1
|
Zhang Z, Sun Y, Li Y, Song X, Wang R, Zhang D. The potential of marine-derived piperazine alkaloids: Sources, structures and bioactivities. Eur J Med Chem 2024; 265:116081. [PMID: 38181652 DOI: 10.1016/j.ejmech.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Marine-derived piperazine alkaloids (MDPAs) constitute a significant group of natural compounds known for their diverse structures and biological activities. Over the past five decades, substantial efforts have been devoted to isolating these alkaloids from marine sources and characterizing their chemical and bioactive profiles. To date, a total of 922 marine-derived piperazine alkaloids have been reported from various marine organisms. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and various other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of marine-derived piperazine alkaloids. This review also summarizes the structure-activity relationship (SAR) studies associated with the cytotoxicity of these compounds. In summary, our objective is to provide an overview of the research progress concerning marine-derived piperazine alkaloids, with the aim of fostering their continued development and utilization.
Collapse
Affiliation(s)
- Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yu Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| |
Collapse
|
2
|
Li J, Zhuang CL. Natural Indole Alkaloids from Marine Fungi: Chemical Diversity and Biological Activities. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1740050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The indole scaffold is one of the most important heterocyclic ring systems for pharmaceutical development, and serves as an active moiety in several clinical drugs. Fungi derived from marine origin are more liable to produce novel indole-containing natural products due to their extreme living environments. The indole alkaloids from marine fungi have drawn considerable attention for their unique chemical structures and significant biological activities. This review attempts to provide a summary of the structural diversity of marine fungal indole alkaloids including prenylated indoles, diketopiperazine indoles, bisindoles or trisindoles, quinazoline-containing indoles, indole-diterpenoids, and other indoles, as well as their known biological activities, mainly focusing on cytotoxic, kinase inhibitory, antiinflammatory, antimicrobial, anti-insecticidal, and brine shrimp lethal effects. A total of 306 indole alkaloids from marine fungi have been summarized, covering the references published from 1995 to early 2021, expecting to be beneficial for drug discovery in the future.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chun-Lin Zhuang
- Department of Natural Product Chemistry, School of Pharmacy, The Second Military Medical University, Shanghai, People's Republic of China
- Department of Medicinal Chemistry, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
3
|
Liu Z, Zhao F, Zhao B, Yang J, Ferrara J, Sankaran B, Venkataram Prasad BV, Kundu BB, Phillips GN, Gao Y, Hu L, Zhu T, Gao X. Structural basis of the stereoselective formation of the spirooxindole ring in the biosynthesis of citrinadins. Nat Commun 2021; 12:4158. [PMID: 34230497 PMCID: PMC8260726 DOI: 10.1038/s41467-021-24421-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022] Open
Abstract
Prenylated indole alkaloids featuring spirooxindole rings possess a 3R or 3S carbon stereocenter, which determines the bioactivities of these compounds. Despite the stereoselective advantages of spirooxindole biosynthesis compared with those of organic synthesis, the biocatalytic mechanism for controlling the 3R or 3S-spirooxindole formation has been elusive. Here, we report an oxygenase/semipinacolase CtdE that specifies the 3S-spirooxindole construction in the biosynthesis of 21R-citrinadin A. High-resolution X-ray crystal structures of CtdE with the substrate and cofactor, together with site-directed mutagenesis and computational studies, illustrate the catalytic mechanisms for the possible β-face epoxidation followed by a regioselective collapse of the epoxide intermediate, which triggers semipinacol rearrangement to form the 3S-spirooxindole. Comparing CtdE with PhqK, which catalyzes the formation of the 3R-spirooxindole, we reveal an evolutionary branch of CtdE in specific 3S spirocyclization. Our study provides deeper insights into the stereoselective catalytic machinery, which is important for the biocatalysis design to synthesize spirooxindole pharmaceuticals.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Fanglong Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jie Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | | | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - B V Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Biki Bapi Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Bhardwaj N, Pathania A, Kumar P. Naturally Available Nitrogen-Containing Fused Heterocyclics as Prospective Lead Molecules in Medicinal Chemistry. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190613125700] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterocyclic compounds constitute one of the largest and most versatile families
of organic compounds. There are many heterocyclic compounds that are being isolated from
natural sources and day by day the number is increasing rapidly due to their enormous utility.
Nitrogen containing heterocyclic compounds have a prominent role in medicinal chemistry,
biochemistry and other streams of science. In this review, we have covered most of the
biologically active nitrogen containing heterocyclic compounds obtained from the natural
sources including indole, carbazole, quinoline, isoquinoline and benzothiazole ring system.
These isolated nitrogen containing heterocyclic compounds render wide spectrum of biological
activities including antifungal, anti-inflammatory, antibacterial, antioxidants, anticonvulsant,
anti-allergic, herbicidal and anticancer activities.
Collapse
Affiliation(s)
- Nivedita Bhardwaj
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Akashdeep Pathania
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
5
|
Meng ZH, Sun TT, Zhao GZ, Yue YF, Chang QH, Zhu HJ, Cao F. Marine-derived fungi as a source of bioactive indole alkaloids with diversified structures. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:44-61. [PMID: 37073395 PMCID: PMC10077242 DOI: 10.1007/s42995-020-00072-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Marine-derived fungi are well known as rich sources of bioactive natural products. Growing evidences indicated that indole alkaloids, isolated from a variety of marine-derived fungi, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities, and therefore, indole alkaloids have potential to be pharmaceutical lead compounds. Systemic compilation of the relevant literature. In this review, we demonstrated a comprehensive overview of 431 new indole alkaloids from 21 genera of marine-derived fungi with an emphasis on their structures and bioactivities, covering literatures published during 1982-2019.
Collapse
Affiliation(s)
- Zhi-Hui Meng
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Tian-Tian Sun
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Guo-Zheng Zhao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Yu-Fei Yue
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Qing-Hua Chang
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Hua-Jie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Fei Cao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| |
Collapse
|
6
|
Luo H, Cao T, Zhu S. Divergent Synthesis of Ketone-Fused Indoles/Pyrroles via Metal-Guided Friedel-Crafts Cyclization. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Newly reported alkaloids produced by marine-derived Penicillium species (covering 2014-2018). Bioorg Chem 2020; 99:103840. [PMID: 32305696 DOI: 10.1016/j.bioorg.2020.103840] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Alkaloids, especially heterocyclic alkaloids, have received remarkable attention due to their intriguing structures and potential pharmacological activities. The marine fungi residing in extreme environmental conditions are among the richest sources of these basic nitrogen-containing compounds. Fungal species belonging to the genus Penicillium have been studied worldwide for their biosynthetic potential for generating bioactive alkaloids. This paper offers a systematic review of the newly reported alkaloids produced by marine-derived Penicillium species over the past five years (covering the literature from the beginning of 2014 through the end of 2018) and describes the structural diversity, biological activities, and plausible biosynthetic pathway of the reported compounds. A total of 106 alkaloids and 81 references are included in this review, which is expected to be beneficial for drug development and biosynthesis in the near future.
Collapse
|
8
|
Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. DIVERSITY 2019. [DOI: 10.3390/d11070113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are one of the most hostile environments on Earth. Even though DHABs have hypersaline conditions, anoxia and high hydrostatic pressure, they host incredible microbial biodiversity. Among eukaryotes inhabiting these systems, recent studies demonstrated that fungi are a quantitatively relevant component. Here, fungi can benefit from the accumulation of large amounts of organic material. Marine fungi are also known to produce bioactive molecules. In particular, halophilic and halotolerant fungi are a reservoir of enzymes and secondary metabolites with valuable applications in industrial, pharmaceutical, and environmental biotechnology. Here we report that among the fungal taxa identified from the Mediterranean and Red Sea DHABs, halotolerant halophilic species belonging to the genera Aspergillus and Penicillium can be used or screened for enzymes and bioactive molecules. Fungi living in DHABs can extend our knowledge about the limits of life, and the discovery of new species and molecules from these environments can have high biotechnological potential.
Collapse
|
9
|
Kildgaard S, de Medeiros LS, Phillips E, Gotfredsen CH, Frisvad JC, Nielsen KF, Abreu LM, Larsen TO. Cyclopiamines C and D: Epoxide Spiroindolinone Alkaloids from Penicillium sp. CML 3020. JOURNAL OF NATURAL PRODUCTS 2018; 81:785-790. [PMID: 29488766 DOI: 10.1021/acs.jnatprod.7b00825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclopiamines C (1) and D (2) were isolated from the extract of Penicillium sp. CML 3020, a fungus sourced from an Atlantic Forest soil sample. Their structures and relative configuration were determined by 1D and 2D NMR, HRMS, and UV/vis data analysis. Cyclopiamines C and D belong to a small subset of rare spiroindolinone compounds containing an alkyl nitro group and a 4,5-dihydro-1 H-pyrrolo[3,2,1- ij]quinoline-2,6-dione ring system. NMR and MS/HRMS data confirmed the presence of an epoxide unit (C-17-O-C-18) and a hydroxy group at C-5, not observed for their known congeners. Cytotoxic and antimicrobial activities were evaluated.
Collapse
Affiliation(s)
- Sara Kildgaard
- Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 221 , DK-2800 Kgs. Lyngby , Denmark
| | - Lívia S de Medeiros
- Departamento de Química , Universidade Federal de São Paulo (UNIFESP) , Rua São Nicolau, 210 , CEP 09913-030 , Diadema - SP , Brazil
| | - Emma Phillips
- German Cancer Research Center , Brain Tumor Translational Targets , Im Neuenheimer Feld 580 , Heidelberg D-69120 , Germany
| | - Charlotte H Gotfredsen
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , DK-2800 Kgs. Lyngby , Denmark
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 221 , DK-2800 Kgs. Lyngby , Denmark
| | - Kristian F Nielsen
- Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 221 , DK-2800 Kgs. Lyngby , Denmark
| | - Lucas M Abreu
- Departamento de Fitopatologia , Universidade Federal de Viçosa (UFV) , Avenida P.H. Rolfs, s/n.° CEP 36570-000 , Viçosa - MG , Brazil
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 221 , DK-2800 Kgs. Lyngby , Denmark
| |
Collapse
|
10
|
Lee S, Kim DC, Park JS, Son JY, Hak Sohn J, Liu L, Che Y, Oh H. Penicillospirone from a marine isolate of Penicillium sp. (SF-5292) with anti-inflammatory activity. Bioorg Med Chem Lett 2017; 27:3516-3520. [DOI: 10.1016/j.bmcl.2017.05.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 11/17/2022]
|
11
|
Cho KH, Sohn JH, Oh H. Isolation and structure determination of a new diketopiperazine dimer from marine-derived fungus Aspergillus sp. SF-5280. Nat Prod Res 2017; 32:214-221. [PMID: 28670919 DOI: 10.1080/14786419.2017.1346642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A new diketopiperazine dimer designated as SF5280-415 (1) was isolated from an EtOAc extract of the marine-derived fungus Aspergillus sp. SF-5280 by various chromatographic methods. The structure of 1 was mainly determined by analysis of the NMR spectroscopic data and MS data, along with Marfey's method. This compound is a new diastereoisomer of known bispyrrolidinoindoline diketopiperazine alkaloid WIN 64745, which possesses unique architecture biosynthetically derived from an indole oxidation reaction of tryptophan.
Collapse
Affiliation(s)
- Kwang-Ho Cho
- a College of Pharmacy , Wonkwang University , Iksan , Republic of Korea
| | - Jae Hak Sohn
- b College of Medical and Life Sciences , Silla University , Busan , Republic of Korea
| | - Hyuncheol Oh
- a College of Pharmacy , Wonkwang University , Iksan , Republic of Korea
| |
Collapse
|
12
|
Cho KH, Sohn JH, Oh H. Isolation and structure determination of a new diketopiperazine dimer from marine-derived fungus Aspergillus sp. SF-5280. Nat Prod Res 2017. [DOI: 10.1080/14786419.2017.1346642 a31773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Kwang-Ho Cho
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
13
|
Chadha N, Silakari O. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view. Eur J Med Chem 2017; 134:159-184. [DOI: 10.1016/j.ejmech.2017.04.003] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/09/2017] [Accepted: 04/02/2017] [Indexed: 01/01/2023]
|
14
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
15
|
Nicoletti R, Trincone A. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Mar Drugs 2016; 14:md14020037. [PMID: 26901206 PMCID: PMC4771990 DOI: 10.3390/md14020037] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Agricultural Economy Analysis, Rome 00184, Italy.
| | - Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli 80078, Italy.
| |
Collapse
|
16
|
Abstract
Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed.
Collapse
Affiliation(s)
- Natalie Netz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|