1
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
2
|
Savitskii MV, Moskaleva NE, Brito A, Markin PA, Zigangirova NA, Soloveva AV, Sheremet AB, Bondareva NE, Lubenec NL, Tagliaro F, Tarasov VV, Tatzhikova KA, Appolonova SA. Pharmacokinetics, tissue distribution, bioavailability and excretion of the anti-virulence drug Fluorothiazinon in rats and rabbits. J Antibiot (Tokyo) 2024; 77:382-388. [PMID: 38491136 DOI: 10.1038/s41429-024-00719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Growing antimicrobial resistance has accelerated the development of anti-virulence drugs to suppress bacterial toxicity without affecting cell viability. Fluorothiazinon (FT), an anti-virulence, type three secretion system and flagella motility inhibitor which has shown promise to suppress drug-resistant pathogens having the potential to enhance the efficacy of commonly prescribed antibiotics when used in combination. In this study we characterized the pharmacokinetics, tissue distribution, bioavailability and excretion of FT in rats and rabbits. FT presented a dose-proportional linear increase in the blood of rats. Tissue distribution profiling confirmed that FT distributes to all organs being substantially higher than in the blood of rats. The bioavailability of FT was higher when administered with starch than with water implying FT should be ideally dosed with food. FT was primarily excreted in the feces in rats and rabbits while negligible amounts are recovered from the urine.
Collapse
Affiliation(s)
- Mark V Savitskii
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
- World Class Research Center Digital Biodesign and Personalized Healthcare, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Pavel A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Nailya A Zigangirova
- National Research Center for Epidemiology and Microbiology named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russian Federation
| | - Anna V Soloveva
- National Research Center for Epidemiology and Microbiology named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russian Federation
| | - Anna B Sheremet
- National Research Center for Epidemiology and Microbiology named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russian Federation
| | - Natalia E Bondareva
- National Research Center for Epidemiology and Microbiology named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russian Federation
| | - Nadezhda L Lubenec
- National Research Center for Epidemiology and Microbiology named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russian Federation
| | - Franco Tagliaro
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Kristina A Tatzhikova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
3
|
Gadar K, McCarthy RR. Using next generation antimicrobials to target the mechanisms of infection. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:11. [PMID: 38686217 PMCID: PMC11057201 DOI: 10.1038/s44259-023-00011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 05/02/2024]
Abstract
The remarkable impact of antibiotics on human health is being eroded at an alarming rate by the emergence of multidrug resistant pathogens. There is a recognised consensus that new strategies to tackle infection are urgently needed to limit the devasting impact of antibiotic resistance on our global healthcare infrastructure. Next generation antimicrobials (NGAs) are compounds that target bacterial virulence factors to disrupt pathogenic potential without impacting bacterial viability. By disabling the key virulence factors required to establish and maintain infection, NGAs make pathogens more vulnerable to clearance by the immune system and can potentially render them more susceptible to traditional antibiotics. In this review, we discuss the developing field of NGAs and how advancements in this area could offer a viable standalone alternative to traditional antibiotics or an effective means to prolong antibiotic efficacy when used in combination.
Collapse
Affiliation(s)
- Kavita Gadar
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| |
Collapse
|
4
|
Blasey N, Rehrmann D, Riebisch AK, Mühlen S. Targeting bacterial pathogenesis by inhibiting virulence-associated Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 12:1065561. [PMID: 36704108 PMCID: PMC9872159 DOI: 10.3389/fcimb.2022.1065561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Infections caused by Gram-negative pathogens pose a major health burden. Both respiratory and gastrointestinal infections are commonly associated with these pathogens. With the increase in antimicrobial resistance (AMR) over the last decades, bacterial infections may soon become the threat they have been before the discovery of antibiotics. Many Gram-negative pathogens encode virulence-associated Type III and Type IV secretion systems, which they use to inject bacterial effector proteins across bacterial and host cell membranes into the host cell cytosol, where they subvert host cell functions in favor of bacterial replication and survival. These secretion systems are essential for the pathogens to cause disease, and secretion system mutants are commonly avirulent in infection models. Hence, these structures present attractive targets for anti-virulence therapies. Here, we review previously and recently identified inhibitors of virulence-associated bacterial secretions systems and discuss their potential as therapeutics.
Collapse
|
5
|
Zambelloni R, Beckham KSH, Wu HJ, Elofsson M, Marquez R, Gabrielsen M, Roe AJ. Crystal structures of WrbA, a spurious target of the salicylidene acylhydrazide inhibitors of type III secretion in Gram-negative pathogens, and verification of improved specificity of next-generation compounds. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35829699 DOI: 10.1099/mic.0.001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The enterohemorrhagic Escherichia coli pathotype is responsible for severe and dangerous infections in humans. Establishment of the infection requires colonization of the gastro-intestinal tract, which is dependent on the Type III Secretion System. The Type III Secretion System (T3SS) allows attachment of the pathogen to the mammalian host cell and cytoskeletal rearrangements within the host cell. Blocking the functionality of the T3SS is likely to reduce colonization and therefore limit the disease. This route offers an alternative to antibiotics, and problems with the development of antibiotics resistance. Salicylidene acylhydrazides have been shown to have an inhibitory effect on the T3SS in several pathogens. However, the main target of these compounds is still unclear. Past work has identified a number of putative protein targets of these compounds, one of which being WrbA. Whilst WrbA is considered an off-target interaction, this study presents the effect of the salicylidne acylhydrazide compounds on the activity of WrbA, along with crystal structures of WrbA from Yersinia pseudotuberculosis and Salmonella serovar Typhimurium; the latter also containing parts of the compound in the structure. We also present data showing that the original compounds were unstable in acidic conditions, and that later compounds showed improved stability.
Collapse
Affiliation(s)
- Riccardo Zambelloni
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
- Sygnature Discovery Ltd, Biocity, Discovery Building, Nottingham, NG1 1GR, UK
| | - Katherine S H Beckham
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
- EMBL Hamburg c/o DESY, Notkestraße 85, 22603 Hamburg, Germany
| | - Hong-Jin Wu
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
| | - Mikael Elofsson
- Umeå Centre for Microbial Research, Department of Chemistry, Umeå University, Umeå, Sweden
| | - Rudi Marquez
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
- School of Physical and Chemical Sciences, Te Kura Matū, University of Canterbury, Christchurch, New Zealand
| | - Mads Gabrielsen
- MVLS Structural Biology and Biophysical Characterisation Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
6
|
Hu A, Hu M, Chen S, Xue Y, Tan X, Zhou J. Five Plant Natural Products Are Potential Type III Secretion System Inhibitors to Effectively Control Soft-Rot Disease Caused by Dickeya. Front Microbiol 2022; 13:839025. [PMID: 35273588 PMCID: PMC8901885 DOI: 10.3389/fmicb.2022.839025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Dickeya zeae, a plant soft-rot pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors, infecting a wide variety of monocotyledonous and dicotyledonous plants and causing serious losses to the production of economic crops. In order to alleviate the problem of pesticide resistance during bacterial disease treatment, compounds targeting at T3SS have been screened using a hrpA-gfp bioreporter. After screening by Multifunctional Microplate Reader and determining by flow cytometer, five compounds including salicylic acid (SA), p-hydroxybenzoic acid (PHBA), cinnamyl alcohol (CA), p-coumaric acid (PCA), and hydrocinnamic acid (HA) significantly inhibiting hrpA promoter activity without affecting bacterial growth have been screened out. All the five compounds reduced hypersensitive response (HR) on non-host tobacco leaves and downregulated the expression of T3SS, especially the master regulator encoding gene hrpL. Inhibition efficacy of the five compounds against soft rot were also evaluated and results confirmed that the above compounds significantly lessened the soft-rot symptoms caused by Dickeya dadantii 3937 on potato, Dickeya fangzhongdai CL3 on taro, Dickeya oryzae EC1 on rice, and D. zeae MS2 on banana seedlings. Findings in this study provide potential biocontrol agents for prevention of soft-rot disease caused by Dickeya spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Matilla MA, Velando F, Monteagudo-Cascales E, Krell T. Flagella, Chemotaxis and Surface Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:185-221. [DOI: 10.1007/978-3-031-08491-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Goldberg JB, Crisan CV, Luu JM. Pseudomonas aeruginosa Antivirulence Strategies: Targeting the Type III Secretion System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:257-280. [PMID: 36258075 DOI: 10.1007/978-3-031-08491-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Pseudomonas aeruginosa type III secretion system (T3SS) is a complex molecular machine that delivers toxic proteins from the bacterial cytoplasm directly into host cells. This apparatus spans the inner and outer membrane and employs a needle-like structure that penetrates through the eucaryotic cell membrane into the host cell cytosol. The expression of the P. aeruginosa T3SS is highly regulated by environmental signals including low calcium and host cell contact. P. aeruginosa strains with mutations in T3SS genes are less pathogenic, suggesting that the T3SS is a virulence mechanism. Given that P. aeruginosa is naturally antibiotic resistant and multidrug resistant isolates are rapidly emerging, new antibiotics to target P. aeruginosa are needed. Furthermore, even if new antibiotics were to be developed, the timeline between when an antibiotic is released and resistance development is relatively short. Therefore, the concept of targeting virulence factors has garnered attention. So-called "antivirulence" approaches do not kill the microbe but instead focus on rendering it harmless and therefore unable to cause damage. Since these therapies target a particular system or pathway, the normal microbiome is unlikely to be affected and there is less concern about the spread to other microbes. Finally, and most importantly, since any antivirulence drug does not kill the microbe, there should be less selective pressure to develop resistance to these inhibitors. The P. aeruginosa T3SS has been well studied due to its importance for pathogenesis in numerous human and animal infections. Thus, many P. aeruginosa T3SS inhibitors have been described as potential antivirulence therapeutics, some of which have progressed to clinical trials.
Collapse
Affiliation(s)
- Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA.
| | - Cristian V Crisan
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin M Luu
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Thomas RE, Thomas BC. Reducing Biofilm Infections in Burn Patients' Wounds and Biofilms on Surfaces in Hospitals, Medical Facilities and Medical Equipment to Improve Burn Care: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13195. [PMID: 34948803 PMCID: PMC8702030 DOI: 10.3390/ijerph182413195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Biofilms in burns are major problems: bacterial communities rapidly develop antibiotic resistance, and 60% of burn mortality is attributed to biofilms. Key pathogens are Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and multidrug-resistant Acinetobacter baumanii. Purpose: identify current and novel interventions to reduce biofilms on patients' burns and hospital surfaces and equipment. Medline and Embase were searched without date or language limits, and 31 possible interventions were prioritised: phages, nano-silver, AgSD-NLs@Cur, Acticoat and Mepilex silver, acetic acid, graphene-metal combinations, CuCo2SO4 nanoparticles, Chlorhexidene acetate nanoemulsion, a hydrogel with moxifloxacin, carbomer, Chitosan and Boswellia, LED light therapy with nano-emodin or antimicrobial blue light + Carvacrol to release reactive oxygen species, mannosidase + trypsin, NCK-10 (a napthalene compound with a decyl chain), antimicrobial peptide PV3 (includes two snake venoms), and polypeptides P03 and PL2. Most interventions aimed to penetrate cell membranes and reported significant reductions in biofilms in cfu/mL or biofilm mass or antibiotic minimal inhibitory concentrations or bacterial expression of virulence or quorum sensing genes. Scanning electron microscopy identified important changes in bacterial surfaces. Patients with biofilms need isolating and treating before full admission to hospital. Cleaning and disinfecting needs to include identifying biofilms on keyboards, tablets, cell phones, medical equipment (especially endoscopes), sinks, drains, and kitchens.
Collapse
Affiliation(s)
- Roger E. Thomas
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | |
Collapse
|
10
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Metallacarborane Derivatives Effective against Pseudomonas aeruginosa and Yersinia enterocolitica. Int J Mol Sci 2021; 22:ijms22136762. [PMID: 34201818 PMCID: PMC8267647 DOI: 10.3390/ijms22136762] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has become a nosocomial health problem worldwide. The pathogen has multiple drug removal and virulence secretion systems, is resistant to many antibiotics, and there is no commercial vaccine against it. Yersinia pestis is a zoonotic pathogen that is on the Select Agents list. The bacterium is the deadliest pathogen known to humans and antibiotic-resistant strains are appearing naturally. There is no commercial vaccine against the pathogen, either. In the current work, novel compounds based on metallacarborane cage were studied on strains of Pseudomonas aeruginosa and a Yersinia pestis substitute, Yersinia enterocolitica. The representative compounds had IC50 values below 10 µM against Y. enterocolitica and values of 20–50 μM against P. aeruginosa. Artificial generation of compound-resistant Y. enterocolitica suggested a common mechanism for drug resistance, the first reported in the literature, and suggested N-linked metallacarboranes as impervious to cellular mechanisms of resistance generation. SEM analysis of the compound-resistant strains showed that the compounds had a predominantly bacteriostatic effect and blocked bacterial cell division in Y. enterocolitica. The compounds could be a starting point towards novel anti-Yersinia drugs and the strategy presented here proposes a mechanism to bypass any future drug resistance in bacteria.
