1
|
Zhao ZA, Yan L, Wen J, Satyanarayanan SK, Yu F, Lu J, Liu YU, Su H. Cellular and molecular mechanisms in vascular repair after traumatic brain injury: a narrative review. BURNS & TRAUMA 2023; 11:tkad033. [PMID: 37675267 PMCID: PMC10478165 DOI: 10.1093/burnst/tkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 09/08/2023]
Abstract
Traumatic brain injury (TBI) disrupts normal brain function and is associated with high morbidity and fatality rates. TBI is characterized as mild, moderate or severe depending on its severity. The damage may be transient and limited to the dura matter, with only subtle changes in cerebral parenchyma, or life-threatening with obvious focal contusions, hematomas and edema. Blood vessels are often injured in TBI. Even in mild TBI, dysfunctional cerebral vascular repair may result in prolonged symptoms and poor outcomes. Various distinct types of cells participate in vascular repair after TBI. A better understanding of the cellular response and function in vascular repair can facilitate the development of new therapeutic strategies. In this review, we analyzed the mechanism of cerebrovascular impairment and the repercussions following various forms of TBI. We then discussed the role of distinct cell types in the repair of meningeal and parenchyma vasculature following TBI, including endothelial cells, endothelial progenitor cells, pericytes, glial cells (astrocytes and microglia), neurons, myeloid cells (macrophages and monocytes) and meningeal lymphatic endothelial cells. Finally, possible treatment techniques targeting these unique cell types for vascular repair after TBI are discussed.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Neurology, General Hospital of Northern Theater Command, 83# Wen-Hua Road, Shenyang 110840, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong U Liu
- Laboratory of Neuroimmunology in Health and Disease Institute, Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 511400, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
2
|
Long M, Cui Y, Pang X, Wang B, He J, Zhang Q, Yu S, Bai X. Changes in arterial blood vessels and VEGF and Ang-1 expression in pregnant and non-pregnant yak uterine caruncle. Reprod Domest Anim 2022; 57:1554-1563. [PMID: 36005750 DOI: 10.1111/rda.14232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
We investigated the structural features of arterial blood vessels in yak uterine caruncle and the effects of the expression of vascular regulation-related factors on angiogenesis in pregnant and non-pregnant yak uterus. Three-dimensional specimens of the uterine artery of non-pregnant and pregnant yaks were produced to observe and measure the distribution characteristics and number of arterial vessels in the uterus and caruncle in the two periods. The uterine caruncle structure was observed and analyzed by hematoxylin-eosin staining. The expression features of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) in the uterine caruncle were detected with immunohistochemistry, quantitative real-time PCR (qRT-PCR), and western blotting. The length and number of blood vessels in the caruncle were increased, the degree of curvature was decreased, and the folding was more complicated during pregnancy as compared with that during non-pregnancy. The immunohistochemical results demonstrated that VEGF and Ang-1 were mainly expressed strongly in the mucosal epithelial cytoplasm. The glandular lumen of the uterine gland, lymphocytes, and the media and adventitia of blood vessels are widely distributed, and they are all positive. VEGF and Ang-1 mRNA and protein levels were highest in pregnancy, followed by that in the luteal phase and in the follicular phase, and three stages were significantly different (p < 0.05). These findings provide an anatomical reference and theoretical basis for improving the diagnosis and treatment of yak reproductive disorders and other diseases in high-altitude and low-oxygen environments.
Collapse
Affiliation(s)
- Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xin Pang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Biao Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junfeng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Xuefeng Bai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Cun Y, Jin Y, Wu D, Zhou L, Zhang C, Zhang S, Yang X, Zuhong Wang, Zhang P. Exosome in Crosstalk between Inflammation and Angiogenesis: A Potential Therapeutic Strategy for Stroke. Mediators Inflamm 2022; 2022:7006281. [PMID: 36052309 PMCID: PMC9427301 DOI: 10.1155/2022/7006281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The endothelial dysfunction, associated with inflammation and vascular permeability, remains the key event in the pathogenesis of cerebral ischemic stroke. Angiogenesis is essential for neuroprotection and neural repair following stroke. The neuroinflammatory reaction plays a vital role in stroke, and inhibition of inflammation contributes to establishing an appropriate external environment for angiogenesis. Exosomes are the heterogeneous population of extracellular vesicles which play critical roles in intercellular communication through transmitting various proteins and nucleic acids to nearby and distant recipient cells by body fluids and circulation. Recent reports have shown that exosomal therapy is a valuable and potential treatment strategy for stroke. In this review, we discussed the exosomes in complex interaction mechanisms of angiogenesis and inflammation following stroke as well as the challenges of exosomal studies such as secretion, uptake, modification, and application.
