
|
Hernández-Melgar AG, Guerrero A, Moreno-Ulloa A. Chronic Exposure to Petroleum-Derived Hydrocarbons Alters Human Skin Microbiome and Metabolome Profiles: A Pilot Study. J Proteome Res 2024; 23:4273-4285. [PMID: 39024464 DOI: 10.1021/acs.jproteome.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Petroleum-derived substances, like industrial oils and grease, are ubiquitous in our daily lives. Comprised of petroleum hydrocarbons (PH), these substances can come into contact with our skin, potentially causing molecular disruptions and contributing to the development of chronic disease. In this pilot study, we employed mass spectrometry-based untargeted metabolomics and 16S rRNA gene sequencing analyses to explore these effects. Superficial skin samples were collected from subjects with and without chronic dermal exposure to PH at two anatomical sites: the fingers (referred to as the hand) and arms (serving as an intersubject variability control). Exposed hands exhibited higher bacterial diversity (Shannon and Simpson indices) and an enrichment of oil-degrading bacteria (ODB), including Dietzia, Paracoccus, and Kocuria. Functional prediction suggested enriched pathways associated with PH degradation in exposed hands vs non-exposed hands, while no differences were observed when comparing the arms. Furthermore, carboxylic acids, glycerophospholipids, organooxygen compounds, phenol ethers, among others, were found to be more abundant in exposed hands. We observed positive correlations among multiple ODB and xenobiotics, suggesting a chemical remodeling of the skin favorable for ODB thriving. Overall, our study offers insights into the complex dysregulation of bacterial communities and the chemical milieu induced by chronic dermal exposure to PH.
Collapse
Affiliation(s)
- Alan G Hernández-Melgar
- MS2 Laboratory, Biomedical Innovation Department, Ensenada Center for Scientific Research and Higher Education, Baja California (CICESE), No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
- Posgrado en Ciencias de la Vida, CICESE, Ensenada 22860, Baja California, Mexico
| | - Abraham Guerrero
- CONAHCyT Research, Research Center in Food & Development A.C. (CIAD), Mazatlán 82112, Sinaloa, Mexico
| | - Aldo Moreno-Ulloa
- MS2 Laboratory, Biomedical Innovation Department, Ensenada Center for Scientific Research and Higher Education, Baja California (CICESE), No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
| |
Collapse
|
2
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Gao Y, Wang J, Meesakul P, Zhou J, Liu J, Liu S, Wang C, Cao S. Cytotoxic Compounds from Marine Fungi: Sources, Structures, and Bioactivity. Mar Drugs 2024; 22:70. [PMID: 38393041 PMCID: PMC10890532 DOI: 10.3390/md22020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine fungi, such as species from the Penicillium and Aspergillus genera, are prolific producers of a diversity of natural products with cytotoxic properties. These fungi have been successfully isolated and identified from various marine sources, including sponges, coral, algae, mangroves, sediment, and seawater. The cytotoxic compounds derived from marine fungi can be categorized into five distinct classes: polyketides, peptides, terpenoids and sterols, hybrids, and other miscellaneous compounds. Notably, the pre-eminent group among these compounds comprises polyketides, accounting for 307 out of 642 identified compounds. Particularly, within this collection, 23 out of the 642 compounds exhibit remarkable cytotoxic potency, with IC50 values measured at the nanomolar (nM) or nanogram per milliliter (ng/mL) levels. This review elucidates the originating fungal strains, the sources of isolation, chemical structures, and the noteworthy antitumor activity of the 642 novel natural products isolated from marine fungi. The scope of this review encompasses the period from 1991 to 2023.
Collapse
Affiliation(s)
- Yukang Gao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jianjian Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| | - Jiamin Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jinyan Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shuo Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| |
Collapse
|
4
|
Deng L, Zhong M, Li Y, Hu G, Zhang C, Peng Q, Zhang Z, Fang J, Yu X. High hydrostatic pressure harnesses the biosynthesis of secondary metabolites via the regulation of polyketide synthesis genes of hadal sediment-derived fungi. Front Microbiol 2023; 14:1207252. [PMID: 37383634 PMCID: PMC10293889 DOI: 10.3389/fmicb.2023.1207252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Deep-sea fungi have evolved extreme environmental adaptation and possess huge biosynthetic potential of bioactive compounds. However, not much is known about the biosynthesis and regulation of secondary metabolites of deep-sea fungi under extreme environments. Here, we presented the isolation of 15 individual fungal strains from the sediments of the Mariana Trench, which were identified by internal transcribed spacer (ITS) sequence analysis as belonging to 8 different fungal species. High hydrostatic pressure (HHP) assays were performed to identify the piezo-tolerance of the hadal fungi. Among these fungi, Aspergillus sydowii SYX6 was selected as the representative due to the excellent tolerance of HHP and biosynthetic potential of antimicrobial compounds. Vegetative growth and sporulation of A. sydowii SYX6 were affected by HHP. Natural product analysis with different pressure conditions was also performed. Based on bioactivity-guided fractionation, diorcinol was purified and characterized as the bioactive compound, showing significant antimicrobial and antitumor activity. The core functional gene associated with the biosynthetic gene cluster (BGC) of diorcinol was identified in A. sydowii SYX6, named as AspksD. The expression of AspksD was apparently regulated by the HHP treatment, correlated with the regulation of diorcinol production. Based on the effect of the HHP tested here, high pressure affected the fungal development and metabolite production, as well as the expression level of biosynthetic genes which revealed the adaptive relationship between the metabolic pathway and the high-pressure environment at the molecular level.
Collapse
Affiliation(s)
- Ludan Deng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Maosheng Zhong
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Guangzhao Hu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Changhao Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qingqing Peng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Liao X, Yang J, Zhou Z, Wu J, Xu D, Yang Q, Zhong S, Zhang X. Diversity and Antimicrobial Activity of Intestinal Fungi from Three Species of Coral Reef Fish. J Fungi (Basel) 2023; 9:613. [PMID: 37367549 DOI: 10.3390/jof9060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Although intestinal microbiota play crucial roles in fish digestion and health, little is known about intestinal fungi in fish. This study investigated the intestinal fungal diversity of three coral reef fish (Lates calcarifer, Trachinotus blochii, and Lutjanus argentimaculatus) from the South China Sea using a culturable method. A total of 387 isolates were recovered and identified by sequencing their internal transcribed spacer sequences, belonging to 29 known fungal species. The similarity of fungal communities in the intestines of the three fish verified that the fungal colonization might be influenced by their surrounding environments. Furthermore, the fungal communities in different intestines of some fish were significantly different, and the number of yeasts in the hindgut was less than that in fore- and mid-intestines, suggesting that the distribution of fungi in fishes' intestines may be related to the physiological functions of various intestinal segments. In addition, 51.4% of tested fungal isolates exhibited antimicrobial activity against at least one marine pathogenic microorganism. Notably, isolate Aureobasidium pullulans SCAU243 exhibited strong antifungal activity against Aspergillus versicolor, and isolate Schizophyllum commune SCAU255 displayed extensive antimicrobial activity against four marine pathogenic microorganisms. This study contributed to our understanding of intestinal fungi in coral reef fish and further increased the library of fungi available for natural bioactive product screening.
Collapse
Affiliation(s)
- Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiadenghui Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zanhu Zhou
- Technical Center of Xiamen Customs, Xiamen 361026, China
| | - Jinying Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dunming Xu
- Technical Center of Xiamen Customs, Xiamen 361026, China
| | - Qiaoting Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Microwave-Assisted Cu-Catalyzed Diaryletherification for Facile Synthesis of Bioactive Prenylated Diresorcinols. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010062. [PMID: 36615257 PMCID: PMC9821922 DOI: 10.3390/molecules28010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Prenylated diresorcinols exhibit various bioactivities, including cytotoxic, antibacterial, and antifungal activities. Therefore, establishing facile and efficient synthetic routes for prenylated diresorcinols facilitates their development as chemical probes or drugs with a novel mode of action. In this study, microwave-assisted copper catalysis was explored as a cost-effective and environmentally friendly method for the cross-coupling of sterically hindered ortho-prenylated phenols and aryl halides to produce bioactive prenylated diresorcinols, diorcinol I and leotiomycene B. Notable advantages of microwave-assisted catalysis include not only operational simplicity and rapid heating but also shorter reaction times and higher chemical yields. In addition, highly regioselective prenylation of phenol was achieved for the preparation of ortho-prenyl phenol via directed lithiation and subsequent alkylation. This study provides valuable insights for the preparation of other bioactive prenylated diresorcinols. Furthermore, considering that prenylated benzenoids are biosynthetic precursors of various polycyclic natural products, this synthetic route could be expanded to more complex bioactive compounds possessing diaryl ethers.
Collapse
|
7
|
Singh KS, Singh A. Chemical diversities, biological activities and chemical synthesis of marine diphenyl ether and their derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Nguyen MV, Han JW, Kim H, Choi GJ. Phenyl Ethers from the Marine-Derived Fungus Aspergillus tabacinus and Their Antimicrobial Activity Against Plant Pathogenic Fungi and Bacteria. ACS OMEGA 2022; 7:33273-33279. [PMID: 36157764 PMCID: PMC9494657 DOI: 10.1021/acsomega.2c03859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 06/06/2023]
Abstract
Marine fungi produce various secondary metabolites with unique chemical structures and diverse biological activities. In the continuing search for new antifungal agents from fungi isolated from marine environments, the culture filtrate of a fungus Aspergillus tabacinus SFC20160407-M11 exhibited the potential to control plant diseases caused by fungi. From the culture filtrate of A. tabacinus SFC20160407-M11, a total of seven compounds were isolated and identified by activity-guided column chromatography and spectroscopic analysis: violaceol I (1), violaceol II (2), diorcinol (3), versinol (4), orcinol (5), orsellinic acid (6), and sydowiol C (7). Based on in vitro bioassays against 17 plant pathogenic fungi and bacteria, violaceols and diorcinol (1-3) showed a broad spectrum of antimicrobial activity with minimum inhibitory concentration values in the range of 6.3-200 μg mL-1. These compounds also effectively reduced the development of rice blast, tomato late blight, and pepper anthracnose caused by plant pathogenic fungi in a dose-dependent manner. Our results suggest that A. tabacinus SFC20160407-M11 and its phenyl ether compounds could be used for developing new antimicrobial agents to protect crops from plant pathogens.