Collapse
|
12
|
Swietnicki W. Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. Biomolecules 2021; 11:892. [PMID: 34203937 PMCID: PMC8232601 DOI: 10.3390/biom11060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Bacterial secretory systems are essential for virulence in human pathogens. The systems have become a target of alternative antibacterial strategies based on small molecules and antibodies. Strategies to use components of the systems to design prophylactics have been less publicized despite vaccines being the preferred solution to dealing with bacterial infections. In the current review, strategies to design vaccines against selected pathogens are presented and connected to the biology of the system. The examples are given for Y. pestis, S. enterica, B. anthracis, S. flexneri, and other human pathogens, and discussed in terms of effectiveness and long-term protection.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
13
|
Sharma P, Elofsson M, Roy S. Attenuation of Pseudomonas aeruginosa infection by INP0341, a salicylidene acylhydrazide, in a murine model of keratitis. Virulence 2021; 11:795-804. [PMID: 32507000 PMCID: PMC7567437 DOI: 10.1080/21505594.2020.1776979] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PSEUDOMONAS AERUGINOSA is an opportunistic pathogen and a major cause of corneal infections worldwide. The bacterium secretes several toxins through its type III secretion system (T3SS) to subvert host immune responses. In addition, it is armed with intrinsic as well as acquired antibiotic resistance mechanisms that make treatment a significant challenge and new therapeutic interventions are needed. Type III secretion inhibitors have been studied as an alternative or in accompaniment to traditional antibiotics to inhibit virulence of bacteria. In this study, INP0341, a T3SS inhibitor, inhibited cytotoxicity by P. aeruginosa toward human corneal epithelial cells (HCEC) at 100 μM without affecting bacterial growth in the liquid media. An increased expression of antimicrobial peptides and reactive oxygen species generation was also observed in cells exposed to P. aeruginosa in the presence of INP0341. Furthermore, INP0341 efficiently attenuated corneal infection by P. aeruginosa in an experimental model of murine keratitis as evident from corneal opacity, clinical score and bacterial load. Thus, INP0341 appears to be a promising candidate to treat corneal infection caused by P. aeruginosa and can be further considered as an alternative therapeutic intervention.
Collapse
Affiliation(s)
- Prerana Sharma
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute , Hyderabad, India.,Department of Animal Biology, University of Hyderabad , Hyderabad, India
| | | | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute , Hyderabad, India
| |
Collapse
|
14
|
Identification of Small Molecules Blocking the Pseudomonas aeruginosa type III Secretion System Protein PcrV. Biomolecules 2021; 11:biom11010055. [PMID: 33406810 PMCID: PMC7824769 DOI: 10.3390/biom11010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that employs its type III secretion system (T3SS) during the acute phase of infection to translocate cytotoxins into the host cell cytoplasm to evade the immune system. The PcrV protein is located at the tip of the T3SS, facilitates the integration of pore-forming proteins into the eukaryotic cell membrane, and is required for translocation of cytotoxins into the host cell. In this study, we used surface plasmon resonance screening to identify small molecule binders of PcrV. A follow-up structure-activity relationship analysis resulted in PcrV binders that protect macrophages in a P. aeruginosa cell-based infection assay. Treatment of P. aeruginosa infections is challenging due to acquired, intrinsic, and adaptive resistance in addition to a broad arsenal of virulence systems such as the T3SS. Virulence blocking molecules targeting PcrV constitute valuable starting points for development of next generation antibacterials to treat infections caused by P. aeruginosa.
Collapse
|
15
|
Sheremet AB, Nesterenko LN, Zigangirova NA. The Type Three Secretion System of Pseudomonas aeruginosa as a Target for Development of Antivirulence Drugs. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2020. [DOI: 10.3103/s0891416820010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Exploring resveratrol dimers as virulence blocking agents - Attenuation of type III secretion in Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Sci Rep 2020; 10:2103. [PMID: 32034212 PMCID: PMC7005745 DOI: 10.1038/s41598-020-58872-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
Bacterial infections continue to threaten humankind and the rapid spread of antibiotic resistant bacteria is alarming. Current antibiotics target essential bacterial processes and thereby apply a strong selective pressure on pathogenic and non-pathogenic bacteria alike. One alternative strategy is to block bacterial virulence systems that are essential for the ability to cause disease but not for general bacterial viability. We have previously show that the plant natural product (-)-hopeaphenol blocks the type III secretion system (T3SS) in the Gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa. (-)-Hopeaphenol is a resveratrol tetramer and in the present study we explore various resveratrol dimers, including partial structures of (-)-hopeaphenol, as T3SS inhibitors. To allow rapid and efficient assessment of T3SS inhibition in P. aeruginosa, we developed a new screening method by using a green fluorescent protein reporter under the control of the ExoS promoter. Using a panel of assays we showed that compounds with a benzofuran core structure i.e. viniferifuran, dehydroampelopsin B, anigopreissin A, dehydro-δ-viniferin and resveratrol-piceatannol hybrid displayed significant to moderate activities towards the T3SS in Y. pseudotuberculosis and P. aeruginosa.
Collapse
|
17
|
Lv Q, Li S, Wei H, Wen Z, Wang Y, Tang T, Wang J, Xia L, Deng X. Identification of the natural product paeonol derived from peony bark as an inhibitor of the Salmonella enterica serovar Typhimurium type III secretion system. Appl Microbiol Biotechnol 2020; 104:1673-1682. [PMID: 31897522 DOI: 10.1007/s00253-019-10290-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic pathogen in public health and food safety. The type III secretion system (T3SS) encoded by Salmonella pathogenicity island (SPI) is a sophisticated molecular machine that facilitates active invasion, intracellular replication, and host inflammation. Due to increasing antibiotic resistance, new therapeutic strategies that target the Salmonella T3SS have received considerable attention. In this study, paeonol was identified as an inhibitor of the S. Typhimurium T3SS. Paeonol significantly blocked the translocation of SipA into host cells and suppressed the expression of effector proteins without affecting bacterial growth in the effective concentration range. Additionally, S. Typhimurium-mediated cell injury and invasion levels were significantly reduced after treatment with paeonol, without cytotoxicity. Most importantly, the comprehensive protective effect of paeonol was confirmed in an S. Typhimurium mouse infection model. Preliminary mechanistic studies suggest that paeonol inhibits the expression of effector proteins by reducing the transcription level of the SPI-1 regulatory pathway gene hilA. This work provides proof that paeonol could be used as a potential drug to treat infections caused by Salmonella.
Collapse
Affiliation(s)
- Qianghua Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shufang Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hanlu Wei
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanling Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,Qingdao Vland Biological Limited Co., Ltd., Qingdao, 266001, Shandong, China
| | - Tianzhong Tang
- Hubei Wudang Animal Pharmaceutical Co., Ltd., Shiyan, 442100, Hubei, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
18
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Regulation and controlling the motility properties of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019; 104:33-49. [DOI: 10.1007/s00253-019-10201-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
19
|
Fitting Pieces into the Puzzle of Pseudomonas aeruginosa Type III Secretion System Gene Expression. J Bacteriol 2019; 201:JB.00209-19. [PMID: 31010903 DOI: 10.1128/jb.00209-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
Collapse
|
20
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
21
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
22
|
Zetterström CE, Uusitalo P, Qian W, Hinch S, Caraballo R, Grundström C, Elofsson M. Screening for Inhibitors of Acetaldehyde Dehydrogenase (AdhE) from Enterohemorrhagic Escherichia coli (EHEC). SLAS DISCOVERY 2018; 23:815-822. [PMID: 29630847 DOI: 10.1177/2472555218768062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acetaldehyde dehydrogenase (AdhE) is a bifunctional acetaldehyde-coenzyme A (CoA) dehydrogenase and alcohol dehydrogenase involved in anaerobic metabolism in gram-negative bacteria. This enzyme was recently found to be a key regulator of the type three secretion (T3S) system in Escherichia coli. AdhE inhibitors can be used as tools to study bacterial virulence and a starting point for discovery of novel antibacterial agents. We developed a robust enzymatic assay, based on the acetaldehyde-CoA dehydrogenase activity of AdhE using both absorption and fluorescence detection models (Z' > 0.7). This assay was used to screen ~11,000 small molecules in 384-well format that resulted in three hits that were confirmed by resynthesis and validation. All three compounds are noncompetitive with respect to acetaldehyde and display a clear dose-response effect with hill slopes of 1-2. These new inhibitors will be used as chemical tools to study the interplay between metabolism and virulence and the role of AdhE in T3S regulation in gram-negative bacteria, and as starting points for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- Caroline E Zetterström
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Pia Uusitalo
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Weixing Qian
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shannon Hinch
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Rémi Caraballo
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Christin Grundström
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|