Collapse
Affiliation(s)
- Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Xicheng Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Zuhong Wang
- Acupuncture Department, Kunming Traditional Chinese Medicine Hospital, Kunming 650500, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| |
Collapse
|
4
|
Kim J, Erice C, Rohlwink UK, Tucker EW. Infections in the Developing Brain: The Role of the Neuro-Immune Axis. Front Neurol 2022; 13:805786. [PMID: 35250814 PMCID: PMC8891478 DOI: 10.3389/fneur.2022.805786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
Central nervous system (CNS) infections occur more commonly in young children than in adults and pose unique challenges in the developing brain. This review builds on the distinct vulnerabilities in children's peripheral immune system (outlined in part 1 of this review series) and focuses on how the developing brain responds once a CNS infection occurs. Although the protective blood-brain barrier (BBB) matures early, pathogens enter the CNS and initiate a localized innate immune response with release of cytokines and chemokines to recruit peripheral immune cells that contribute to the inflammatory cascade. This immune response is initiated by the resident brain cells, microglia and astrocytes, which are not only integral to fighting the infection but also have important roles during normal brain development. Additionally, cytokines and other immune mediators such as matrix metalloproteinases from neurons, glia, and endothelial cells not only play a role in BBB permeability and peripheral cell recruitment, but also in brain maturation. Consequently, these immune modulators and the activation of microglia and astrocytes during infection adversely impact normal neurodevelopment. Perturbations to normal brain development manifest as neurodevelopmental and neurocognitive impairments common among children who survive CNS infections and are often permanent. In part 2 of the review series, we broadly summarize the unique challenges CNS infections create in a developing brain and explore the interaction of regulators of neurodevelopment and CNS immune response as part of the neuro-immune axis.
Collapse
Affiliation(s)
- John Kim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Clara Erice
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula K. Rohlwink
- Faculty of Health Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elizabeth W. Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Kennedy DC, Coen B, Wheatley AM, McCullagh KJA. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int J Mol Sci 2021; 23:452. [PMID: 35008876 PMCID: PMC8745510 DOI: 10.3390/ijms23010452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.
Collapse
Affiliation(s)
| | | | - Antony M. Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| | - Karl J. A. McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| |
Collapse
|
6
|
CRH/CRHR1 modulates cerebrovascular endothelial cell permeability in association with S1PR2 and S1PR3 under oxidative stress. Vascul Pharmacol 2021; 142:106941. [PMID: 34781017 DOI: 10.1016/j.vph.2021.106941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in vascular inflammation and permeability. Our previous studies have shown that blockade of S1PR2 or CRHR1 inhibited H2O2-induced brain endothelial hyperpermeability via inhibiting cPLA2 phosphorylation. However, little is known about the linkage between S1PRs and CRHR1 in oxidative stress-induced cerebrovascular endothelial hyperpermeability. Here we observed the opposite effects of S1PR2 to those of S1PR3 on the monolayer permeability of bEnd3 cells in response to H2O2. Interestingly, activation of CRHR1 was found to reverse the effects resulting from blockade/silencing of both S1PR2 and S1PR3. In bEnd3 monolayer, blockade/knockdown of S1PR2 reduced the endothelial hyperpermeability and suppressed the tight junction protein ZO-1 redistribution caused by H2O2, along with the inhibition of p38, ERK and cPLA2 phosphorylation. On the contrary, suppression/silencing of S1PR3 further promoted H2O2-induced endothelial hyperpermeability and ZO-1 redistribution, accompanied by the increased phosphorylation of p38, ERK and cPLA2. In the presence of CRH, the effects resulting from the suppression of both S1PR2 and S1PR3 were abolished. Our results elucidate a possible linkage between CRHR1 and S1PR2/S1PR3 involving in the regulation of endothelial monolayer permeability under oxidative stress condition.
Collapse
|
7
|
You K, Gu H, Yuan Z, Xu X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front Cell Dev Biol 2021; 9:727075. [PMID: 34395451 PMCID: PMC8361451 DOI: 10.3389/fcell.2021.727075] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays important roles in processes such as immunomodulation, fever, inflammatory response, inhibition of tumor formation, and inhibition of viral replication. TNF-α and its receptors are ubiquitously expressed in developing organs and they regulate the survival, proliferation, and apoptosis of embryonic stem cells (ESCs) and progenitor cells. TNF-α is an important inflammatory factor that also regulates the inflammatory response during organogenesis, and its cytotoxic effects can interfere with normal developmental processes, even leading to the onset of diseases. This review summarizes the various roles of TNF-α in organogenesis in terms of its secreting pattern, concentration-dependent activities, and interactions with other signaling pathways. We also explored new potential functions of TNF-α.
Collapse
Affiliation(s)
- Kai You
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuewen Xu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Wu Y, Yang B. Erythropoietin Receptor/β Common Receptor: A Shining Light on Acute Kidney Injury Induced by Ischemia-Reperfusion. Front Immunol 2021; 12:697796. [PMID: 34276689 PMCID: PMC8278521 DOI: 10.3389/fimmu.2021.697796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Acute kidney injury (AKI) is a health problem worldwide, but there is a lack of early diagnostic biomarkers and target-specific treatments. Ischemia-reperfusion (IR), a major cause of AKI, not only induces kidney injury, but also stimulates the self-defense system including innate immune responses to limit injury. One of these responses is the production of erythropoietin (EPO) by adjacent normal tissue, which is simultaneously triggered, but behind the action of its receptors, either by the homodimer EPO receptor (EPOR)2 mainly involved in erythropoiesis or the heterodimer EPOR/β common receptor (EPOR/βcR) which has a broad range of biological protections. EPOR/βcR is expressed in several cell types including tubular epithelial cells at low levels or absent in normal kidneys, but is swiftly upregulated by hypoxia and inflammation and also translocated to cellular membrane post IR. EPOR/βcR mediates anti-apoptosis, anti-inflammation, pro-regeneration, and remodeling via the PI3K/Akt, STAT3, and MAPK signaling pathways in AKI. However, the precise roles of EPOR/βcR in the pathogenesis and progression of AKI have not been well defined, and its potential as an earlier biomarker for AKI diagnosis and monitoring repair or chronic progression requires further investigation. Here, we review biological functions and mechanistic signaling pathways of EPOR/βcR in AKI, and discuss its potential clinical applications as a biomarker for effective diagnosis and predicting prognosis, as well as directing cell target drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, China.,Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Yang
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
Zhu H, Zhang Y, Zhong Y, Ye Y, Hu X, Gu L, Xiong X. Inflammation-Mediated Angiogenesis in Ischemic Stroke. Front Cell Neurosci 2021; 15:652647. [PMID: 33967696 PMCID: PMC8096981 DOI: 10.3389/fncel.2021.652647] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is the leading cause of disability and mortality in the world, but the pathogenesis of ischemic stroke (IS) is not completely clear and treatments are limited. Mounting evidence indicate that neovascularization is a critical defensive reaction to hypoxia that modulates the process of long-term neurologic recovery after IS. Angiogenesis is a complex process in which the original endothelial cells in blood vessels are differentiated, proliferated, migrated, and finally remolded into new blood vessels. Many immune cells and cytokines, as well as growth factors, are directly or indirectly involved in the regulation of angiogenesis. Inflammatory cells can affect endothelial cell proliferation, migration, and activation by secreting a variety of cytokines via various inflammation-relative signaling pathways and thus participate in the process of angiogenesis. However, the mechanism of inflammation-mediated angiogenesis has not been fully elucidated. Hence, this review aimed to discuss the mechanism of inflammation-mediated angiogenesis in IS and to provide new ideas for clinical treatment of IS.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Chamorro ME, Maltaneri R, Schiappacasse A, Nesse A, Vittori D. Role of protein tyrosine phosphatase 1B (PTP1B) in the increased sensitivity of endothelial cells to a promigratory effect of erythropoietin in an inflammatory environment. Biol Chem 2020; 401:1167-1180. [PMID: 32386183 DOI: 10.1515/hsz-2020-0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/04/2020] [Indexed: 11/15/2022]
Abstract
The proliferation and migration of endothelial cells are vascular events of inflammation, a process which can also potentiate the effects of promigratory factors. With the aim of investigating possible modifications in the activity of erythropoietin (Epo) in an inflammatory environment, we found that Epo at a non-promigratory concentration was capable of stimulating EA.hy926 endothelial cell migration when TNF-α was present. VCAM-1 and ICAM-1 expression, as well as adhesion of monocytic THP-1 cells to endothelial layers were also increased. Structurally modified Epo (carbamylation or N-homocysteinylation) did not exhibit these effects. The sensitizing effect of TNF-α on Epo activity was mediated by the Epo receptor. Inhibition assays targeting the PI3K/mTOR/NF-κB pathway, shared by Epo and TNF-α, show a cross-talk between both cytokines. As observed in assays using antioxidants, cell migration elicited by TNF-α + Epo depended on TNF-α-generated reactive oxygen species (ROS). ROS-mediated inactivation of protein tyrosine phosphatase 1B (PTP1B), involved in Epo signaling termination, could explain the synergistic effect of these cytokines. Our results suggest that ROS generated by inflammation inactivate PTP1B, causing the Epo signal to last longer. This mechanism, along with the cross-talk between both cytokines, could explain the sensitizing action of TNF-α on the migratory effect of Epo.
Collapse
Affiliation(s)
- María Eugenia Chamorro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Romina Maltaneri
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Agustina Schiappacasse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Alcira Nesse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Daniela Vittori
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| |
Collapse
|
11
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
12
|
Annese T, Tamma R, Ruggieri S, Ribatti D. Erythropoietin in tumor angiogenesis. Exp Cell Res 2019; 374:266-273. [DOI: 10.1016/j.yexcr.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
|
13
|
Maltaneri RE, Schiappacasse A, Chamorro ME, Nesse AB, Vittori DC. Participation of membrane calcium channels in erythropoietin-induced endothelial cell migration. Eur J Cell Biol 2018; 97:411-421. [DOI: 10.1016/j.ejcb.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 12/25/2022] Open
|
14
|
Yuan J, Fang W, Lin A, Ni Z, Qian J. Angiopoietin-2/Tie2 Signaling Involved in TNF-α Induced Peritoneal Angiogenesis. Int J Artif Organs 2018. [DOI: 10.1177/039139881203500905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiangzi Yuan
- Renal Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Center for Peritoneal Dialysis Research, Shanghai - China
| | - Wei Fang
- Renal Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Center for Peritoneal Dialysis Research, Shanghai - China
| | - Aiwu Lin
- Renal Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Center for Peritoneal Dialysis Research, Shanghai - China
| | - Zhaohui Ni
- Renal Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Center for Peritoneal Dialysis Research, Shanghai - China
| | - Jiaqi Qian
- Renal Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Center for Peritoneal Dialysis Research, Shanghai - China
| |
Collapse
|
15
|
Al-Sarraf H, Malatiali S, Al-Awadi M, Redzic Z. Effects of erythropoietin on astrocytes and brain endothelial cells in primary culture during anoxia depend on simultaneous signaling by other cytokines and on duration of anoxia. Neurochem Int 2017; 113:34-45. [PMID: 29180303 DOI: 10.1016/j.neuint.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
Studies on animals revealed neuroprotective effects of exogenously applied erythropoietin (EPO) during cerebral ischemia/hypoxia. Yet, application of exogenous EPO in stroke patients often lead to haemorrhagic transformation. To clarify potential mechanism of this adverse effect we explored effects of EPO on viabilities of astrocytes and brain endothelial cells (BECs) in primary culture during anoxia of various durations, in the presence or absence of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1), which are cytokines that are also released from the neurovascular unit during hypoxia. Anoxia (2-48 h) exerted marginal effects on BECs' viability and significant reductions in viability of astrocytes. Astrocyte-conditioned medium did not exert effects and exerted detrimental effects on BECs during 2 h and 24 h anoxia, respectively. This was partially reversed by inhibition of Janus kinase (Jak)2/signal transducer and activator of transcription (STAT)5 activation. Addition of rat recombinant EPO (rrEPO) during 2 h-6h anoxia was protective for astrocytes, but had no effect on BECs. Addition of rrEPO significantly reduced viability of BECs and astrocytes after 48 h anoxia and after 24 h-48 h anoxia, respectively, which was attenuated by inhibition of Jak2/STAT5 activation. Simultaneous addition of rrEPO and VEGFA (1-165) caused marginal effects on BECs, but a highly significant protective effects on astrocytes during 24-48 h anoxia, which were attenuated by inhibition of Jak2/STAT5 activation. Simultaneous addition of EPO, VEGFA 1-165 and Ang1 exerted protective effects on BECs during 24 h-48 h anoxia, which were attenuated by addition of soluble Tie2 receptor. These data revealed that EPO could exert protective, but also injurious effects on BECs and astrocytes during anoxia, which depended on the duration of anoxia and on simultaneous signaling by VEGF and Ang1. If these injurious effects occur in stroke patients, they could enhance vascular damage and haemorrhagic transformation.
Collapse
Affiliation(s)
- Hameed Al-Sarraf
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Slava Malatiali
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Mariam Al-Awadi
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
16
|
Crowley MG, Tajiri N. Exogenous stem cells pioneer a biobridge to the advantage of host brain cells following stroke: New insights for clinical applications. Brain Circ 2017; 3:130-134. [PMID: 30276314 PMCID: PMC6057688 DOI: 10.4103/bc.bc_17_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Stroke continues to maintain its status as one of the top causes of mortality within the United States. Currently, the only Food and Drug Administration (FDA)-approved drug in place for stroke patients, tissue plasminogen activator (tPA), has a rigid therapeutic window, closing at approximately 4.5 h after stroke onset. Due to this short time frame and other restrictions, such as any condition that increases a patient's risk for hemorrhaging, it has been predicted that <5% of ischemic stroke patients benefit from tPA. Given that rehabilitation therapy remains the only other option for stroke victims, there is a clear unmet clinical need for treatment available for the remaining 95%. While still considered an experimental treatment, the utilization of stem cell therapies for stroke holds consistent promise. Copious preclinical studies report the capacity for transplanted stem cells to rescue the brain parenchyma surrounding the stroke-induced infarct core. At present, the exact mechanisms in which stem cells contribute a robust therapeutic benefit remains unclear. Following stem cell administration, researchers have observed cell replacement, an increase in growth factors, and a reduction in inflammation. With a deeper understanding of the precise mechanism of stem cells, these therapies can be optimized in the clinic to afford the greatest therapeutic benefit. Recent studies have depicted a unique method of endogenous stem cell activation as a result of stem cell therapy. In both traumatic brain injury and stroke models, transplanted mesenchymal stromal cells (MSCs) facilitated a pathway between the neurogenic niches of the brain and the damaged area through extracellular matrix remodeling. The biobridge pioneered by the MSCs was utilized by the endogenous stem cells, and these cells were able to travel to the damaged areas distal to the neurogenic niches, a feat unachievable without prior remodeling. These studies broaden our understanding of stem cell interactions within the injured brain and help to guide both researchers and clinicians in developing an effective stem cell treatment for stroke. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Marci G Crowley
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Naoki Tajiri
- Department of Psychology, Graduate School of Psychology, Kibi International University, 8 Iga-machi, Takahashi-City, Okayama 716-8508, Japan
| |
Collapse
|
17
|
Erythropoietin and Its Angiogenic Activity. Int J Mol Sci 2017; 18:ijms18071519. [PMID: 28703764 PMCID: PMC5536009 DOI: 10.3390/ijms18071519] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Erythropoietin (EPO) is the main hematopoietic hormone acting on progenitor red blood cells via stimulation of cell growth, differentiation, and anti-apoptosis. However, its receptor (EPOR) is also expressed in various non-hematopoietic tissues, including endothelium. EPO is a pleiotropic growth factor that exhibits growth stimulation and cell/tissue protection on numerous cells and tissues. In this article we review the angiogenesis potential of EPO on endothelial cells in heart, brain, and leg ischemia, as well as its role in retinopathy protection and tumor promotion. Furthermore, the effect of EPO on bone marrow and adipose tissue is also discussed.
Collapse
|
18
|
Lee JY, Xu K, Nguyen H, Guedes VA, Borlongan CV, Acosta SA. Stem Cell-Induced Biobridges as Possible Tools to Aid Neuroreconstruction after CNS Injury. Front Cell Dev Biol 2017; 5:51. [PMID: 28540289 PMCID: PMC5424542 DOI: 10.3389/fcell.2017.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Notch-induced mesenchymal stromal cells (MSCs) mediate a distinct mechanism of repair after brain injury by forming a biobridge that facilitates biodistribution of host cells from a neurogenic niche to the area of injury. We have observed the biobridge in an area between the subventricular zone and the injured cortex using immunohistochemistry and laser capture. Cells in the biobridge express high levels of extracellular matrix metalloproteinases (MMPs), specifically MMP-9, which co-localized with a trail of MSCs graft. The transplanted stem cells then become almost undetectable, being replaced by newly recruited host cells. This stem cell-paved biobridge provides support for distal migration of host cells from the subventricular zone to the site of injury. Biobridge formation by transplanted stem cells seems to have a fundamental role in initiating endogenous repair processes. Two major stem cell-mediated repair mechanisms have been proposed thus far: direct cell replacement by transplanted grafts and bystander effects through the secretion of trophic factors including fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), stem cell factor (SCF), erythropoietin, and brain-derived neurotrophic factor (BDNF) among others. This groundbreaking observation of biobridge formation by transplanted stem cells represents a novel mechanism for stem cell mediated brain repair. Future studies on graft-host interaction will likely establish biobridge formation as a fundamental mechanism underlying therapeutic effects of stem cells and contribute to the scientific pursuit of developing safe and efficient therapies not only for traumatic brain injury but also for other neurological disorders. The aim of this review is to hypothetically extend concepts related to the formation of biobridges in other central nervous system disorders.
Collapse
Affiliation(s)
- Jea Y Lee
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Kaya Xu
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Hung Nguyen
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Vivian A Guedes
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| |
Collapse
|
19
|
Qing L, Lei P, Tang J, Wu P, Wang L, Xie J, Hu Y. Inflammatory response associated with choke vessel remodeling in the extended perforator flap model. Exp Ther Med 2017; 13:2012-2018. [PMID: 28565801 PMCID: PMC5443226 DOI: 10.3892/etm.2017.4205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 12/23/2016] [Indexed: 01/06/2023] Open
Abstract
Ischemic necrosis of the surgical flap is a common complication. The behavior of choke vessels has an important role in skin flap survival. However, the mechanism of choke vessel remodeling has remained elusive. The purpose of the present study was to investigate the possible association between inflammatory responses and choke vessel remodeling in the extended perforator flap model in rats. After flap elevation, the animals were randomly divided into three groups (n=6 in each) for tissue analysis at three, five or seven days after flap surgery. Six additional rats served as a control group (no flap elevation). Tissue samples were collected from the choke zone for histological, western blot and PCR analyses. Monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) as inflammatory cytokines were examined in the present study. Histopathological analysis showed that dilation of choke vessels and increased vessel wall thickness was obvious after flap elevation. It also showed edema, inflammation cell aggregation after the operation. Compared with the control group, the protein and mRNA expression levels of MCP-1 and TNF-α were significantly increased at days 3, 5 and 7 after flap elevation, while reaching a maximum at day 5. These findings indicated that inflammatory responses may have an important role in choke vessel remodeling. MCP-1 and TNF-α may be considered as potential targets for modulating the behavior of choke vessels.
Collapse
Affiliation(s)
- Liming Qing
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Pengfei Lei
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Juyu Tang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Pangfeng Wu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Long Wang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Xie
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yihe Hu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
20
|
Sun NN, Li C, Zhou L, Peng Y, Zhang B, Qiu XM, Jiang ZM, Xu J. Lentivirus-mediated angiopoietin-2 gene silencing decreases TNF-α induced apoptosis of alveolar epithelium cells. Biochem Cell Biol 2016; 94:491-497. [PMID: 27701905 DOI: 10.1139/bcb-2016-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To investigate the role of angiopoietin-2 (Ang-2) in tumor necrosis factor-α (TNF-α) induced apoptosis of alveolar epithelium cells (AECs). METHODS TNF-α was used to induce human alveolar epithelial HPAEpiC cells, and Ang-2 siRNA vector was transfected to the HPAEpiC cells. RT-PCR and Western blot were used. TUNEL staining was applied to observe apoptosis, and annexin V-FITC-PI staining was used to calculate apoptosis rate. RESULTS mRNA and protein expressions of Ang-2, activated Bax, and cleaved caspase-3 in HPAEpiC cells were up-regulated, but the expression level of Bcl-2 decreased (P < 0.05). After transfection of Ang-2 siRNA, mRNA and protein expressions of Ang-2, activated Bax, and cleaved caspase-3 in HPAEpiC cells were down-regulated, but the expression level of Bcl-2 increased (P < 0.05). The number of apoptotic cells increased after TNF-α treatment; however, the number decreased after Ang-2 siRNA transfection. Annexin V-FITC-PI staining verified that the total number of apoptotic cells was elevated with TNF-α treatment, but declined after transfection of Ang-2 siRNA. CONCLUSIONS The expression level of Ang-2 increased during TNF-α-induced apoptosis. Inhibiting Ang-2 expression may suppress the early stages of cell apoptosis and the degree of TNF-α-induced apoptosis.
Collapse
Affiliation(s)
- Nan-Nan Sun
- Department of Critical-Care Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, P.R. China
| | - Chong Li
- Department of Critical-Care Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, P.R. China
| | - Lei Zhou
- Department of Critical-Care Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, P.R. China
| | - Yan Peng
- Department of Critical-Care Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, P.R. China
| | - Bin Zhang
- Department of Critical-Care Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, P.R. China
| | - Xian-Ming Qiu
- Department of Critical-Care Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, P.R. China
| | - Zhi-Ming Jiang
- Department of Critical-Care Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, P.R. China
| | - Jiang Xu
- Department of Critical-Care Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, P.R. China
| |
Collapse
|
21
|
Huang H, Huang Q, Wang F, Milner R, Li L. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins. J Neuroinflammation 2016; 13:227. [PMID: 27586239 PMCID: PMC5009537 DOI: 10.1186/s12974-016-0697-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/20/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), is expressed in ischemic tissue and is known to modulate angiogenesis; however, the role of the two distinct TNF-α receptors, TNFR1 and TNFR2, in mediating angiogenic signaling after cerebral ischemic stroke is relatively unknown. METHODS C57BL6 mice were subject to 90 min of ischemia by temporary occlusion of the middle cerebral artery (MCAO) and given daily intra-cerebroventricular injections of antibodies against TNFR1, TNFR2 or control IgG (doses of 10, 50, and 100 ng/day) for 4 days following 90 min MCAO. Vascular remodeling and α5β1 and αVβ3 integrin expression were then examined in the brains of these mice after 4, 7, and 14 days post-ischemia. In parallel in vitro studies, flow cytometry was used to determine the influence of TNF-α on proliferation and integrin expression of human brain microvascular endothelial cells (HBMECs). RESULTS The post-ischemic cerebral angiogenic response was inhibited by antibodies against TNFR1 but not TNFR2, and this correlated with reduced endothelial proliferation and decreased α5β1 and αVβ3 integrin expression after 4 and 7 days post-ischemia. Consistent with these findings, in vitro studies showed that TNF-α induced endothelial proliferation and upregulation of α5β1 and αVβ3 integrins was abrogated by anti-TNFR1 but not anti-TNFR2 antibodies in cultured HBMECs. In addition, blocking antibodies to α5β1 and αVβ3 integrins significantly inhibited TNF-α-induced HBMEC proliferation. CONCLUSIONS Our results suggest that TNFR1-mediated signaling plays a critical role in triggering angiogenic integrins and subsequent angiogenic responses following cerebral ischemia. These novel findings could form a platform for future therapeutic strategies aimed at stimulating angiogenesis following cerebral ischemia.
Collapse
Affiliation(s)
- Heng Huang
- Department of Neurology, Guangdong Medical University Affiliated Hospital, Zhanjiang, 524001, People's Republic of China
| | - Qijuan Huang
- Department of Neurology, Guangdong Medical University Affiliated Hospital, Zhanjiang, 524001, People's Republic of China
| | - Fuxin Wang
- Department of Neurology, Guangdong Medical University Affiliated Hospital, Zhanjiang, 524001, People's Republic of China
| | - Richard Milner
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Longxuan Li
- Department of Neurology, Gongli Hospital, 219 Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China. .,Department of Neurology, Guangdong Medical University Affiliated Hospital, Zhanjiang, 524001, People's Republic of China.
| |
Collapse
|
22
|
Yao G, Zhang Q, Doeppner TR, Niu F, Li Q, Yang Y, Kuckelkorn U, Hagemann N, Li W, Hermann DM, Dai Y, Zhou W, Jin F. LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118. Oncotarget 2016; 6:30251-62. [PMID: 26388611 PMCID: PMC4745795 DOI: 10.18632/oncotarget.4943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/04/2015] [Indexed: 02/05/2023] Open
Abstract
Since disturbance of angiogenesis predisposes to ischemic injuries, attempts to promote angiogenesis have been made to improve clinical outcomes of patients with many ischemic disorders. While hypoxia inducible factors (HIFs) stimulate vascular remodeling and angiogenesis, hyperlipidemia impairs angiogenesis in response to various pro-angiogenic factors. However, it remains uncertain how HIFs regulate angiogenesis under hyperlipidemia. Here, we report that exposure to low-density lipoprotein (LDL) suppressed in vitro angiogenesis of human brain microvascular endothelial cells. Whereas LDL exposure diminished expression of HIF-1α and HIF-2α induced by hypoxia, it inhibited DMOG- and TNFα-induced HIF-1α and HIF-2α expression in normoxia. Notably, in both hypoxia and normoxia, LDL markedly reduced expression of HIF-1β, a constitutively stable HIF subunit, an event associated with NF-κB inactivation. Moreover, knockdown of HIF-1β down-regulated HIF-1α and HIF-2α expression, in association with increased HIF-1α hydroxylation and 20S proteasome activity after LDL exposure. Significantly, the proteasome inhibitor BSc2118 prevented angiogenesis attenuation by LDL through restoring expression of HIFs. Together, these findings argue that HIF-1β might act as a novel cross-link between the HIF and NF-κB pathways in suppression of angiogenesis by LDL, while proteasome inhibitors might promote angiogenesis by reactivating this signaling cascade under hyperlipidemia.
Collapse
Affiliation(s)
- Gang Yao
- Cancer Center, The First Affiliated Hospital, Jilin University, Changchun, Jilin, China.,Department of Neurology, The Second Affiliated Hospital, Jilin University, Changchun, Jilin, China
| | - Qi Zhang
- Cancer Center, The First Affiliated Hospital, Jilin University, Changchun, Jilin, China
| | | | - Feng Niu
- Cancer Center, The First Affiliated Hospital, Jilin University, Changchun, Jilin, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanping Yang
- Cancer Center, The First Affiliated Hospital, Jilin University, Changchun, Jilin, China
| | - Ulrike Kuckelkorn
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Wei Li
- Cancer Center, The First Affiliated Hospital, Jilin University, Changchun, Jilin, China
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Yun Dai
- Department of Medicine, Virginia Commonwealth University, Massey Cancer Center, Richmond, Virginia, USA
| | - Wen Zhou
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, Hunan, China
| | - Fengyan Jin
- Cancer Center, The First Affiliated Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
24
|
Xing C, Lo EH. Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog Neurobiol 2016; 152:181-199. [PMID: 27079786 DOI: 10.1016/j.pneurobio.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Self-preservation is required for life. At the cellular level, this fundamental principle is expressed in the form of molecular mechanisms for preconditioning and tolerance. When the cell is threatened, internal cascades of survival signaling become triggered to protect against cell death and defend against future insults. Recently, however, emerging findings suggest that this principle of self-preservation may involve not only intracellular signals; the release of extracellular signals may provide a way to recruit adjacent cells into an amplified protective program. In the central nervous system where multiple cell types co-exist, this mechanism would allow threatened neurons to "ask for help" from glial and vascular compartments. In this review, we describe this new concept of help-me signaling, wherein damaged or diseased neurons release signals that may shift glial and vascular cells into potentially beneficial phenotypes, and help remodel the neurovascular unit. Understanding and dissecting these non-cell autonomous mechanisms of self-preservation in the CNS may lead to novel opportunities for neuroprotection and neurorecovery.
Collapse
Affiliation(s)
- Changhong Xing
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
25
|
Heikal L, Ghezzi P, Mengozzi M, Ferns G. Low Oxygen Tension Primes Aortic Endothelial Cells to the Reparative Effect of Tissue-Protective Cytokines. Mol Med 2015; 21:709-716. [PMID: 26349058 DOI: 10.2119/molmed.2015.00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared with 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast, βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis.
Collapse
Affiliation(s)
- Lamia Heikal
- Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Gordon Ferns
- Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
26
|
Jin W, Lin Z, Zhang X, Kong L, Yang L. Effects and mechanism of recombinant human erythropoietin on the growth of human breast cancer MDA-MB-231 cells in nude mice. Pathol Res Pract 2015; 211:570-6. [PMID: 26008780 DOI: 10.1016/j.prp.2015.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
This study aimed to explore the effects of recombinant human erythropoietin (rhEPO) on the growth of human breast cancer MDA-MB-231 cells in nude mice, and investigate its functions in regulating tumor growth, angiogenesis and apoptosis. A tumor-bearing nude mice model was established by subcutaneous injection of human breast cancer MDA-MB-231 cells. Two weeks later, the mice were randomly divided into four groups (n=6 for each group): negative control group, rhEPO group, EPO antibody group and EPO+EPO antibody group. Drugs were administered to the corresponding mice once every 3 days for five times. The size and weight of tumors were measured after the mice were sacrificed by cervical dislocation. The expression levels of EPO/EPOR, TNF-α, IL-10, and Bcl-2 in the tumor tissues were determined using RT-PCR and Western blot. The microvessel density (MVD) and expression of VEGF in the tumors were detected using immunohistochemistry. TUNEL assay was used to determine apoptosis in tumors. