1
|
Carlos López-Ramos J, Martínez-Lara E, Serrano J, Fernández P, Parras GG, Ruiz-Marcos A, Rodrigo J. Nitric oxide synthase system in the brain development of neonatal hypothyroid rats. Neuroscience 2024:S0306-4522(24)00551-7. [PMID: 39461663 DOI: 10.1016/j.neuroscience.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Thyroid hormones play an important morphogenetic role during the fetal and neonatal periods and regulate numerous metabolic processes. In the central nervous system, they control myelination and overall brain development, regional gene expression, and regulation of oxygen consumption. Their deficiency in the fetal and neonatal periods causes severe mental retardation, due to lack of thyroid function, or to iodine deficiency. At the same time, nitric oxide is an atypical neurotransmitter that also has special relevance in neuronal development and plasticity and functions as a vasodilator, regulating cerebral blood flow. Although under physiological conditions it functions as a neuroprotector, in excess it can be neurotoxic. We have studied, by immunocytochemical and Western blot techniques, the evolution of the expression of neuronal and inducible isoforms of the enzyme nitric oxide synthase, and of nitrotyrosine as a marker of protein nitration produced by the presence of nitric oxide, during the early stages of postnatal brain development. We induced hypothyroidism by administering mercaptomethylimidazole to pregnant mothers, from the seventh day of gestation until the sacrifice of the offspring. The results show a delay in the evolution of the expression of the two isoforms of the enzyme nitric oxide synthase in hypothyroid animals, followed by an anomalous overexpression in later stages. Finally, the expression of nitrotyrosine follows an evolution that is synchronized with that shown by both isoenzymes in control and hypothyroid animals.
Collapse
Affiliation(s)
- Juan Carlos López-Ramos
- División de Neurociencias, Universidad Pablo de Olavide, Seville ES-41013, Spain; Instituto Cajal, Avda. Doctor Arce, 24, Madrid 28002, Spain.
| | - Esther Martínez-Lara
- Departmento de Biología Experimental, Universidad de Jaén, Campus de Las Lagunillas s/n, Jaén 23071, Spain
| | - Julia Serrano
- Instituto Cajal, Avda. Doctor Arce, 24, Madrid 28002, Spain
| | | | - Gloria G Parras
- División de Neurociencias, Universidad Pablo de Olavide, Seville ES-41013, Spain
| | | | - José Rodrigo
- Instituto Cajal, Avda. Doctor Arce, 24, Madrid 28002, Spain
| |
Collapse
|
2
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
3
|
Cipriani R, Domerq M, Martín A, Matute C. Role of Microglia in Stroke. ADVANCES IN NEUROBIOLOGY 2024; 37:405-422. [PMID: 39207705 DOI: 10.1007/978-3-031-55529-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ischemic stroke is a complex brain pathology caused by an interruption of blood supply to the brain. It results in neurological deficits which that reflect the localization and the size of the compromised brain area and are the manifestation of complex pathogenic events triggered by energy depletion. Inflammation plays a prominent role, worsening the injury in the early phase and influencing poststroke recovery in the late phase. Activated microglia are one of the most important cellular components of poststroke inflammation, appearing from the first few hours and persisting for days and weeks after stroke injury. In this chapter, we will discuss the nature of the inflammatory response in brain ischemia, the contribution of microglia to injury and regeneration after stroke, and finally, how ischemic stroke directly affects microglia functions and survival.
Collapse
Affiliation(s)
| | - Maria Domerq
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Ikerbasque Basque Foundation for Science, Bilbao, Spain.
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain.
| |
Collapse
|
4
|
Harvey-Jones K, Lange F, Verma V, Bale G, Meehan C, Avdic-Belltheus A, Hristova M, Sokolska M, Torrealdea F, Golay X, Parfentyeva V, Durduran T, Bainbridge A, Tachtsidis I, Robertson NJ, Mitra S. Early assessment of injury with optical markers in a piglet model of neonatal encephalopathy. Pediatr Res 2023; 94:1675-1683. [PMID: 37308684 PMCID: PMC10624614 DOI: 10.1038/s41390-023-02679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r2 = 0.46, p = 0.004, r2 = 0.45, p = 0.004, respectively), TUNEL cell count (r2 = 0.34, p = 0.02) and predicted both initial insult (r2 = 0.62, p = 0.002) and outcome group (r2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r2 = 0.34, p = 0.01 and r2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r2 = 0.43, p = 0.01). CONCLUSION Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model. IMPACT This study highlights the possibility of using non-invasive optical biomarkers for early assessment of injury severity following neonatal encephalopathy, relating to the outcome. Continuous cot-side monitoring of these optical markers can be useful for disease stratification in the clinical population and for identifying infants who might benefit from future adjunct neuroprotective therapies beyond cooling.
Collapse
Affiliation(s)
| | - Frederic Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Vinita Verma
- Institute for Women's Health, University College London, London, UK
| | - Gemma Bale
- Department of Engineering and Department of Physics, University of Cambridge, Cambridge, UK
| | | | | | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Magdalena Sokolska
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Francisco Torrealdea
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Xavier Golay
- Institute of Neurology, University College London, London, UK
| | - Veronika Parfentyeva
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alan Bainbridge
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
5
|
Jaime Garcia D, Chagnot A, Wardlaw JM, Montagne A. A Scoping Review on Biomarkers of Endothelial Dysfunction in Small Vessel Disease: Molecular Insights from Human Studies. Int J Mol Sci 2023; 24:13114. [PMID: 37685924 PMCID: PMC10488088 DOI: 10.3390/ijms241713114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Small vessel disease (SVD) is a highly prevalent disorder of the brain's microvessels and a common cause of dementia as well as ischaemic and haemorrhagic strokes. Though much about the underlying pathophysiology of SVD remains poorly understood, a wealth of recently published evidence strongly suggests a key role of microvessel endothelial dysfunction and a compromised blood-brain barrier (BBB) in the development and progression of the disease. Understanding the causes and downstream consequences associated with endothelial dysfunction in this pathological context could aid in the development of effective diagnostic and prognostic tools and provide promising avenues for potential therapeutic interventions. In this scoping review, we aim to summarise the findings from clinical studies examining the role of the molecular mechanisms underlying endothelial dysfunction in SVD, focussing on biochemical markers of endothelial dysfunction detectable in biofluids, including cell adhesion molecules, BBB transporters, cytokines/chemokines, inflammatory markers, coagulation factors, growth factors, and markers involved in the nitric oxide cascade.
Collapse
Affiliation(s)
- Daniela Jaime Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Audrey Chagnot
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Axel Montagne
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| |
Collapse
|
6
|
Johnson AC. Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke 2023; 54:673-685. [PMID: 36848422 PMCID: PMC9991081 DOI: 10.1161/strokeaha.122.038263] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
The incidence of age-related dementia is increasing as the world population ages and due to lack of effective treatments for dementia. Vascular contributions to cognitive impairment and dementia are increasing as the prevalence of pathologies associated with cerebrovascular disease rise, including chronic hypertension, diabetes, and ischemic stroke. The hippocampus is a bilateral deep brain structure that is central to learning, memory, and cognitive function and highly susceptible to hypoxic/ischemic injury. Compared with cortical brain regions such as the somatosensory cortex, less is known about the function of the hippocampal vasculature that is critical in maintaining neurocognitive health. This review focuses on the hippocampal vascular supply, presenting what is known about hippocampal hemodynamics and blood-brain barrier function during health and disease, and discusses evidence that supports its contribution to vascular cognitive impairment and dementia. Understanding vascular-mediated hippocampal injury that contributes to memory dysfunction during healthy aging and cerebrovascular disease is essential to develop effective treatments to slow cognitive decline. The hippocampus and its vasculature may represent one such therapeutic target to mitigate the dementia epidemic.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
7
|
Klapczyńska K, Aleksandrowicz M, Koźniewska E. Role of the endothelial reverse mode sodium-calcium exchanger in the dilation of the rat middle cerebral artery during hypoosmotic hyponatremia. Pflugers Arch 2023; 475:381-390. [PMID: 36394650 PMCID: PMC9908729 DOI: 10.1007/s00424-022-02770-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
A decrease in serum sodium ion concentration below 135 mmol L-1 is usually accompanied by a decrease in plasma osmolality (hypoosmotic hyponatremia) and leads to the disorder of intracranial homeostasis mainly due to cellular swelling. Recently, using an in vitro model of hypoosmotic hyponatremia, we have found that a decrease in sodium ion concentration in the perfusate to 121 mmol L-1 relaxes the isolated rat middle cerebral artery (MCA). The aim of the present study was to explore the mechanism responsible for this relaxation. Isolated, pressurized, and perfused MCAs placed in a vessel chamber were subjected to a decrease in sodium ion concentration to 121 mmol L-1. Changes in the diameter of the vessels were monitored with a video camera. The removal of the endothelium and inhibition of nitric oxide-dependent signaling or the reverse mode sodium-calcium exchanger (NCX) were used to study the mechanism of the dilation of the vessel during hyponatremia. The dilation of the MCA (19 ± 5%, p < 0.005) in a low-sodium buffer was absent after removal of the endothelium or administration of the inhibitor of the reverse mode of sodium-calcium exchange and was reversed to constriction after the inhibition of nitric oxide (NO)/cGMP signaling. The dilation of the middle cerebral artery of the rat in a 121 mmol L-1 Na+ buffer depends on NO signaling and reverse mode of sodium-calcium exchange. These results suggest that constriction of large cerebral arteries with impaired NO-dependent signaling may be observed in response to hypoosmotic hyponatremia.