Collapse
Affiliation(s)
- Minh Van Nguyen
- Center
for Eco-friendly New Materials, Korea Research
Institute of Chemical Technology, Daejeon 34114, Korea
- Division
of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea
| | - Jae Woo Han
- Center
for Eco-friendly New Materials, Korea Research
Institute of Chemical Technology, Daejeon 34114, Korea
| | - Hun Kim
- Center
for Eco-friendly New Materials, Korea Research
Institute of Chemical Technology, Daejeon 34114, Korea
- Division
of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea
| | - Gyung Ja Choi
- Center
for Eco-friendly New Materials, Korea Research
Institute of Chemical Technology, Daejeon 34114, Korea
- Division
of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
9
|
Molecular Insight into Gene Response of Diorcinol- and Rubrolide-Treated Biofilms of the Emerging Pathogen Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0258221. [PMID: 35471093 PMCID: PMC9241881 DOI: 10.1128/spectrum.02582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant human opportunistic pathogen. S. maltophilia contributes to disease progression in cystic fibrosis patients and is found in wounds and infected tissues and on catheter surfaces. Due to its well-known multidrug resistance, it is difficult to treat S. maltophilia infections. Strain-specific susceptibility to antimicrobials has also been reported in several studies. Recently, three fungal diorcinols and 14 rubrolides were shown to reduce S. maltophilia K279a biofilm formation. Based on these initial findings, we were interested to extend this approach by testing a larger number of diorcinols and rubrolides and to understand the molecular mechanisms behind the observed antibiofilm effects. Of 52 tested compounds, 30 were able to significantly reduce the biofilm thickness by up to 85% ± 15% and had strong effects on mature biofilms. All compounds with antibiofilm activity also significantly affected the biofilm architecture. Additional RNA-sequencing data of diorcinol- and rubrolide-treated biofilm cells of two clinical isolates (454 and K279) identified a small set of shared genes that were affected by these potent antibiofilm compounds. Among these, genes for iron transport, general metabolism, and membrane biosynthesis were most strongly and differentially regulated. A further hierarchical clustering and detailed structural inspection of the diorcinols and rubrolides implied that a prenyl group as side chain of one of the phenyl groups of the diorcinols and an increasing degree of bromination of chlorinated rubrolides were possibly the cause of the strong antibiofilm effects. This study gives a deep insight into the effects of rubrolides and diorcinols on biofilms formed by the important global pathogen S. maltophilia. IMPORTANCE Combating Stenotrophomonasmaltophilia biofilms in clinical and industrial settings has proven to be challenging. S. maltophilia is multidrug resistant, and occurrence of resistance to commonly used drugs as well as to antibiotic combinations, such as trimethoprim-sulfamethoxazole, is now frequently reported. It is therefore now necessary to look beyond conventional and already existing antimicrobial drugs when battling S. maltophilia biofilms. Our study contains comprehensive and detailed data sets for diorcinol and rubrolide-treated S. maltophilia biofilms. The study defines genes and pathways affected by treatment with these different compounds. These results, together with the identified structural elements that may be crucial for their antibiofilm activity, build a strong backbone for further research on diorcinols and rubrolides as novel and potent antibiofilm compounds.
Collapse
|
10
|
Pinedo-Rivilla C, Aleu J, Durán-Patrón R. Cryptic Metabolites from Marine-Derived Microorganisms Using OSMAC and Epigenetic Approaches. Mar Drugs 2022; 20:84. [PMID: 35200614 PMCID: PMC8879561 DOI: 10.3390/md20020084] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Marine microorganisms have proven to be a source of new natural products with a wide spectrum of biological activities relevant in different industrial sectors. The ever-increasing number of sequenced microbial genomes has highlighted a discrepancy between the number of gene clusters potentially encoding the production of natural products and the actual number of chemically characterized metabolites for a given microorganism. Homologous and heterologous expression of these biosynthetic genes, which are often silent under experimental laboratory culture conditions, may lead to the discovery of new cryptic natural products of medical and biotechnological interest. Several new genetic and cultivation-based strategies have been developed to meet this challenge. The OSMAC approach (one strain-many compounds), based on modification of growth conditions, has proven to be a powerful strategy for the discovery of new cryptic natural products. As a direct extension of this approach, the addition of chemical elicitors or epigenetic modifiers have also been used to activate silent genes. This review looks at the structures and biological activities of new cryptic metabolites from marine-derived microorganisms obtained using the OSMAC approach, the addition of chemical elicitors, and enzymatic inhibitors and epigenetic modifiers. It covers works published up to June 2021.
Collapse
Affiliation(s)
- Cristina Pinedo-Rivilla
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
- Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
- Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
11
|
Shabana S, Lakshmi KR, Satya AK. An Updated Review of Secondary Metabolites from Marine Fungi. Mini Rev Med Chem 2021; 21:602-642. [PMID: 32981503 DOI: 10.2174/1389557520666200925142514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022]
Abstract
Marine fungi are valuable and richest sources of novel natural products for medicinal and pharmaceutical industries. Nutrient depletion, competition or any other type of metabolic stress which limits marine fungal growth promotes the formation and secretion of secondary metabolites. Generally secondary metabolites can be produced by many different metabolic pathways and include antibiotics, cytotoxic and cyto-stimulatory compounds. Marine fungi produce many different types of secondary metabolites that are of commercial importance. This review paper deals with around 187 novel compounds and 212 other known compounds with anticancer and antibacterial activities with a special focus on the period from 2011-2019. Furthermore, this review highlights the sources of organisms, chemical classes and biological activities (anticancer and antibacterial) of metabolites, that were isolated and structurally elucidated from marine fungi to throw a helping hand for novel drug development.