Collapse
Affiliation(s)
- Katarzyna Klapczyńska
- grid.79757.3b0000 0000 8780 7659Institute of Physical Culture Sciences, Faculty of Health and Physical Education, University of Szczecin, Szczecin, Poland
| | - Marta Aleksandrowicz
- grid.413454.30000 0001 1958 0162Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Koźniewska
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
8
|
O’Gallagher K, Rosentreter RE, Elaine Soriano J, Roomi A, Saleem S, Lam T, Roy R, Gordon GR, Raj SR, Chowienczyk PJ, Shah AM, Phillips AA. The Effect of a Neuronal Nitric Oxide Synthase Inhibitor on Neurovascular Regulation in Humans. Circ Res 2022; 131:952-961. [PMID: 36349758 PMCID: PMC9770134 DOI: 10.1161/circresaha.122.321631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neurovascular coupling (NVC) is a key process in cerebral blood flow regulation. NVC ensures adequate brain perfusion to changes in local metabolic demands. Neuronal nitric oxide synthase (nNOS) is suspected to be involved in NVC; however, this has not been tested in humans. Our objective was to investigate the effects of nNOS inhibition on NVC in humans. METHODS We performed a 3-visit partially randomized, double-blinded, placebo-controlled, crossover study in 12 healthy subjects. On each visit, subjects received an intravenous infusion of either S-methyl-L-thiocitrulline (a selective nNOS-inhibitor), 0.9% saline (placebo control), or phenylephrine (pressor control). The NVC assessment involved eliciting posterior circulation hyperemia through visual stimulation while measuring posterior and middle cerebral arteries blood velocity. RESULTS nNOS inhibition blunted the rapidity of the NVC response versus pressor control, evidenced by a reduced initial rise in mean posterior cerebral artery velocity (-3.3% [-6.5, -0.01], P=0.049), and a reduced rate of increase (ie, acceleration) in posterior cerebral artery velocity (slope reduced -4.3% [-8.5, -0.1], P=0.045). The overall magnitude of posterior cerebral artery response relative to placebo control or pressor control was not affected. Changes in BP parameters were well-matched between the S-methyl-L-thiocitrulline and pressor control arms. CONCLUSIONS Neuronal NOS plays a role in dynamic cerebral blood flow control in healthy adults, particularly the rapidity of the NVC response to visual stimulation. This work opens the way to further investigation of the role of nNOS in conditions of impaired NVC, potentially revealing a therapeutic target.
Collapse
Affiliation(s)
- Kevin O’Gallagher
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London, UK (K.O., A.R., R.R., P.J.C., A.M.S.).,NIHR Biomedical Research Centre, Clinical Research Facility, Guy’s and St Thomas NHS Foundation Trust, London, UK (K.O., A.R., P.J.C., A.M.S.)
| | - Ryan E. Rosentreter
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Alberta, Canada (R.E.R, J.E.S., T.L., G.R.G., S.R.R., A.A.P.)
| | - Jan Elaine Soriano
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Alberta, Canada (R.E.R, J.E.S., T.L., G.R.G., S.R.R., A.A.P.)
| | - Ali Roomi
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London, UK (K.O., A.R., R.R., P.J.C., A.M.S.).,NIHR Biomedical Research Centre, Clinical Research Facility, Guy’s and St Thomas NHS Foundation Trust, London, UK (K.O., A.R., P.J.C., A.M.S.)
| | - Saqib Saleem
- Department of Electrical and Computer Engineering, COMSATS University, Sahiwal, Pakistan (S.S.)
| | - Tyler Lam
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Alberta, Canada (R.E.R, J.E.S., T.L., G.R.G., S.R.R., A.A.P.)
| | - Roman Roy
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London, UK (K.O., A.R., R.R., P.J.C., A.M.S.)
| | - Grant R. Gordon
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Alberta, Canada (R.E.R, J.E.S., T.L., G.R.G., S.R.R., A.A.P.)
| | - Satish R. Raj
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Alberta, Canada (R.E.R, J.E.S., T.L., G.R.G., S.R.R., A.A.P.)
| | - Philip J. Chowienczyk
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London, UK (K.O., A.R., R.R., P.J.C., A.M.S.).,NIHR Biomedical Research Centre, Clinical Research Facility, Guy’s and St Thomas NHS Foundation Trust, London, UK (K.O., A.R., P.J.C., A.M.S.)
| | - Ajay M. Shah
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London, UK (K.O., A.R., R.R., P.J.C., A.M.S.).,NIHR Biomedical Research Centre, Clinical Research Facility, Guy’s and St Thomas NHS Foundation Trust, London, UK (K.O., A.R., P.J.C., A.M.S.)
| | - Aaron A. Phillips
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Alberta, Canada (R.E.R, J.E.S., T.L., G.R.G., S.R.R., A.A.P.)
| |
Collapse
|
9
|
Tran CHT. Toolbox for studying neurovascular coupling in vivo, with a focus on vascular activity and calcium dynamics in astrocytes. NEUROPHOTONICS 2022; 9:021909. [PMID: 35295714 PMCID: PMC8920490 DOI: 10.1117/1.nph.9.2.021909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 05/14/2023]
Abstract
Significance: Insights into the cellular activity of each member of the neurovascular unit (NVU) is critical for understanding their contributions to neurovascular coupling (NVC)-one of the key control mechanisms in cerebral blood flow regulation. Advances in imaging and genetic tools have enhanced our ability to observe, manipulate and understand the cellular activity of NVU components, namely neurons, astrocytes, microglia, endothelial cells, vascular smooth muscle cells, and pericytes. However, there are still many unresolved questions. Since astrocytes are considered electrically unexcitable,Ca 2 + signaling is the main parameter used to monitor their activity. It is therefore imperative to study astrocyticCa 2 + dynamics simultaneously with vascular activity using tools appropriate for the question of interest. Aim: To highlight currently available genetic and imaging tools for studying the NVU-and thus NVC-with a focus on astrocyteCa 2 + dynamics and vascular activity, and discuss the utility, technical advantages, and limitations of these tools for elucidating NVC mechanisms. Approach: We draw attention to some outstanding questions regarding the mechanistic basis of NVC and emphasize the role of astrocyticCa 2 + elevations in functional hyperemia. We further discuss commonly used genetic, and optical imaging tools, as well as some newly developed imaging modalities for studying NVC at the cellular level, highlighting their advantages and limitations. Results: We provide an overview of the current state of NVC research, focusing on the role of astrocyticCa 2 + elevations in functional hyperemia; summarize recent advances in genetically engineeredCa 2 + indicators, fluorescence microscopy techniques for studying NVC; and discuss the unmet challenges for future imaging development. Conclusions: Advances in imaging techniques together with improvements in genetic tools have significantly contributed to our understanding of NVC. Many pieces of the puzzle have been revealed, but many more remain to be discovered. Ultimately, optimizing NVC research will require a concerted effort to improve imaging techniques, available genetic tools, and analytical software.
Collapse
Affiliation(s)
- Cam Ha T. Tran
- University of Nevada, Reno School of Medicine, Department of Physiology and Cell Biology, Reno, Nevada, United States
| |
Collapse
|
10
|
Abdelhaleem NF, Mohamed YE. Effect of sphenopalatine ganglion block on intracranial pressure and cerebral venous outflow oxygenation during craniotomy for supratentorial brain tumours. Anaesth Crit Care Pain Med 2021; 41:101013. [PMID: 34954221 DOI: 10.1016/j.accpm.2021.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/06/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intraoperative intracranial pressure (ICP) control continues to be a challenge for anaesthetists during craniotomies. Although many standard brain-dehydrating protocols are available, they may be ineffective in certain surgical situations and may result in harm either to the systemic or cerebral circulation. Sphenopalatine ganglion block (SPGB) can reverse the vasodilatory effects of anaesthesia during craniotomy. METHODS This prospective randomised study was carried from June 2020 to February 2021. Fifty-two patients were randomly allocated into two groups, the block group (B) and the non-block control group (Non). Twenty-six patients were enrolled in the (B) group and received a bilateral transnasal SPG block with 2% lidocaine using a hallow culture swab prior to anaesthesia induction. Intraoperative monitoring was performed using standard American Society of Anesthesiologists (ASA) monitors in addition to invasive monitoring using intra-arterial cannulas and jugular venous bulb catheters. Subdural ICP monitors were also employed. The arterio-jugular oxygen difference in mmol/l (AjvDO2) was then calculated. Mean flow velocity cm/s (MFV) and pulsatility index (PI) were monitored in both groups using Transcranial Doppler. Haemodynamic data were recorded every 30 min from induction of anaesthesia until the closure of the dura. RESULTS There was a significant difference in ICP prior to the dural opening between the block group (B), mean ± sd 7.58 ± 1.47, and the non-block group (Non), mean ± sd (11.69 ± 1.72), p-value < 0.001. There was no significant difference in MFV between (B) group, mean ± sd 72.65 ± 2.28 and (Non) group, mean ± sd 71.19 ± 3.09 before intubation (baseline values). While there was a significant difference after intubation between block group, mean ± sd 72.12 ± 1.77 and non - block group, mean ± sd 74.62 ± 5.07, p-value = 0.02. There was an insignificant difference between (B) and (Non) groups before intubation regarding PI values, while PI was significantly higher in (B) group than the (Non) group after intubation where mean ± sd was 1.17 ± 0.05 versus 0.96 ± 0.09, respectively, p-value = 0.001. There was no significant difference regarding cerebral oxygenation between the groups. CONCLUSIONS SPGB can control factors that increase CBF during anaesthesia by the block of parasympathetic vasodilatory fibres to the arterial system in the anterior cerebral circulation, while neither hindering cerebral venous drainage nor impairing cerebral oxygenation, as it gives no supply to cerebral veins and does not affect basal CBF. Additionally, it does not affect systemic circulation.
Collapse
Affiliation(s)
- Naglaa Fathy Abdelhaleem
- Anaesthesia and Surgical Intensive Care department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Youssef Essam Mohamed
- Neurosurgery department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
11
|
Tamayo A, Siepmann T. Regulation of Blood Flow in the Cerebral Posterior Circulation by Parasympathetic Nerve Fibers: Physiological Background and Possible Clinical Implications in Patients With Vertebrobasilar Stroke. Front Neurol 2021; 12:660373. [PMID: 34777191 PMCID: PMC8585859 DOI: 10.3389/fneur.2021.660373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023] Open
Abstract
Posterior circulation involves the vertebrobasilar arteries, which supply oxygen and glucose to vital human brainstem structures and other areas. This complex circulatory- perfusion system is not homogenous throughout the day; rather, its hemodynamic changes rely on physiological demands, ensuring brainstem perfusion. This dynamic autoregulatory pattern maintains cerebral perfusion during blood pressure changes. Accumulative evidence suggests that activity within the autonomic nervous system is involved in the regulation of cerebral blood flow. Neither the sympathetic nor parasympathetic nervous systems work independently. Functional studies have shown a tight and complicated cross talk between these systems. In pathological processes where sympathetic stimulation is present, systemic vasoconstriction is followed, representing the most important CNS parasympathetic trigger that will promote local vasodilation. Stroke is a clear example of this process. The posterior circulation is affected in 30% of strokes, causing high morbidity and mortality outcomes. Currently, the management of ischemic stroke is focused on thrombolytic treatment and endovascular thrombectomy within an overall tight 4.5 to 6 h ischemic time window. Therefore, the autonomic nervous system could represent a potential therapeutic target to modulate reperfusion after cerebral ischemia through vasodilation, which could potentially decrease infarct size and increase the thrombolytic therapeutic ischemic window. In addition, shifting the autonomic nervous system balance toward its parasympathetic branch has shown to enhance neurogenesis and decrease local inflammation. Regretfully, the vast majority of animal models and human research on neuromodulation during brain ischemia have been focused on anterior circulation with disappointing results. In addition, the source of parasympathetic inputs in the vertebrobasilar system in humans is poorly understood, substantiating a gap and controversy in this area. Here, we reviewed current available literature regarding the parasympathetic vascular function and challenges of its stimulation in the vertebrobasilar system.
Collapse
Affiliation(s)
- Arturo Tamayo
- The Max Rady Faculty of Health Sciences, Department of Medicine, Section of Neurology, WRHA, Winnipeg and Brandon Regional Health Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Health Care Sciences, Center for Clinical Research and Management Education, Dresden International University, Dresden, Germany
| | - Timo Siepmann
- Department of Health Care Sciences, Center for Clinical Research and Management Education, Dresden International University, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Nitric oxide and the brain. Part 1: Mechanisms of regulation, transport and effects on the developing brain. Pediatr Res 2021; 89:738-745. [PMID: 32563183 DOI: 10.1038/s41390-020-1017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Abstract
Apart from its known actions as a pulmonary vasodilator, nitric oxide (NO) is a key signal mediator in the neonatal brain. Despite the extensive use of NO for pulmonary artery hypertension (PAH), its actions in the setting of brain hypoxia and ischemia, which co-exists with PAH in 20-30% of affected infants, are not well established. This review focuses on the mechanisms of actions of NO covering the basic, translational, and clinical evidence of its neuroprotective and neurotoxic properties. In this first part, we present the physiology of transport and delivery of NO to the brain and the regulation of cerebrovascular and systemic circulation by NO, as well the role of NO in the development of the immature brain. IMPACT: NO can be transferred from the site of production to the site of action rapidly and affects the central nervous system. Inhaled NO (iNO), a commonly used medication, can have significant effects on the neonatal brain. NO regulates the cerebrovascular and systemic circulation and plays a role in the development of the immature brain. This review describes the properties of NO under physiologic conditions and under stress. The impact of this review is that it describes the effects of NO, especially regarding the vulnerable neonatal brain, and helps understand the conditions that could contribute to neurotoxicity or neuroprotection.
Collapse
|
13
|
Metabolites with Anti-Inflammatory Activity from the Mangrove Endophytic Fungus Diaporthe sp. QYM12. Mar Drugs 2021; 19:md19020056. [PMID: 33498874 PMCID: PMC7912375 DOI: 10.3390/md19020056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
One new diterpenoid, diaporpenoid A (1), two new sesquiterpenoids, diaporpenoids B–C (2,3) and three new α-pyrone derivatives, diaporpyrones A–C (4–6) were isolated from an MeOH extract obtained from cultures of the mangrove endophytic fungus Diaporthe sp. QYM12. Their structures were elucidated by extensive analysis of spectroscopic data. The absolute configurations were determined by electronic circular dichroism (ECD) calculations and a comparison of the specific rotation. Compound 1 had an unusual 5/10/5-fused tricyclic ring system. Compounds 1 and 4 showed potent anti-inflammatory activities by inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW264.7 cells with IC50 values of 21.5 and 12.5 μM, respectively.
Collapse
|
14
|
Kang C, Lee IH, Park JS, You Y, Jeong W, Ahn HJ, Min JH. Measuring global impairment of cerebral perfusion using dynamic susceptibility contrast perfusion-weighted imaging in out-of-hospital cardiac arrest survivors: A prospective preliminary study. J Neuroradiol 2020; 48:379-384. [PMID: 33340642 DOI: 10.1016/j.neurad.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE This study aimed to assess the global impairment and prognostic performance of cerebral perfusions (CP) measured by dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) in out-of-hospital cardiac arrest (OHCA) patients after sustained restoration of spontaneous circulation (ROSC). MATERIALS AND METHODS This is a single-centre, prospective observational study. OHCA patients performed DSC-PWI within 8 h after ROSC were enrolled. We quantified the CP parameters, such as cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), time to peak (TTP), and time to maximum of the residue function (Tmax) either by normalization or arterial input function (AIF). The primary and secondary outcomes were survival to discharge and comparison of prognostic performance between CP parameters and serum neuron-specific enolase (NSE) using area under the receiver operating characteristic (AUROC) and sensitivity values. RESULTS Thirty-one patients were included in this study. CBV and TTP quantified by normalization, and MTT and Tmax quantified by AIF showed significantly higher CP values in the non-survival group (p = 0.02, 0.03, 0.02, and <0.01, respectively). Their AUROCs and 100% specific sensitivities were 0.74/25.0%, 0.60/33.3%, 0.75/56.3%, and 0.79/43.8%, respectively. MTT quantified by AIF showed sensitivity in predicting mortality at an early stage of PCA care, comparable with NSE. CONCLUSION Hyperaemia and delayed CP were generally observed in OHCA patients regardless of outcomes. MTT and Tmax quantified by AIF have prognostic performance in predicting mortality, comparable with NSE. Further prospective multicentre studies are required to confirm our results.
Collapse
Affiliation(s)
- Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - In Ho Lee
- Department of Radiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Du M, An L, Xu J, Guo Y. Euphnerins A and B, Diterpenoids with a 5/6/6 Rearranged Spirocyclic Carbon Skeleton from the Stems of Euphorbia neriifolia. JOURNAL OF NATURAL PRODUCTS 2020; 83:2592-2596. [PMID: 32822173 DOI: 10.1021/acs.jnatprod.0c00249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Euphnerins A (1) and B (2), two extremely modified diterpenoids possessing an unprecedented 5/6/6 rearranged spirocyclic carbon skeleton, and a biosynthetically related known diterpenoid (3) were purified from the stems of Euphorbia neriifolia. Their structures were identified by NMR experiments and X-ray diffraction analysis, as well as experimental and calculated electronic circular dichroism data comparison. A putative biosynthetic relationship of 1 and 2 with their presumed precursor 3 is proposed. Compound 1 showed NO inhibitory effects in lipopolysaccharide-stimulated BV-2 cells with an IC50 value of 22.4 μM.
Collapse
Affiliation(s)
- Min Du
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
16
|
Tau induces PSD95-neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nat Neurosci 2020; 23:1079-1089. [PMID: 32778793 PMCID: PMC7896353 DOI: 10.1038/s41593-020-0686-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Cerebrovascular abnormalities have emerged as a preclinical manifestation of Alzheimer’s disease and frontotemporal dementia, diseases characterized by accumulation of hyperphosphorylated forms of the microtubule associated protein tau. However, it is unclear if tau contributes to these neurovascular alterations independent of neurodegeneration. We report that mice expressing mutated tau exhibit a selective suppression of neural activity-induced cerebral blood flow increases that precedes tau pathology and cognitive impairment. The dysfunction is attributable to reduced vasodilatation of intracerebral arterioles and is reversible by turning down tau production. Mechanistically, the failure of neurovascular coupling involves tau-induced dissociation of neuronal nitric oxide synthase from post synaptic-density-95 and reduced production of the potent vasodilator nitric oxide during glutamatergic synaptic activity. The data identify glutamatergic signaling dysfunction and nitric oxide deficiency as yet-undescribed early manifestations of tau pathobiology independent of neurodegeneration, and provide a mechanism for the neurovascular alterations observed in the preclinical stages of tauopathies.
Collapse
|
17
|
Haselden WD, Kedarasetti RT, Drew PJ. Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics. PLoS Comput Biol 2020; 16:e1008069. [PMID: 32716940 PMCID: PMC7410342 DOI: 10.1371/journal.pcbi.1008069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/06/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in neurovascular coupling. NO produced by neurons diffuses into the smooth muscle surrounding cerebral arterioles, driving vasodilation. However, the rate of NO degradation in hemoglobin is orders of magnitude higher than in brain tissue, though how this might impact NO signaling dynamics is not completely understood. We used simulations to investigate how the spatial and temporal patterns of NO generation and degradation impacted dilation of a penetrating arteriole in cortex. We found that the spatial location of NO production and the size of the vessel both played an important role in determining its responsiveness to NO. The much higher rate of NO degradation and scavenging of NO in the blood relative to the tissue drove emergent vascular dynamics. Large vasodilation events could be followed by post-stimulus constrictions driven by the increased degradation of NO by the blood, and vasomotion-like 0.1-0.3 Hz oscillations could also be generated. We found that these dynamics could be enhanced by elevation of free hemoglobin in the plasma, which occurs in diseases such as malaria and sickle cell anemia, or following blood transfusions. Finally, we show that changes in blood flow during hypoxia or hyperoxia could be explained by altered NO degradation in the parenchyma. Our simulations suggest that many common vascular dynamics may be emergent phenomena generated by NO degradation by the blood or parenchyma.
Collapse
Affiliation(s)
- William Davis Haselden
- Neuroscience Graduate Program, MD/PhD Medical Scientist Training Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ravi Teja Kedarasetti
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Patrick J. Drew
- Neuroscience Graduate Program, MD/PhD Medical Scientist Training Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Departments of Biomedical Engineering and Neurosurgery, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
18
|
Hosseini M, Wilson RH, Crouzet C, Amirhekmat A, Wei KS, Akbari Y. Resuscitating the Globally Ischemic Brain: TTM and Beyond. Neurotherapeutics 2020; 17:539-562. [PMID: 32367476 PMCID: PMC7283450 DOI: 10.1007/s13311-020-00856-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrest (CA) afflicts ~ 550,000 people each year in the USA. A small fraction of CA sufferers survive with a majority of these survivors emerging in a comatose state. Many CA survivors suffer devastating global brain injury with some remaining indefinitely in a comatose state. The pathogenesis of global brain injury secondary to CA is complex. Mechanisms of CA-induced brain injury include ischemia, hypoxia, cytotoxicity, inflammation, and ultimately, irreversible neuronal damage. Due to this complexity, it is critical for clinicians to have access as early as possible to quantitative metrics for diagnosing injury severity, accurately predicting outcome, and informing patient care. Current recommendations involve using multiple modalities including clinical exam, electrophysiology, brain imaging, and molecular biomarkers. This multi-faceted approach is designed to improve prognostication to avoid "self-fulfilling" prophecy and early withdrawal of life-sustaining treatments. Incorporation of emerging dynamic monitoring tools such as diffuse optical technologies may provide improved diagnosis and early prognostication to better inform treatment. Currently, targeted temperature management (TTM) is the leading treatment, with the number of patients needed to treat being ~ 6 in order to improve outcome for one patient. Future avenues of treatment, which may potentially be combined with TTM, include pharmacotherapy, perfusion/oxygenation targets, and pre/postconditioning. In this review, we provide a bench to bedside approach to delineate the pathophysiology, prognostication methods, current targeted therapies, and future directions of research surrounding hypoxic-ischemic brain injury (HIBI) secondary to CA.
Collapse
Affiliation(s)
- Melika Hosseini
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Robert H Wilson
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Christian Crouzet
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Arya Amirhekmat
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Kevin S Wei
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Yama Akbari
- Department of Neurology, School of Medicine, University of California, Irvine, USA.
- Beckman Laser Institute, University of California, Irvine, USA.
| |
Collapse
|
19
|
Grosse GM, Schwedhelm E, Worthmann H, Choe CU. Arginine Derivatives in Cerebrovascular Diseases: Mechanisms and Clinical Implications. Int J Mol Sci 2020; 21:ijms21051798. [PMID: 32150996 PMCID: PMC7084464 DOI: 10.3390/ijms21051798] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
The amino acid L-arginine serves as substrate for the nitric oxide synthase which is crucial in vascular function and disease. Derivatives of arginine, such as asymmetric (ADMA) and symmetric dimethylarginine (SDMA), are regarded as markers of endothelial dysfunction and have been implicated in vascular disorders. While there is a variety of studies consolidating ADMA as biomarker of cerebrovascular risk, morbidity and mortality, SDMA is currently emerging as an interesting metabolite with distinct characteristics in ischemic stroke. In contrast to dimethylarginines, homoarginine is inversely associated with adverse events and mortality in cerebrovascular diseases and might constitute a modifiable protective risk factor. This review aims to provide an overview of the current evidence for the pathophysiological role of arginine derivatives in cerebrovascular ischemic diseases. We discuss the complex mechanisms of arginine metabolism in health and disease and its potential clinical implications in diverse aspects of ischemic stroke.
Collapse
Affiliation(s)
- Gerrit M. Grosse
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
- Correspondence:
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20249 Hamburg, Germany;
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), partner site Hamburg/Kiel/Lübeck, 20249 Hamburg, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Chi-un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20249 Hamburg, Germany;
| |
Collapse
|
20
|
Vathsala PG, Krishna Murthy P. Immunomodulatory and antiparasitic effects of garlic-arteether combination via nitric oxide pathway in Plasmodium berghei-infected mice. J Parasit Dis 2019; 44:49-61. [PMID: 32174705 DOI: 10.1007/s12639-019-01160-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022] Open
Abstract
Many reports indicate medicinal value of garlic (Allium sativum), a popular herbal medicine used worldwide, and its therapeutic effect against several diseases. Earlier studies in our laboratory have shown a potential therapeutic role of garlic-artemisinin combination in mice infected with Plasmodium berghei. A single dose of α, β-arteether with three oral doses of garlic provides almost 95% protection. The present study aims to understand the mode of action of this combination. We have documented the level of nitric oxide (NO), a key molecule of protection and have seen in the reversal of organ morphology caused by malaria infection. The combination effects on the (a) survival rate and degree of parasitemia and (b) NO levels in blood, liver, spleen and thymus of malaria-infected mice were investigated. During the study, liver, spleen and thymus cell suspensions were assessed for immunobiochemical alterations of NO levels. The increase in NO level after infection appears to be unable to protect, whereas striking increase in spleen and thymus leads to protection against infection, and is further confirmed by detection of increased inducible nitric oxide synthase mRNA expression levels in different organs by RT-PCR. In addition, the role of T cell subsets during combination treatment was also studied. All these results indicate a potential mechanism of protection through NO pathway in combination-treated animals after malaria infection and may lead to an immunotherapy trial of malaria disease.
Collapse
Affiliation(s)
- P G Vathsala
- Undergraduate Programme, Indian Institute of Science, Bengaluru, 560012 India
| | - P Krishna Murthy
- Undergraduate Programme, Indian Institute of Science, Bengaluru, 560012 India
| |
Collapse
|
21
|
Liang Y, An L, Shi Z, Zhang X, Xie C, Tuerhong M, Song Z, Ohizumi Y, Lee D, Shuai L, Xu J, Guo Y. Bioactive Diterpenoids from the Stems of Euphorbia antiquorum. JOURNAL OF NATURAL PRODUCTS 2019; 82:1634-1644. [PMID: 31180680 DOI: 10.1021/acs.jnatprod.9b00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A total of 18 diterpenoids, including 10 new analogues (1-10), were isolated from Euphorbia antiquorum. The structures were characterized by spectroscopic techniques, and circular dichroism data analysis was adopted to confirm the absolute configurations of 1-10. Compounds 1-9 were classified as ent-atisane diterpenoids, and 10 was assigned as an ent-kaurane diterpenoid. The biological evaluation of nitric oxide (NO) production inhibition was conducted, and all of these isolates showed the property of inhibiting NO generation in lipopolysaccharide-induced BV-2 cells. Further research on molecular docking disclosed the affinities between the diterpenoids obtained and inducible nitric oxide synthase.
Collapse
Affiliation(s)
- Yue Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Zhaoyu Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences , Kashgar University , Kashgar 844000 , People's Republic of China
| | - Zhaohui Song
- State Key Laboratory of Core Technology in Innovative Chinese Medicine , Tasly Pharmaceutical Group Co., Ltd. , Tianjin 300410 , People's Republic of China
| | | | - Dongho Lee
- College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
22
|
Mitra S, Bale G, Highton D, Gunny R, Uria-Avellanal C, Bainbridge A, Sokolska M, Price D, Huertas-Ceballos A, Kendall GS, Meek J, Tachtsidis I, Robertson NJ. Pressure passivity of cerebral mitochondrial metabolism is associated with poor outcome following perinatal hypoxic ischemic brain injury. J Cereb Blood Flow Metab 2019; 39:118-130. [PMID: 28949271 PMCID: PMC6311664 DOI: 10.1177/0271678x17733639] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxic ischemic encephalopathy (HIE) leads to significant morbidity and mortality. Impaired autoregulation after hypoxia-ischaemia has been suggested to contribute further to injury. Thalamic lactate/N-Acetylasperate (Lac/NAA) peak area ratio of > 0.3 on proton (1H) magnetic resonance spectroscopy (MRS) is associated with poor neurodevelopment outcome following HIE. Cytochrome-c-oxidase (CCO) plays a central role in mitochondrial oxidative metabolism and ATP synthesis. Using a novel broadband NIRS system, we investigated the impact of pressure passivity of cerebral metabolism (CCO), oxygenation (haemoglobin difference (HbD)) and cerebral blood volume (total haemoglobin (HbT)) in 23 term infants following HIE during therapeutic hypothermia (HT). Sixty-minute epochs of data from each infant were studied using wavelet analysis at a mean age of 48 h. Wavelet semblance (a measure of phase difference) was calculated to compare reactivity between mean arterial blood pressure (MABP) with oxCCO, HbD and HbT. OxCCO-MABP semblance correlated with thalamic Lac/NAA ( r = 0.48, p = 0.02). OxCCO-MABP semblance also differed between groups of infants with mild to moderate and severe injury measured using brain MRI score ( p = 0.04), thalamic Lac/NAA ( p = 0.04) and neurodevelopmental outcome at one year ( p = 0.04). Pressure passive changes in cerebral metabolism were associated with injury severity indicated by thalamic Lac/NAA, MRI scores and neurodevelopmental assessment at one year of age.
Collapse
Affiliation(s)
- Subhabrata Mitra
- 1 Institute for Women's Health, University College London, London, UK
| | - Gemma Bale
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - David Highton
- 3 Neurocritical Care, National Hospital for Neurology & Neurosurgery, University College London, London, UK
| | - Roxanna Gunny
- 4 Paediatric Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | | | - Alan Bainbridge
- 5 Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Magdalena Sokolska
- 5 Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - David Price
- 5 Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | | | - Giles S Kendall
- 6 Neonatal Unit, University College London Hospital, London, UK
| | - Judith Meek
- 1 Institute for Women's Health, University College London, London, UK
| | - Ilias Tachtsidis
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | |
Collapse
|
23
|
Quinn KM, Billaut F, Bulmer AC, Minahan CL. Cerebral oxygenation declines but does not impair peak oxygen uptake during incremental cycling in women using oral contraceptives. Eur J Appl Physiol 2018; 118:2417-2427. [PMID: 30167957 DOI: 10.1007/s00421-018-3968-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/11/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE To compare prefrontal cortex oxygenation in recreationally-active women using oral contraceptives (WomenOC; n = 8) to women with a natural menstrual cycle (WomenNC; n = 8) during incremental exercise to exhaustion. METHODS Participants performed incremental cycling to exhaustion to determine lactate threshold 1 (LT1) and 2 (LT2) and peak oxygen uptake (VO2peak). Prefrontal cortex oxygenation was monitored via near-infrared spectroscopy through concentration changes in oxy-haemoglobin (Δ[HbO2]), deoxy-haemoglobin (Δ[HHb]), total-haemoglobin (Δ[tHb]) and tissue saturation index (TSI). RESULTS 17β-oestradiol and progesterone were lower in WomenOC (35 ± 26; 318 ± 127 pmol·L-1, respectively) than WomenNC (261 ± 156; 858 ± 541 pmol·L-1, respectively). There were no differences in full blood examination results or serum nitric oxide (p > 0.05). However, WomenOC presented lower concentrations in ferric-reducing ability of plasma (- 8%; effect size; ES - 0.52 ± 0.61), bilirubin (- 32%; ES - 0.56 ± 0.62) and uric acid (- 17%; ES - 0.53 ± 0.61). Cardiopulmonary parameters were similar between groups during cycling, including VO2peak (p = 0.99). While there was a significant effect of time on all parameters measured by near-infrared spectroscopy during incremental cycling, there was no effect of OC at LT1, LT2 or exhaustion calculated as a change from baseline (TSI; p = 0.096, Δ[HbO2]; p = 0.143, Δ[HHb]; p = 0.085 and Δ[tHb]; p = 0.226). The change in TSI from LT1 to LT2 was significantly different between groups (WomenNC; mean difference + 2.06%, WomenOC; mean difference - 1.73%; p = 0.003). CONCLUSION Prefrontal tissue oxygenation declined at a lower relative exercise intensity in WomenOC as compared to WomenNC, however, this did not influence VO2peak. The results provide the first evidence for variance in the cerebral oxygenation response to exercise, which may be associated with female sex hormones.