Collapse
Affiliation(s)
- Syed Shabana
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| | - K Rajya Lakshmi
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| | - A Krishna Satya
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| |
Collapse
|
12
|
Uras IS, Ebada SS, Korinek M, Albohy A, Abdulrazik BS, Wang YH, Chen BH, Horng JT, Lin W, Hwang TL, Konuklugil B. Anti-Inflammatory, Antiallergic, and COVID-19 Main Protease (M pro) Inhibitory Activities of Butenolides from a Marine-Derived Fungus Aspergillus terreus. Molecules 2021; 26:3354. [PMID: 34199488 PMCID: PMC8199578 DOI: 10.3390/molecules26113354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
In December 2020, the U.K. authorities reported to the World Health Organization (WHO) that a new COVID-19 variant, considered to be a variant under investigation from December 2020 (VUI-202012/01), was identified through viral genomic sequencing. Although several other mutants were previously reported, VUI-202012/01 proved to be about 70% more transmissible. Hence, the usefulness and effectiveness of the newly U.S. Food and Drug Administration (FDA)-approved COVID-19 vaccines against these new variants are doubtfully questioned. As a result of these unexpected mutants from COVID-19 and due to lack of time, much research interest is directed toward assessing secondary metabolites as potential candidates for developing lead pharmaceuticals. In this study, a marine-derived fungus Aspergillus terreus was investigated, affording two butenolide derivatives, butyrolactones I (1) and III (2), a meroterpenoid, terretonin (3), and 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4). Chemical structures were unambiguously determined based on mass spectrometry and extensive 1D/2D NMR analyses experiments. Compounds (1-4) were assessed for their in vitro anti-inflammatory, antiallergic, and in silico COVID-19 main protease (Mpro) and elastase inhibitory activities. Among the tested compounds, only 1 revealed significant activities comparable to or even more potent than respective standard drugs, which makes butyrolactone I (1) a potential lead entity for developing a new remedy to treat and/or control the currently devastating and deadly effects of COVID-19 pandemic and elastase-related inflammatory complications.
Collapse
Affiliation(s)
- Ibrahim Seyda Uras
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey;
- Department of Pharmacognosy, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri 04100, Turkey
| | - Sherif S. Ebada
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo 11566, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, Kantara, Ismailia 41511, Egypt
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt; (A.A.); (B.S.A.)
| | - Basma S. Abdulrazik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt; (A.A.); (B.S.A.)
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- The Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Belma Konuklugil
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey;
- Department of Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, Çankaya, Ankara 06510, Turkey
| |
Collapse
|
13
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Antibiotics from Extremophilic Micromycetes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020; 46:903-971. [PMID: 33390684 PMCID: PMC7768999 DOI: 10.1134/s1068162020060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022]
Abstract
Extremophilic microorganisms, which are capable of functioning normally at extremely high or low temperatures, pressure, and in other environmental conditions, have been in the focus of microbiologists' attention for several decades due to the biotechnological potential of enzymes inherent in extremophiles. These enzymes (also called extremozymes) are used in the production of food and detergents and other industries. At the same time, the inhabitants of extreme econiches remained almost unexplored for a long time in terms of the chemistry of natural compounds. In recent years, the emergence of new antibiotic-resistant strains of pathogens, which affect humans and animals has become a global problem. The problem is compounded by a strong slowdown in the development of new antibiotics. In search of new active substances and scaffolds for medical chemistry, researchers turn to unexplored natural sources. In recent years, there has been a sharp increase in the number of studies on secondary metabolites produced by extremophiles. From the discovery of penicillin to the present day, micromycetes, along with actinobacteria, are one of the most productive sources of antibiotic compounds for medicine and agriculture. Many authors consider extremophilic micromycetes as a promising source of small molecules with an unusual mechanism of action or significant structural novelty. This review summarizes the latest (for 2018-2019) experimental data on antibiotic compounds, which are produced by extremophilic micromycetes with various types of adaptation. Active metabolites are classified by the type of structure and biosynthetic origin. The data on the biological activity of the isolated metabolites are summarized.
Collapse
Affiliation(s)
- A. A. Baranova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - V. A. Alferova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - V. A. Korshun
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - A. P. Tyurin
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
14
|
Yuan XL, Li XQ, Xu K, Hou XD, Zhang ZF, Xue L, Liu XM, Zhang P. Transcriptome Profiling and Cytological Assessments for Identifying Regulatory Pathways Associated With Diorcinol N-Induced Autophagy in A3 Cells. Front Pharmacol 2020; 11:570450. [PMID: 33178020 PMCID: PMC7593552 DOI: 10.3389/fphar.2020.570450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungal secondary metabolites serve as a rich resource for exploring lead compounds with medicinal importance. Diorcinol N (DN), a fungal secondary metabolite isolated from an endophytic fungus, Arthrinium arundinis, exhibits robust anticancer activity. However, the anticancer mechanism of DN remains unclear. In this study, we examined the growth-inhibitory effect of DN on different human cancer cell lines. We found that DN decreased the viability of A3 T-cell leukemia cells in a time- and concentration-dependent manner. Transcriptome analysis indicated that DN modulated the transcriptome of A3 cells. In total, 9,340 differentially expressed genes were found, among which 4,378 downregulated genes and 4,962 upregulated genes were mainly involved in autophagy, cell cycle, and DNA replication. Furthermore, we demonstrated that DN induced autophagy, cell cycle arrest in the G1/S phase, and downregulated the expression of autophagy- and cell cycle-related genes in A3 cells. By labeling A3 cells with acridine orange/ethidium bromide, Hoechst 33,258, and monodansylcadaverine and via transmission electron microscopy, we found that DN increased plasma membrane permeability, structural disorganization, vacuolation, and autophagosome formation. Our study provides evidence for the mechanism of anticancer activity of DN in T-cell leukemia (A3) cells and demonstrates the promise of DN as a lead or even candidate molecule for the treatment of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Xiao-Long Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiu-Qi Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kuo Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao-Dong Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lin Xue
- Wannan Tobacco Group Company Limited, Xuancheng, China
| | - Xin-Min Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
15
|
Boehlich GJ, de Vries J, Geismar O, Gudzuhn M, Streit WR, Wicha SG, Schützenmeister N. Total Synthesis of Anti-MRSA Active Diorcinols and Analogues. Chemistry 2020; 26:9846-9850. [PMID: 32510795 PMCID: PMC7497275 DOI: 10.1002/chem.202002442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 11/07/2022]
Abstract
Diorcinols and related prenylated diaryl ethers were reported to exhibit activity against methicillin-resistant clinical isolates of Staphylococcus aureus (MRSA). Within these lines, we report the first total synthesis of diorcinol D, I, J, the proposed structure of verticilatin and recently isolated antibacterial diaryl ether by using an efficient and highly divergent synthetic strategy. These total syntheses furnish the diaryl ethers in only five to seven steps employing a Pd-catalyzed diaryl ether coupling as the key step. The total synthesis led to the structural revision of the natural product verticilatin, which has been isolated from a plant pathogenic fungus. Furthermore, these structures were tested in order to determine their antibacterial activities against different MRSA strains as well as further Gram-positive and -negative bacteria.
Collapse
Affiliation(s)
- G. Jacob Boehlich
- Fachbereich ChemieInstitut für PharmazieUniversität HamburgBundesstraße 4520146HamburgGermany
| | - Jessica de Vries
- Fachbereich ChemieInstitut für PharmazieUniversität HamburgBundesstraße 4520146HamburgGermany
| | - Olivia Geismar
- Fachbereich ChemieInstitut für PharmazieUniversität HamburgBundesstraße 4520146HamburgGermany
| | - Mirja Gudzuhn
- Department of Microbiology and BiotechnologyUniversität HamburgOhnhorststrasse 1822609HamburgGermany
| | - Wolfgang R. Streit
- Department of Microbiology and BiotechnologyUniversität HamburgOhnhorststrasse 1822609HamburgGermany
| | - Sebastian G. Wicha
- Fachbereich ChemieInstitut für PharmazieUniversität HamburgBundesstraße 4520146HamburgGermany
| | - Nina Schützenmeister
- Fachbereich ChemieInstitut für PharmazieUniversität HamburgBundesstraße 4520146HamburgGermany
| |
Collapse
|
16
|
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D. Marine Natural Products with High Anticancer Activities. Curr Med Chem 2020; 27:1243-1307. [PMID: 31931690 DOI: 10.2174/0929867327666200113154115] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agro-ressources (LG2A), CNRS FRE 3517, 33 rue Saint-Leu, 80039 Amiens, France
| | - Maris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1007, Latvia
| | - Maria Kolympadi Markovic
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Gabriela Ambrožić
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
17
|
Yang HY, Duan YQ, Yang YK, Liu X, Ye L, Mi QL, Kong WS, Zhou M, Yang GY, Hu QF, Li XM, Li J. Two New Diphenyl Ether Derivatives from the Fermentation Products of an Endophytic Fungus Phomopsis fukushii. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02706-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
New Diketopiperazines from a Marine-Derived Fungus Strain Aspergillus versicolor MF180151. Mar Drugs 2019; 17:md17050262. [PMID: 31052556 PMCID: PMC6562876 DOI: 10.3390/md17050262] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Six new diketopiperazines, (±)-7,8-epoxy-brevianamide Q ((±)-1), (±)-8-hydroxy-brevianamide R ((±)-2), and (±)-8-epihydroxy-brevianamide R ((±)-3), together with four known compounds, (±)-brevianamide R ((±)-4), versicolorin B (5) and averufin (6), were isolated from a marine-derived fungus strain Aspergillus versicolor MF180151, which was recovered from a sediment sample collected from the Bohai Sea, China. The chemical structures were established by 1D- and 2D-NMR spectra and HR-ESI-MS. 1 is the first sample of brevianamides with an epoxy moiety. Their bioactivities were evaluated against Candida albicans, Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus, Pseudomonas aeruginosa, and Bacillus Calmette-Guérin. Compounds 1–4 showed no activities against the pathogens, and compounds 5 and 6 showed moderate activities against S. aureus and methicillin-resistant S. aureus.
Collapse
|
19
|
Gao YH, Zheng R, Li J, Kong WS, Liu X, Ye L, Mi QL, Kong WS, Zhou M, Yang GY, Hu QF, Du G, Yang HY, Li XM. Three new diphenyl ether derivatives from the fermentation products of an endophytic fungus Phomopsis fukushii. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:316-322. [PMID: 29338435 DOI: 10.1080/10286020.2017.1421177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Three new diphenyl ethers (1-3), together with four known isopentylated diphenyl ethers derivatives (4-7), were isolated from the fermentation products of an endophytic fungus Phomopsis fukushii. Their structures were elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Compounds 1-3 were evaluated for their anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity. The results revealed that compounds 1 and 2 showed strong inhibitions with inhibition zone diameters (IZD) of 20.2 ± 2.5 mm and 17.9 ± 2.2 mm, respectively. Compound 3 also showed good inhibition with IZD 15.2 ± 1.8 mm. The IZD data of compound 1 is close to that of positive control with IZD 21.9 ± 2.1 mm.
Collapse
Affiliation(s)
- Yu-Hong Gao
- a Department of Clinical Laboratories , The First People's Hospital of Yunnan Province , Kunming 650032 , China
| | - Rui Zheng
- a Department of Clinical Laboratories , The First People's Hospital of Yunnan Province , Kunming 650032 , China
| | - Jing Li
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Wei-Song Kong
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Xin Liu
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Lin Ye
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Qi-Li Mi
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Wei-Song Kong
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Min Zhou
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Guang-Yu Yang
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Qiu-Fen Hu
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Gang Du
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Hai-Ying Yang
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Xue-Mei Li
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| |
Collapse
|
20
|
Pan R, Bai X, Chen J, Zhang H, Wang H. Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review. Front Microbiol 2019; 10:294. [PMID: 30863377 PMCID: PMC6399155 DOI: 10.3389/fmicb.2019.00294] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
Microbial secondary metabolites (MSMs) have played and continue to play a highly significant role in the drug discovery and development process. Genetically, MSM chemical structures are biologically synthesized by microbial gene clusters. Recently, however, the speed of new bioactive MSM discovery has been slowing down due to consistent employment of conventional cultivation and isolation procedure. In order to alleviate this challenge, a number of new approaches have been developed. The strategy of one strain many compounds (OSMAC) has been shown as a simple and powerful tool that can activate many silent biogenetic gene clusters in microorganisms to make more natural products. This review highlights important and successful examples using OSMAC approaches, which covers changing medium composition and cultivation status, co-cultivation with other strain(s), adding enzyme inhibitor(s) and MSM biosynthetic precursor(s). Available evidences had shown that variation of cultivation condition is the most effective way to produce more MSMs and facilitate the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Rui Pan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jianwei Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Zhang P, Li X, Yuan XL, Du YM, Wang BG, Zhang ZF. Antifungal Prenylated Diphenyl Ethers from Arthrinium arundinis, an Endophytic Fungus Isolated from the Leaves of Tobacco ( Nicotiana tabacum L.). Molecules 2018; 23:E3179. [PMID: 30513840 PMCID: PMC6320909 DOI: 10.3390/molecules23123179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 01/12/2023] Open
Abstract
An endophytic fungus Arthrinium arundinis TE-3 was isolated and purified from the fresh leaves of cultivated tobacco (Nicotiana tabacum L.). Chemical investigation on this fungal strain afforded three new prenylated diphenyl ethers (1-3) as well as three known analogues (4-6). Structure elucidation of the isolated compounds was carried out by analysis of 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HRESIMS) spectra, as well as by comparison of those data with literature data. The absolute configuration of the stereogenic center at C-8 in 1 was assigned by comparison of the experimental and calculated ECD spectra. Compounds 1 and 2 showed selective antifungal activity against Mucor hiemalis with minimum inhibitory concentration (MIC) values of 8 and 4 μg/mL, respectively. Compounds 5 and 6 exhibited inhibitory activity against Alteraria alternata with an MIC value of 8 μg/mL. In the cytotoxic assay, 2, 5, and 6 displayed moderate in vitro cytotoxicity against the human monocytic cell line (THP-1 cell line), with IC50 values of 40.2, 28.3, and 25.9 μM, respectively. This study indicated that endophytic fungi possess great potential for exploring new bioactive secondary metabolites.
Collapse
Affiliation(s)
- Peng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xin Li
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiao-Long Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yong-Mei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Bin-Gui Wang
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zhong-Feng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
22
|
Li ZX, Wang XF, Ren GW, Yuan XL, Deng N, Ji GX, Li W, Zhang P. Prenylated Diphenyl Ethers from the Marine Algal-Derived Endophytic Fungus Aspergillus tennesseensis. Molecules 2018; 23:molecules23092368. [PMID: 30227613 PMCID: PMC6225247 DOI: 10.3390/molecules23092368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/06/2023] Open
Abstract
Considerable attention has been paid to marine derived endophytic fungi, owing to their capacity to produce novel secondary metabolites with potent bioactivities. In this study, two new compounds with a prenylated diphenyl ether structure—diorcinol L (1) and (R)-diorcinol B (2)—were isolated from the marine algal-derived endophytic fungus Aspergillus tennesseensis, along with seven known compounds: (S)-diorcinol B (3), 9-acetyldiorcinol B (4), diorcinol C (5), diorcinol D (6), diorcinol E (7), diorcinol J (8), and a dihydrobenzofuran derivative 9. Their structures were elucidated by extensive NMR spectroscopy studies. Compound 2 represents the first example of an R-configuration in the prenylated moiety. All these isolated compounds were examined for antimicrobial and cytotoxic activities. Compounds 1–9 exhibited antimicrobial activities against some human- and plant-pathogenic microbes with MIC values ranging from 2 to 64 μg/mL. Moreover, compound 9 displayed considerable inhibitory activity against the THP-1 cell line in vitro, with an IC50 value of 7.0 μg/mL.
Collapse
Affiliation(s)
- Zhao-Xia Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Xiu-Fang Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| | - Guang-Wei Ren
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| | - Xiao-Long Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| | - Ning Deng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| | - Gui-Xia Ji
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| | - Wei Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Peng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
23
|
New phenolic bisabolane sesquiterpenoid derivatives with cytotoxicity from Aspergillus tennesseensis. J Antibiot (Tokyo) 2018; 71:538-542. [DOI: 10.1038/s41429-018-0025-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/28/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022]
|
24
|
Li ZJ, Yang HY, Li J, Liu X, Ye L, Kong WS, Tang SY, Du G, Liu ZH, Zhou M, Yang GY, Hu QF, Li XM. Isopentylated diphenyl ether derivatives from the fermentation products of an endophytic fungus Phomopsis fukushii. J Antibiot (Tokyo) 2018; 71:359-362. [PMID: 29348531 DOI: 10.1038/s41429-017-0006-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022]
Abstract
Three new isopentylated diphenyl ethers, (1-3), together with two known isopentylated diphenyl ethers derivatives (4 and 5) were isolated from the fermentation products of an endophytic fungus Phomopsis fukushii. Their structures were elucidated by spectroscopic methods, including extensive 1D- and 2D NMR techniques. Compounds 1-3 were evaluated for their anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity. The results showed that compounds 1-3 showed strong activity with diameter of inhibition zone (IZD) of 21.8 ± 2.4 mm, 16.8 ± 2.2 mm, and 15.6 ± 2.0 mm, respectively.
Collapse
Affiliation(s)
- Zhen-Jie Li
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Hai-Ying Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China
| | - Jing Li
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Xin Liu
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Lin Ye
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Wei-Song Kong
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Shi-Yun Tang
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Gang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China
| | - Zhi-Hua Liu
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Min Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China
| | - Guang-Yu Yang
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China.,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China
| | - Qiu-Fen Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China.
| | - Xue-Mei Li
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China.
| |
Collapse
|
25
|
Deshmukh SK, Prakash V, Ranjan N. Marine Fungi: A Source of Potential Anticancer Compounds. Front Microbiol 2018; 8:2536. [PMID: 29354097 PMCID: PMC5760561 DOI: 10.3389/fmicb.2017.02536] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012-2016 against specific cancer cell lines.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Nihar Ranjan
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
26
|
Xu X, Yang H, Xu H, Yin L, Chen Z, Shen H. Diphenyl ethers from a marine-derived isolate of Aspergillus sp. CUGB-F046. Nat Prod Res 2017; 32:821-825. [PMID: 28826261 DOI: 10.1080/14786419.2017.1363754] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One new diphenyl ether, diorcinol K (1), along with three known compounds, diorcinols D (2), F (3) and I (4) were isolated from the fermentation media of a marine-derived fungus Aspergillus sp. CUGB-F046 which was isolated from a sediment sample collected from the Bohai Sea, China. Their structures were elucidated by detailed spectroscopic methods. Compounds 1, 2 and 4 displayed significant antibacterial activities against Staphylococcus aureus and methicillin-resistant S. aureus with MIC values of 3.125, 6.25 and 6.25 μg/mL, respectively.
Collapse
Affiliation(s)
- Xiuli Xu
- a School of Ocean Sciences , China University of Geosciences , Beijing , China
| | - Haijin Yang
- a School of Ocean Sciences , China University of Geosciences , Beijing , China
| | - Huitao Xu
- a School of Ocean Sciences , China University of Geosciences , Beijing , China
| | - Liyuan Yin
- a School of Ocean Sciences , China University of Geosciences , Beijing , China
| | - Zhengkun Chen
- a School of Ocean Sciences , China University of Geosciences , Beijing , China
| | - Huihui Shen
- a School of Ocean Sciences , China University of Geosciences , Beijing , China
| |
Collapse
|
27
|
Ahmed EF, Rateb ME, Abou El-Kassem LT, Hawas UW. Anti-HCV protease of diketopiperazines produced by the Red Sea sponge-associated fungus Aspergillus versicolor. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817010021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Gu BB, Tang J, Wang SP, Sun F, Yang F, Li L, Xu Y, Lin HW. Structure, absolute configuration, and variable-temperature1H-NMR study of (±)-versiorcinols A–C, three racemates of diorcinol monoethers from the sponge-associated fungus Aspergillus versicolor 16F-11. RSC Adv 2017. [DOI: 10.1039/c7ra06106d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structure, absolute configuration, and variable-temperature1H-NMR study of three racemates of diorcinol monoethers, (±)-versiorcinols A–C.
Collapse
Affiliation(s)
- Bin-Bin Gu
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Jie Tang
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Shu-Ping Wang
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Fan Sun
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Fan Yang
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Lei Li
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Ying Xu
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Hou-Wen Lin
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| |
Collapse
|
29
|
Wen F, Jin H, Tao K, Hou T. Design, synthesis and antifungal activity of novel furancarboxamide derivatives. Eur J Med Chem 2016; 120:244-51. [DOI: 10.1016/j.ejmech.2016.04.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 11/16/2022]
|
30
|
Zhou K, Zhu L, Wang X, Zhang T, Wang Y, Dong W, Ji B, Yang H, Du G, Hu Q, Zhou M. Butyrolactones from the Fermentation Products of the Endophytic Fungus Aspergillus versicolor. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1719-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Li XB, Zhou YH, Zhu RX, Chang WQ, Yuan HQ, Gao W, Zhang LL, Zhao ZT, Lou HX. Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem Biodivers 2016; 12:575-92. [PMID: 25879502 DOI: 10.1002/cbdv.201400146] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 11/10/2022]
Abstract
A chemical investigation of the endolichenic fungus Aspergillus versicolor (125a), which was found in the lichen Lobaria quercizans, resulted in the isolation of four novel diphenyl ethers, named diorcinols F-H (1-3, resp.) and 3-methoxyviolaceol-II (4), eight new bisabolane sesquiterpenoids, named (-)-(R)-cyclo-hydroxysydonic acid (5), (-)-(7S,8R)-8-hydroxysydowic acid (6), (-)-(7R,10S)-10-hydroxysydowic acid (7), (-)-(7R,10R)-iso-10-hydroxysydowic acid (8), (-)-12-acetoxy-1-deoxysydonic acid (9), (-)-12-acetoxysydonic acid (10), (-)-12-hydroxysydonic acid (11), and (-)-(R)-11-dehydrosydonic acid (12), two new tris(pyrogallol ethers), named sydowiols D (13) and E (14), and fifteen known compounds, 15-29. All of the structures were determined by spectroscopic analyses, and a number of them were further identified through chemical transformations and electronic circular dichroism (ECD) calculations. Preliminary bioassays of these isolates for the determination of their inhibitory activities against the fungus Candida albicans, and their cytotoxicities against the human cancer cell lines PC3, A549, A2780, MDA-MB-231, and HEPG2 were also evaluated.
Collapse
Affiliation(s)
- Xiao-Bin Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Science, Shandong University, No. 44 West Wenhua Road, Jinan 250012, P. R. China (phone: +86-531-88382012; fax: +86-531-88382019)
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
New Diorcinol J Produced by Co-Cultivation of Marine Fungi Aspergillus sulphureus and Isaria felina. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1601-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
34
|
Yurchenko AA, Smetanina OF, Kalinovsky AI, Kirichuk NN, Pivkin MV, Ivanets EV, Yurchenko EA, Afiyatullov SS. New Metabolites from a Marine Sediment-Derived Fungus, Aspergillus carneus. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new polyketide 1 and a new decaline derivative 2 were isolated from a sediment-derived fungus Aspergillus carneus Blochwitz, together with one known bisabolane sesquiterpenoid and seven known polyketide metabolites. The structures of the isolated compounds were established by HR-MS, and 1D and 2D NMR spectroscopy. The cytotoxic and antiradical activities of the isolated compounds were evaluated.
Collapse
Affiliation(s)
- Anton A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russian Federation
| | - Olga F. Smetanina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russian Federation
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russian Federation
| | - Natalya N. Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russian Federation
| | - Mikhail V. Pivkin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russian Federation
| | - Elena V. Ivanets
- Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690000, Russian Federation
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russian Federation
| | - Shamil Sh. Afiyatullov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russian Federation
| |
Collapse
|
35
|
|
36
|
Peng J, Gao H, Zhang X, Wang S, Wu C, Gu Q, Guo P, Zhu T, Li D. Psychrophilins E-H and versicotide C, cyclic peptides from the marine-derived fungus Aspergillus versicolor ZLN-60. JOURNAL OF NATURAL PRODUCTS 2014; 77:2218-2223. [PMID: 25246036 DOI: 10.1021/np500469b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Four new cyclic peptides, psychrophilins E-H (1-4), possessing a rare amide linkage between the carboxylic acid in anthranilic acid (ATA) and the nitrogen from an indole moiety, along with a new ATA-containing hexapeptide, versicotide C (5), were obtained from the culture of the marine-derived fungus Aspergillus versicolor ZLN-60. The structures, including absolute configurations, were elucidated by a combination of HRESIMS, NMR, X-ray crystallography, TDDFT ECD calculations, and Marfey's method. Versicotide C (5) is the first natural cyclic hexapeptide containing two anthranilic acids. Compounds 1-5 were not cytotoxic, and compound 3 showed potent lipid-lowering effects.
Collapse
Affiliation(s)
- Jixing Peng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao, 266003, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhao H, Wang GQ, Tong XP, Chen GD, Huang YF, Cui JY, Kong MZ, Guo LD, Zheng YZ, Yao XS, Gao H. Diphenyl ethers from Aspergillus sp. and their anti-Aβ₄₂ aggregation activities. Fitoterapia 2014; 98:77-83. [PMID: 25038471 DOI: 10.1016/j.fitote.2014.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Two new compounds with the character of diphenyl ether structure, oxisterigmatocystin D (1) and 9-acetyldiorcinol B (6), were isolated from the endolichenic fungal strain Aspergillus sp. (No. 16-20-8-1), along with six known compounds, oxisterigmatocystin A (2), oxisterigmatocystin C (3), sterigmatocystin (4), diorcinol B (5), violaceol-I (7), and violaceol-II (8). The structures of the new compounds were determined by extensive NMR spectroscopic data, and the absolute configuration of 1 was established by single-crystal X-ray diffraction analysis. Moreover, the Aβ42 aggregation inhibitory activities of 5-8 were evaluated by the standard thioflavin T (ThT) fluorescence assay using epigallocatechin gallate (EGCG) as the positive control. Compounds 7 and 8 displayed significant anti-Aβ42 aggregation activity with IC50 values of 5.1 and 2.3μM, respectively. Preliminary structure-activity relationship of these diphenyl ethers as anti-Aβ42 aggregation inhibitors was proposed.
Collapse
Affiliation(s)
- Huan Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xu-Peng Tong
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guo-Dong Chen
- Department of Pharmaceutical Engineering, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Yuan-Fan Huang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jia-Yu Cui
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ming-Zhu Kong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yi-Zhi Zheng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|