Collapse
Affiliation(s)
- Karlee M Quinn
- Griffith Sports Physiology and Performance, Gold Coast campus, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, 4222, Australia. .,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia. .,Queensland Academy of Sport, Nathan, QLD, Australia.
| | - François Billaut
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Andrew C Bulmer
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Clare L Minahan
- Griffith Sports Physiology and Performance, Gold Coast campus, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, 4222, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
24
|
NOS3 Inhibition Confers Post-Ischemic Protection to Young and Aging White Matter Integrity by Conserving Mitochondrial Dynamics and Miro-2 Levels. J Neurosci 2018; 38:6247-6266. [PMID: 29891729 DOI: 10.1523/jneurosci.3017-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023] Open
Abstract
White matter (WM) damage following a stroke underlies a majority of the neurological disability that is subsequently observed. Although ischemic injury mechanisms are age-dependent, conserving axonal mitochondria provides consistent post-ischemic protection to young and aging WM. Nitric oxide synthase (NOS) activation is a major cause of oxidative and mitochondrial injury in gray matter during ischemia; therefore, we used a pure WM tract, isolated male mouse optic nerve, to investigate whether NOS inhibition provides post-ischemic functional recovery by preserving mitochondria. We show that pan-NOS inhibition applied before oxygen-glucose deprivation (OGD) promotes functional recovery of young and aging axons and preserves WM cellular architecture. This protection correlates with reduced nitric oxide (NO) generation, restored glutathione production, preserved axonal mitochondria and oligodendrocytes, and preserved ATP levels. Pan-NOS inhibition provided post-ischemic protection to only young axons, whereas selective inhibition of NOS3 conferred post-ischemic protection to both young and aging axons. Concurrently, genetic deletion of NOS3 conferred long-lasting protection to young axons against ischemia. OGD upregulated NOS3 levels in astrocytes, and we show for the first time that inhibition of NOS3 generation in glial cells prevents axonal mitochondrial fission and restores mitochondrial motility to confer protection to axons by preserving Miro-2 levels. Interestingly, NOS1 inhibition exerted post-ischemic protection selectively to aging axons, which feature age-dependent mechanisms of oxidative injury in WM. Our study provides the first evidence that inhibition of glial NOS activity confers long-lasting benefits to WM function and structure and suggests caution in defining the role of NO in cerebral ischemia at vascular and cellular levels.SIGNIFICANCE STATEMENT White matter (WM) injury during stroke is manifested as the subsequent neurological disability in surviving patients. Aging primarily impacts CNS WM and mechanisms of ischemic WM injury change with age. Nitric oxide is involved in various mitochondrial functions and we propose that inhibition of glia-specific nitric oxide synthase (NOS) isoforms promotes axon function recovery by preserving mitochondrial structure, function, integrity, and motility. Using electrophysiology and three-dimensional electron microscopy, we show that NOS3 inhibition provides a common target to improve young and aging axon function, whereas NOS1 inhibition selectively protects aging axons when applied after injury. This study provides the first evidence that inhibition of glial cell NOS activity confers long-lasting benefits to WM structure and function.
Collapse
|
25
|
Chen JJ. Cerebrovascular-Reactivity Mapping Using MRI: Considerations for Alzheimer's Disease. Front Aging Neurosci 2018; 10:170. [PMID: 29922153 PMCID: PMC5996106 DOI: 10.3389/fnagi.2018.00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/18/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is associated with well-established macrostructural and cellular markers, including localized brain atrophy and deposition of amyloid. However, there is growing recognition of the link between cerebrovascular dysfunction and AD, supported by continuous experimental evidence in the animal and human literature. As a result, neuroimaging studies of AD are increasingly aiming to incorporate vascular measures, exemplified by measures of cerebrovascular reactivity (CVR). CVR is a measure that is rooted in clinical practice, and as non-invasive CVR-mapping techniques become more widely available, routine CVR mapping may open up new avenues of investigation into the development of AD. This review focuses on the use of MRI to map CVR, paying specific attention to recent developments in MRI methodology and on the emerging stimulus-free approaches to CVR mapping. It also summarizes the biological basis for the vascular contribution to AD, and provides critical perspective on the choice of CVR-mapping techniques amongst frail populations.
Collapse
Affiliation(s)
- J J Chen
- Rotman Research Institute, Baycrest, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 2018; 187:209-225. [PMID: 29793062 DOI: 10.1016/j.neuroimage.2018.05.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
Brain aging and associated neurodegeneration constitute a major societal challenge as well as one for the neuroimaging community. A full understanding of the physiological mechanisms underlying neurodegeneration still eludes medical researchers, fuelling the development of in vivo neuroimaging markers. Hence it is increasingly recognized that our understanding of neurodegenerative processes likely will depend upon the available information provided by imaging techniques. At the same time, the imaging techniques are often developed in response to the desire to observe certain physiological processes. In this context, functional MRI (fMRI), which has for decades provided information on neuronal activity, has evolved into a large family of techniques well suited for in vivo observations of brain physiology. Given the rapid technical advances in fMRI in recent years, this review aims to summarize the physiological basis of fMRI observations in healthy aging as well as in age-related neurodegeneration. This review focuses on in-vivo human brain imaging studies in this review and on disease features that can be imaged using fMRI methods. In addition to providing detailed literature summaries, this review also discusses future directions in the study of brain physiology using fMRI in the clinical setting.
Collapse
Affiliation(s)
- J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
27
|
Wang P, Yang X, Liu F, Liang Y, Su G, Tuerhong M, Jin DQ, Xu J, Lee D, Ohizumi Y, Guo Y. Nitric oxide inhibitors with a spiro diterpenoid skeleton from Scutellaria formosana : Structures, NO inhibitory effects, and interactions with iNOS. Bioorg Chem 2018; 76:53-60. [DOI: 10.1016/j.bioorg.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 01/14/2023]
|
28
|
Vauzour D, Camprubi-Robles M, Miquel-Kergoat S, Andres-Lacueva C, Bánáti D, Barberger-Gateau P, Bowman GL, Caberlotto L, Clarke R, Hogervorst E, Kiliaan AJ, Lucca U, Manach C, Minihane AM, Mitchell ES, Perneczky R, Perry H, Roussel AM, Schuermans J, Sijben J, Spencer JPE, Thuret S, van de Rest O, Vandewoude M, Wesnes K, Williams RJ, Williams RSB, Ramirez M. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res Rev 2017; 35:222-240. [PMID: 27713095 DOI: 10.1016/j.arr.2016.09.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/05/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is a desire to develop effective and safe strategies. Growing preclinical and clinical research in healthy individuals or at the early stage of cognitive decline has demonstrated the beneficial impact of nutrition on cognitive functions. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). The latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive ageing are presented. Furthermore, several key points related to mechanisms contributing to brain ageing, pathological conditions affecting brain function, and brain biomarkers are also discussed. Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups. Such approaches are likely to provide the necessary evidence to develop research portfolios that will inform about new dietary recommendations on how to prevent cognitive decline.
Collapse
Affiliation(s)
- David Vauzour
- University of East Anglia, Norwich Medical School, Norwich NR4 7UQ, United Kingdom
| | - Maria Camprubi-Robles
- Abbott Nutrition R&D, Abbott Laboratories, Camino de Purchil 68, 18004 Granada, Spain
| | | | | | - Diána Bánáti
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200 Brussels, Belgium
| | | | - Gene L Bowman
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Laura Caberlotto
- The Microsoft Research-University of Trento, Centre for Computational and Systems Biology (COSBI), Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Robert Clarke
- Oxford University, Richard Doll Building, Old Road Campus, Roosevelt Drive, OX3 7LF Oxford, United Kingdom
| | - Eef Hogervorst
- Loughborough University, Brockington Building, Asby Road, LE11 3TU Loughborough, United Kingdom
| | - Amanda J Kiliaan
- Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ugo Lucca
- IRCCS-Instituto di Richerche Farmacologiche Mario Negri, Via G. La Masa 19, 20156 Milan, Italy
| | - Claudine Manach
- INRA, UMR 1019, Human Nutrition Unit, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Anne-Marie Minihane
- University of East Anglia, Norwich Medical School, Norwich NR4 7UQ, United Kingdom
| | | | - Robert Perneczky
- Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Hugh Perry
- University of Southampton, Tremona Road, SO16 6YD Southampton, United Kingdom
| | - Anne-Marie Roussel
- Joseph Fourier University, Domaine de la Merci, 38706 La Tronche, France
| | - Jeroen Schuermans
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200 Brussels, Belgium.
| | - John Sijben
- Nutricia Research, Nutricia Advances Medical Nutrition, P.O. Box 80141, 3508TC Utrecht, The Netherlands
| | - Jeremy P E Spencer
- University of Reading, Whiteknights, P.O. Box 217, RG6 6AH Reading, Berkshire, United Kingdom
| | - Sandrine Thuret
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU London, United Kingdom
| | - Ondine van de Rest
- Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | | | - Keith Wesnes
- Wesnes Cognition Ltd., Little Paddock, Streatley on Thames RG8 9RD, United Kingdom; Department of Psychology, Northumbria University, Newcastle, United Kingdom; Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia; Medicinal Plant Research Group, Newcastle University, United Kingdom
| | | | - Robin S B Williams
- Royal Holloway, University of London, Egham, TW20 0EX Surrey, United Kingdom
| | - Maria Ramirez
- Abbott Nutrition R&D, Abbott Laboratories, Camino de Purchil 68, 18004 Granada, Spain
| |
Collapse
|
29
|
Xu J, Sun X, Kang J, Liu F, Wang P, Ma J, Zhou H, Jin DQ, Ohizumi Y, Lee D, Bartlam M, Guo Y. Chemical and biological profiles of Tussilago farfara: Structures, nitric oxide inhibitory activities, and interactions with iNOS protein. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Li S, Sun X, Li Y, Liu F, Ma J, Tong L, Su G, Xu J, Ohizumi Y, Lee D, Guo Y. Natural NO inhibitors from the leaves of Callicarpa kwangtungensis: Structures, activities, and interactions with iNOS. Bioorg Med Chem Lett 2017; 27:670-674. [DOI: 10.1016/j.bmcl.2016.11.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/06/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
|
31
|
Wang Y, Venton BJ. Correlation of transient adenosine release and oxygen changes in the caudate-putamen. J Neurochem 2016; 140:13-23. [PMID: 27314215 DOI: 10.1111/jnc.13705] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/19/2016] [Accepted: 06/10/2016] [Indexed: 12/01/2022]
Abstract
Adenosine is an endogenous nucleoside that modulates important physiological processes, such as vasodilation, in the central nervous system. A rapid, 2-4 s, mode of adenosine signaling has been recently discovered, but the relationship between this type of adenosine and blood flow change has not been characterized. In this study, adenosine and oxygen changes were simultaneously measured using fast-scan cyclic voltammetry. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. About 34% of adenosine transients in the rat caudate-putamen are correlated with a subsequent transient change in oxygen. The amount of oxygen was correlated with the concentration of adenosine release and larger adenosine transients (over 0.4 μM) always had subsequent oxygen changes. The average duration of adenosine and oxygen transients was 3.2 and 3.5 s, respectively. On average, the adenosine release starts and peaks 0.2 s prior to the oxygen. The A2a antagonist, SCH442416, decreased the number of both adenosine and oxygen transient events by about 32%. However, the A1 antagonist, DPCPX, did not significantly affect simultaneous adenosine and oxygen release. The nitric oxide (NO) synthase inhibitor l-NAME also did not affect the concentration or number of adenosine and oxygen release events. These results demonstrate that both adenosine and oxygen release are modulated via A2a receptors. The correlation of transient concentrations, time delay between adenosine and oxygen peaks, and effect of A2a receptors suggests that adenosine modulates blood flow on a rapid, sub-second time scale. Read the Editorial Highlight for this article on page 10.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
32
|
Xu J, Wang M, Sun X, Ren Q, Cao X, Li S, Su G, Tuerhong M, Lee D, Ohizumi Y, Bartlam M, Guo Y. Bioactive Terpenoids from Salvia plebeia: Structures, NO Inhibitory Activities, and Interactions with iNOS. JOURNAL OF NATURAL PRODUCTS 2016; 79:2924-2932. [PMID: 27933899 DOI: 10.1021/acs.jnatprod.6b00733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A phytochemical investigation to obtain new NO inhibitors resulted in the identification of six new (1-6) and four known (7-10) terpenoids from Salvia plebeia. Compounds 1 and 2 are new diterpenoids, 3-5 are new meroditerpenoids, 6-9 are sesquiterpenoids, and 10 is a known meroditerpenoid. The structures of these isolates were determined by routine NMR experiments and X-ray diffraction, as well as the electronic circular dichroism spectra. Compounds 1-4 are diterpenoids carrying an oxygen bridge, and 6 is a rare copane-type sesquiterpenoid with a bridged tricyclic framework. The isolates inhibited NO generation induced by lipopolysaccharide in BV-2 cells. The possible mechanism of NO inhibition of some bioactive compounds was also investigated using molecular docking, which revealed interactions of bioactive compounds with the iNOS protein.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University , Kashgar 844000, People's Republic of China
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Yasushi Ohizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka , Shizuoka, Japan
| | | | | |
Collapse
|
33
|
Bioactive diterpenoids from Trigonostemon chinensis : Structures, NO inhibitory activities, and interactions with iNOS. Bioorg Med Chem Lett 2016; 26:4785-4789. [DOI: 10.1016/j.bmcl.2016.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/23/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
|
34
|
Uekawa K, Koizumi K, Hwang J, Brunier N, Hattori Y, Zhou P, Park L. Obligatory Role of EP1 Receptors in the Increase in Cerebral Blood Flow Produced by Hypercapnia in the Mice. PLoS One 2016; 11:e0163329. [PMID: 27657726 PMCID: PMC5033465 DOI: 10.1371/journal.pone.0163329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
Hypercapnia induces potent vasodilation in the cerebral circulation. Although it has long been known that prostanoids participate in the cerebrovascular effects of hypercapnia, the role of prostaglandin E2 (PGE2) and PGE2 receptors have not been fully investigated. In this study, we sought to determine whether cyclooxygenase-1 (COX-1)-derived PGE2 and EP1 receptors are involved in the cerebrovascular response induced by hypercapnia. Cerebral blood flow (CBF) was recorded by laser-Doppler flowmetry in the somatosenasory cortex of anesthetized male EP1-/- mice and wild type (WT) littermates. In WT mice, neocortical application of the EP1 receptor antagonist SC-51089 attenuated the increase in CBF elicited by systemic hypercapnia (pCO2 = 50-60 mmHg). SC-51089 also attenuated the increase in CBF produced by neocortical treatment of arachidonic acid or PGE2. These CBF responses were also attenuated in EP1-/- mice. In WT mice, the COX-1 inhibitor SC-560, but not the COX-2 inhibitor NS-398, attenuated the hypercapnic CBF increase. Neocortical application of exogenous PGE2 restored the attenuation in resting CBF and the hypercapnic response induced by SC-560. In contrast, exogenous PGE2 failed to rescue the attenuation both in WT mice induced by SC-51089 and EP1-/- mice, attesting to the obligatory role of EP1 receptors in the response. These findings indicate that the hypercapnic vasodilatation depends on COX-1-derived PGE2 acting on EP1 receptors and highlight the critical role that COX-1-derived PGE2 and EP1 receptors play in the hypercapnic regulation of the cerebral circulation.
Collapse
Affiliation(s)
- Ken Uekawa
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, United States of America
| | - Kenzo Koizumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, United States of America
| | - Jason Hwang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, United States of America
| | - Nathalie Brunier
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, United States of America
| | - Yorito Hattori
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, United States of America
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, United States of America
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, United States of America
- * E-mail:
| |
Collapse
|
35
|
Coumans ABC, Garnier Y, Supçun S, Jensen A, Hasaart THM, Berger R. The Role of Nitric Oxide on Fetal Cardiovascular Control During Normoxia and Acute Hypoxia in 0.75 Gestation Sheep. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300085-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | | | - A. Jensen
- Department of Obstetrics and Gynecology, University of Maastricht, Maastricht, The Netherlands, and Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany
| | - T. H. M. Hasaart
- Department of Obstetrics and Gynecology, University of Maastricht, Maastricht, The Netherlands, and Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany; University Hospital Maastricht, PO Box 5800, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands
| | - R. Berger
- Department of Obstetrics and Gynecology, University of Maastricht, Maastricht, The Netherlands, and Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany
| |
Collapse
|
36
|
Garnier Y, Coumans ABC, Jensen A, Hasaart THM, Berger R. Infection-Related Perinatal Brain Injury: The Pathogenic Role of Impaired Fetal Cardiovascular Control. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300150-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Tom H. M. Hasaart
- Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany; Department of obstetrics and Gynecology, University of Maastricht, Maastricht, The Netherlands
| | - Richard Berger
- Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany; Department of obstetrics and Gynecology, University of Maastricht, Maastricht, The Netherlands; Universitätsfrauenklinik Bochum, Knappschaftskrankenhaus, In der Schornau 23-25, 44982 Bochum
| |
Collapse
|
37
|
Polycarpou A, Hricisák L, Iring A, Safar D, Ruisanchez É, Horváth B, Sándor P, Benyó Z. Adaptation of the cerebrocortical circulation to carotid artery occlusion involves blood flow redistribution between cortical regions and is independent of eNOS. Am J Physiol Heart Circ Physiol 2016; 311:H972-H980. [PMID: 27496877 DOI: 10.1152/ajpheart.00197.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/01/2016] [Indexed: 01/02/2023]
Abstract
Cerebral circulation is secured by feed-forward and feed-back control pathways to maintain and eventually reestablish the optimal oxygen and nutrient supply of neurons in case of disturbances of the cardiovascular system. Using the high temporal and spatial resolution of laser-speckle imaging we aimed to analyze the pattern of cerebrocortical blood flow (CoBF) changes after unilateral (left) carotid artery occlusion (CAO) in anesthetized mice to evaluate the contribution of macrovascular (circle of Willis) vs. pial collateral vessels as well as that of endothelial nitric oxide synthase (eNOS) to the cerebrovascular adaptation to CAO. In wild-type mice CoBF reduction in the left temporal cortex started immediately after CAO, reaching its maximum (-26%) at 5-10 s. Thereafter, CoBF recovered close to the preocclusion level within 30 s indicating the activation of feed-back pathway(s). Interestingly, the frontoparietal cerebrocortical regions also showed CoBF reduction in the left (-17-19%) but not in the right hemisphere, although these brain areas receive their blood supply from the common azygos anterior cerebral artery in mice. In eNOS-deficient animals the acute CoBF reduction after CAO was unaltered, and the recovery was even accelerated compared with controls. These results indicate that 1) the Willis circle alone is not sufficient to provide an immediate compensation for the loss of one carotid artery, 2) pial collaterals attenuate the ischemia of the temporal cortex ipsilateral to CAO at the expense of the blood supply of the frontoparietal region, and 3) eNOS, surprisingly, does not play an important role in this CoBF redistribution.
Collapse
Affiliation(s)
- Andreas Polycarpou
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - László Hricisák
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - András Iring
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Daniel Safar
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Éva Ruisanchez
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Béla Horváth
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Péter Sándor
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Zoltán Benyó
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| |
Collapse
|
38
|
Abstract
Ischemic brain injury produced by stroke or cardiac arrest is a major cause of human neurological disability. Steady advances in the neurosciences have elucidated the pathophysiological mechanisms of brain ischemia and have suggested many therapeutic approaches to achieve neuroprotection of the acutely ischemic brain that are directed at specific injury mechanisms. In the second portion of this two-part review, the following potential therapeutic approaches to acute ischemic injury are considered: 1) modulation of nonglutamatergic neurotransmission, including monoaminergic systems (dopamine, norepinephrine, serotonin), γ-aminobutyric acid, and adenosine; 2) mild-to-moderate therapeutic hypothermia; 3) calcium channel antagonism; 4) an tagonism of oxygen free radicals; 5) modulation of the nitric oxide system; 6) antagonism of cytoskeletal proteolysis; 7) growth factor administration; 8) therapy directed at cellular mediators of injury; and 9) the rationale for combination pharmacotherapy. The Neuroscientist 1:164-175, 1995
Collapse
Affiliation(s)
- Myron D. Ginsberg
- Cerebral Vascular Disease Research Center Department
of Neurology University of Miami School of Medicine Miami, Florida
| |
Collapse
|
39
|
Schwenger N, Dux M, de Col R, Carr R, Messlinger K. Interaction of Calcitonin Gene-Related Peptide, Nitric Oxide and Histamine Release in Neurogenic Blood Flow and Afferent Activation in The Rat Cranial Dura Mater. Cephalalgia 2016; 27:481-91. [PMID: 17441973 DOI: 10.1111/j.1468-2982.2007.01321.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcitonin gene-related peptide (CGRP), nitric oxide (NO) and histamine are implicated in primary headaches but their role in vascular and nociceptive events in the dura mater is not well described. In an in vitro preparation of the hemisected rat skull, CGRP and histamine release from the cranial dura was measured using enzyme-linked immunoassays. While the NO donator NONOate (10-4 M) was without effect, CGRP (10-5 M) induced considerable histamine release from the rat cranial dura, which was blocked by the CGRP receptor antagonist CGRP8-37 (10-5 M). Conversely, histamine (10-4 M) did not stimulate CGRP release. In vitro recordings from single rat meningeal afferents showed that only one of 12 mechanically identified units but several mechanically insensitive units responded to histamine (up to 10-5 M). Increases in meningeal blood flow after histamine application (10-4 M) to the rat cranial dura remained unchanged during CGRP receptor blockade with CGRP8-37, inhibition of NO synthesis with L-NAME (20 mg/kg i.v.) and H3 receptor blockade with thioperamide (10-4 M). We conclude that histamine produces direct vasodilatation and activates a subset of largely non-mechanically sensitive, non-CGRP containing afferents in the rat meninges. Histamine is released from meningeal mast cells which are stimulated by CGRP. Similar mechanisms may be involved in the pathogenesis of headaches.
Collapse
Affiliation(s)
- N Schwenger
- Institute of Physiology & Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
40
|
Ahmad N, Ahmad R, Alam MA, Samim M, Iqbal Z, Ahmad FJ. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int J Biol Macromol 2016; 88:320-32. [PMID: 26976069 DOI: 10.1016/j.ijbiomac.2016.03.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 11/15/2022]
Abstract
Stroke is an important cause of deaths worldwide, resulting in an irreversible deterioration of the central nervous system. Finally, production of more free radicals. Therefore, Thymoquinone is having antioxidant property and reported to have a potential role in the amelioration of cerebral ischemia but due to low solubility and poor absorption; they exhibit low serum and tissue levels. Present work aims to prepare nanoemulsions in order enhance the bioavailability of drug and hence evaluate the drug targeting in brain via non-invasive nasal route administration. Thymoquinone Mucoadhesive Nanoemulsion (TMNE) was prepared by ionic gelation method; characterized for particles size, entrapment efficiency, zeta potential, and ex vivo permeation study. Optimized TMNE ended up with a mean globule size 94.8±6.61nm; zeta potential -13.5±1.01mV; drug content 99.86±0.35% and viscosity 110±12cp. Ultra Performance Liquid Chromatography-Photodiode Array (UPLC-PDA) based bioanalytical method was developed and validated for pharmacokinetics, biodistribution, brain-targeting efficiency (628.5786±44.79%) and brain drug-targeting potential (89.97±2.94%) studies via post intranasal administration which revealed enhanced bioavailability of TQ in brain as compared to intravenous administration. Improved neurobehavioural activity (locomotor and grip strength) was observed in middle cerebral artery occlusion induced cerebral ischemic rats after i.n. administration of TMNE.
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, University of Dammam, Dammam 31441, Saudi Arabia.
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, University of Dammam, Dammam 31441, Saudi Arabia
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida 201310, India
| | - Mohd Samim
- Department of Chemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Zeenat Iqbal
- Nanomedicine Lab, Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Farhan Jalees Ahmad
- Nanomedicine Lab, Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
41
|
Benyó Z, Ruisanchez É, Leszl-Ishiguro M, Sándor P, Pacher P. Endocannabinoids in cerebrovascular regulation. Am J Physiol Heart Circ Physiol 2016; 310:H785-801. [PMID: 26825517 DOI: 10.1152/ajpheart.00571.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation.
Collapse
Affiliation(s)
- Zoltán Benyó
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Éva Ruisanchez
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Miriam Leszl-Ishiguro
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Péter Sándor
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Terpolilli NA, Brem C, Bühler D, Plesnila N. Are We Barking Up the Wrong Vessels? Stroke 2015; 46:3014-9. [DOI: 10.1161/strokeaha.115.006353] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Nicole Angela Terpolilli
- From the Department of Neurosurgery (N.A.T.), Department of Neuroradiology (C.B.), Institute for Stroke and Dementia Research (D.B., N.P.), and Munich Cluster for Systems Neurology (SyNergy) (N.P.), University of Munich Medical Center, Munich, Germany
| | - Christian Brem
- From the Department of Neurosurgery (N.A.T.), Department of Neuroradiology (C.B.), Institute for Stroke and Dementia Research (D.B., N.P.), and Munich Cluster for Systems Neurology (SyNergy) (N.P.), University of Munich Medical Center, Munich, Germany
| | - Dominik Bühler
- From the Department of Neurosurgery (N.A.T.), Department of Neuroradiology (C.B.), Institute for Stroke and Dementia Research (D.B., N.P.), and Munich Cluster for Systems Neurology (SyNergy) (N.P.), University of Munich Medical Center, Munich, Germany
| | - Nikolaus Plesnila
- From the Department of Neurosurgery (N.A.T.), Department of Neuroradiology (C.B.), Institute for Stroke and Dementia Research (D.B., N.P.), and Munich Cluster for Systems Neurology (SyNergy) (N.P.), University of Munich Medical Center, Munich, Germany
| |
Collapse
|
43
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
44
|
Hartmann SE, Kissel CK, Szabo L, Walker BL, Leigh R, Anderson TJ, Poulin MJ. Increased ventilatory response to carbon dioxide in COPD patients following vitamin C administration. ERJ Open Res 2015; 1:00017-2015. [PMID: 27730137 PMCID: PMC5005137 DOI: 10.1183/23120541.00017-2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/12/2015] [Indexed: 11/17/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have decreased ventilatory and cerebrovascular responses to hypercapnia. Antioxidants increase the ventilatory response to hypercapnia in healthy humans. Cerebral blood flow is an important determinant of carbon dioxide/hydrogen ion concentration at the central chemoreceptors and may be affected by antioxidants. It is unknown whether antioxidants can improve the ventilatory and cerebral blood flow response in individuals in whom these are diminished. Thus, we aimed to determine the effect of vitamin C administration on the ventilatory and cerebrovascular responses to hypercapnia during healthy ageing and in COPD. Using transcranial Doppler ultrasound, we measured the ventilatory and cerebral blood flow responses to hyperoxic hypercapnia before and after an intravenous vitamin C infusion in healthy young (Younger) and older (Older) subjects and in moderate COPD. Vitamin C increased the ventilatory response in COPD patients (mean (95% CI) 1.1 (0.9-1.1) versus 1.5 (1.1-2.0) L·min-1·mmHg-1, p<0.05) but not in Younger (2.5 (1.9-3.1) versus 2.4 (1.9-2.9) L·min-1·mmHg-1, p>0.05) or Older (1.3 (1.0-1.7) versus 1.3 (1.0-1.7) L·min-1·mmHg-1, p>0.05) healthy subjects. Vitamin C did not affect the cerebral blood flow response in the young or older healthy subjects or COPD subjects (p>0.05). Vitamin C increases the ventilatory but not cerebrovascular response to hyperoxic hypercapnia in patients with moderate COPD.
Collapse
Affiliation(s)
- Sara E. Hartmann
- Dept of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christine K. Kissel
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Lian Szabo
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brandie L. Walker
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Richard Leigh
- Dept of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Todd J. Anderson
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Dept of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marc J. Poulin
- Dept of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Dept of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Petrica L, Vlad A, Gluhovschi G, Gadalean F, Dumitrascu V, Vlad D, Popescu R, Velciov S, Gluhovschi C, Bob F, Ursoniu S, Petrica M, Jianu DC. Glycated peptides are associated with the variability of endothelial dysfunction in the cerebral vessels and the kidney in type 2 diabetes mellitus patients: a cross-sectional study. J Diabetes Complications 2015; 29:230-7. [PMID: 25511877 DOI: 10.1016/j.jdiacomp.2014.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Diabetic atherosclerosis and microangiopathy parallel diabetic nephropathy. The aim of our study was to evaluate the pattern of endothelial dysfunction in two vascular territories, the kidney and the brain, both affected by diabetic vasculopathic complications. The endothelial variability was evaluated in relation to advanced glycation end-products modified peptides. METHODS Seventy patients with type 2 diabetes mellitus and 11 healthy subjects were assessed concerning urine albumin: creatinine ratio, plasma and urinary advanced glycation end-products, plasma asymmetric dimethyl-arginine, serum cystatin C, intima-media thickness in the common carotid arteries, the pulsatility index, the resistance index in the internal carotid arteries and the middle cerebral arteries, the cerebrovascular reactivity through the breath-holding test. RESULTS The breath-holding index correlated with asymmetric dimethyl-arginine (R²=0.151; p<0.001), plasma advanced glycation end-products (R²=0.173; p<0.001), C-reactive protein (R²=0.587; p<0.001), duration of diabetes mellitus (R²=0.146; p=0.001), cystatin C (R²=0.220; p<0.001), estimated glomerular filtration rate (R²=0.237; p=0.001). Urine albumin: creatinine ratio correlated with urinary advanced glycation end-products (R²=0.257; p<0.001), but not with asymmetric dimethyl-arginine (R²=0.029; p=0.147). CONCLUSIONS In type 2 diabetic patients endothelial dysfunction in the cerebral vessels appears to be dissociated from glomerular endothelial dysfunction in early diabetic nephropathy. Advanced glycation end-products could impact both the cerebral vessels and the glomerular endothelium.
Collapse
MESH Headings
- Aged
- Albuminuria/etiology
- Arginine/analogs & derivatives
- Arginine/blood
- Biomarkers/blood
- Biomarkers/urine
- Breath Holding
- Cohort Studies
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/complications
- Diabetic Angiopathies/blood
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/urine
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/physiopathology
- Diabetic Nephropathies/urine
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Glomerular Filtration Rate
- Glycation End Products, Advanced/blood
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/urine
- Humans
- Kidney/blood supply
- Kidney/metabolism
- Kidney/physiopathology
- Male
- Middle Aged
- Outpatient Clinics, Hospital
- Romania
- Severity of Illness Index
- Vasculitis, Central Nervous System/complications
- Vasculitis, Central Nervous System/metabolism
- Vasculitis, Central Nervous System/physiopathology
- Vasculitis, Central Nervous System/urine
Collapse
Affiliation(s)
- Ligia Petrica
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Nephrology, County Emergency Hospital, Timisoara, Romania.
| | - Adrian Vlad
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Diabetes and Metabolic Diseases, County Emergency Hospital, Timisoara, Romania.
| | - Gheorghe Gluhovschi
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Nephrology, County Emergency Hospital, Timisoara, Romania.
| | - Florica Gadalean
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Nephrology, County Emergency Hospital, Timisoara, Romania.
| | - Victor Dumitrascu
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Pharmacology, County Emergency Hospital, Clinical Laboratory, Timisoara, Romania.
| | - Daliborca Vlad
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Pharmacology, County Emergency Hospital, Clinical Laboratory, Timisoara, Romania.
| | - Roxana Popescu
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Clinical Laboratory, Department of Cellular Biology, County Emergency Hospital, Timisoara, Romania.
| | - Silvia Velciov
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Nephrology, County Emergency Hospital, Timisoara, Romania.
| | - Cristina Gluhovschi
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Nephrology, County Emergency Hospital, Timisoara, Romania.
| | - Flaviu Bob
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Nephrology, County Emergency Hospital, Timisoara, Romania.
| | - Sorin Ursoniu
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Public Health Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.
| | - Maxim Petrica
- Department of Neurology, County Emergency Hospital, Timisoara, Romania.
| | - Dragos Catalin Jianu
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Neurology, County Emergency Hospital, Timisoara, Romania.
| |
Collapse
|
46
|
Kuzenkov VS, Krushynsky AL. [A protective role of the nitrite/nitrate reductase system in ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:58-66. [PMID: 26978642 DOI: 10.17116/jnevro201511512258-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To reveal a protective role of the nitrite/nitrate reductase system in NO- synthase (NOS) inhibition in ischemic stroke. MATERIAL AND METHODS An effect of the non-selective NOS inhibitor Nω-nitro-L-arginine (L-NNA) introduced in dose of 25 mg/kg and nitrates (КNO3, NaNO3, Mg(NO3)2, Ca(NO3) in doses of 5 mg/kg) on ischemic stroke induced by the occlusion of carotid arteries in an experimental model was studied. The animals (Wistar rats) were stratified into 20 experimental groups (n=480) and 4 control groups (n=96). One of nitrates or L-NNA along with one of nitrates or L-NNA alone were administered to experimental groups 1h before brain ischemia or 5s after carotid artery occlusion. 0.9% NaCl was used in the control rats. RESULTS L-NNA increases neurological deficit and lethality in brain ischemia. Depending on a cation, the nitrite/nitrate reductase system may play a protective role in the inhibition of NOS-system in brain ischemia. CONCLUSION In brain ischemia and NOS inhibition, Mg(NO3)2 has the greatest protective effect.
Collapse
|
47
|
Butt JH, Franzmann U, Kruuse C. Endothelial function in migraine with aura - a systematic review. Headache 2014; 55:35-54. [PMID: 25546573 DOI: 10.1111/head.12494] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND An increased risk of ischemic stroke is repeatedly reported in young subjects with migraine with aura (MA). Such may be caused by changes in endothelial function. The present review evaluates current evidence on endothelial function in MA patients. METHODS A systematic search of electronic databases (Medline, Embase, Cochrane library) was performed, and a search in associated reference lists of identified studies was done. RESULTS In total, 27 studies met inclusion criteria for this review. Six studies assessed endothelial function by flow-mediated dilation; four reported no differences compared with healthy subjects, one study reported an increase and one study a decrease in migraineurs. Peripheral arterial tonometry was applied in one study where no changes were detected between groups. Likewise, applying venous occlusion plethysmography elicited comparable responses. Arterial function was investigated in six studies; increased augmentation index and decreased arterial distensibility were reported in migraineurs, whereas findings regarding pulse wave velocity were dissimilar. However, when investigating levels of endothelial progenitor cells, two studies reported reduced levels in migraineurs, and several studies on endothelial markers in the areas of inflammation, oxidative stress, and coagulation found increased endothelial activation in migraineurs, particularly in MA. One study, assessing cerebral endothelial function using transcranial Doppler sonography, reported lower cerebrovascular reactivity to L-arginine in the posterior cerebral arteries in migraineurs. CONCLUSION Endothelial dysfunction appears not to be of importance in MA patients. However, the studies were few with a wide variety of techniques applied in small groups of patients. Endothelial biomarkers were increased in patients indicating a possible subtle change in the endothelium. Further investigations on larger groups of patients combining testing of endothelial dysfunction as well as biomarkers are warranted to identify whether or not endothelial changes may play a role in the increased risk of stroke in young MA patients.
Collapse
Affiliation(s)
- Jawad H Butt
- Department of Neurology, Neurovascular Research Unit, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | | | |
Collapse
|
48
|
Jayakumar T, Elizebeth AR, Yen TL, Sheu JR. Chinese medicines and bioactive compounds for treatment of stroke. Chin J Integr Med 2014; 21:90-101. [DOI: 10.1007/s11655-014-1782-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 12/29/2022]
|
49
|
Song TJ, Kim J, Lee HS, Nam CM, Nam HS, Kim YD, Heo JH. Distribution of cerebral microbleeds determines their association with impaired kidney function. J Clin Neurol 2014; 10:222-8. [PMID: 25045375 PMCID: PMC4101099 DOI: 10.3988/jcn.2014.10.3.222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/15/2014] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Cerebral microbleeds (CMBs) are associated with various pathologies of the cerebral small vessels according to their distribution (i.e., cerebral amyloid angiopathy or hypertensive angiopathy). We investigated the association between CMB location and kidney function in acute ischemic stroke patients. Methods We enrolled 1669 consecutive patients with acute ischemic stroke who underwent gradient-recalled echo brain magnetic resonance imaging. Kidney function was determined using the estimated glomerular filtration rate (eGFR). CMBs were classified into strictly lobar, strictly nonlobar (i.e., only deep or infratentorial), and a combination of both lobar and nonlobar. Multinomial logistic regression analyses were used to determine the factors associated with the existence of CMBs according to their location. Results The patients were aged 66±12 years (mean±standard deviation), and 61.9% (1033/1669) of them were male. CMBs were found in 27.0% (452/1669) of the patients. The stroke subtypes of small-artery occlusion and cardioembolism occurred more frequently in those with strictly nonlobar CMBs (10.8%) and strictly lobar CMBs (48.8%), respectively. The mean eGFR was lower in the strictly nonlobar CMBs group (72±28 mL/min/1.73 m2) and the both lobar and nonlobar CMBs group (72±25 mL/min/1.73 m2) than in the no-CMBs group (86±29 mL/min/1.73 m2). Multivariate multinomial logistic regression revealed that eGFR <60 mL/min/1.73 m2 was independently related to strictly nonlobar CMBs (odds ratio=2.63, p=0.001). Conclusions Impaired kidney function is associated with strictly nonlobar CMBs. Our findings indicate that the distribution of CMBs should be considered when evaluating their relationships or prognoses.
Collapse
Affiliation(s)
- Tae-Jin Song
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea. ; Department of Neurology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jinkwon Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, Korea
| | - Chung Mo Nam
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Dae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Akhter MS, Biswas A, Rashid H, Devi L, Behari M, Saxena R. Screening of the NOS3 gene identifies the variants 894G/T, 1998C/G and 2479G/A to be associated with acute onset ischemic stroke in young Asian Indians. J Neurol Sci 2014; 344:69-75. [PMID: 24986538 DOI: 10.1016/j.jns.2014.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/24/2014] [Accepted: 06/12/2014] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Nitric oxide levels and NOS3 gene variants play a pivotal role in the development of vascular diseases/stroke. We attempted to determine the role of NOS3 gene variants and plasma NO levels towards the development of ischemic stroke in young Asian-Indians. METHODS One hundred ischemic stroke patients and 200 age and sex matched control study subjects were screened for NOS3 gene variants using SSCP [single stranded confirmation polymorphism] and PCR based techniques. Plasma NO metabolites [NOx] were evaluated for the investigated population. RESULTS Significantly higher NOx levels were observed in controls [controls 56.63±25.92 μmol/L, patients 34.73±19.88 μmol/L, p<0.001]. The SNPs [single nucleotide polymorphisms] 894G/T, 1998C/G and 2479G/A were found associated with the disease phenotype with the most significant finding observed for 894G/T [χ(2)=36.68, p<0.001]. The SNPs 894G/T and 2479G/A were significantly associated with NOx levels [p=0.001]. The haplotypes TCA and TGA were overrepresented in the patient population [p<0.0001]. CONCLUSION Two NOS3 SNP [894G/T and 2479G/A] variants and NOx levels are associated with ischemic stroke in young Asian Indians. These NOS3 SNPs might represent genetic risk factors for ischemic stroke in young Asian Indians. However these observations need to be confirmed by larger replicate/cross-sectional studies.
Collapse
Affiliation(s)
- Mohd Suhail Akhter
- Department of Haematology, All India Institute of Medical Sciences, New Delhi, India
| | - Arijit Biswas
- Department of Molecular Biology, Institute of Experimental Haematology and Transfusion Medicine, Bonn, Germany
| | - Hina Rashid
- Indian Council of Medical Research, New Delhi, India
| | - Luxmi Devi
- Department of Haematology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhuri Behari
- Department of Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - Renu Saxena
- Department of Haematology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|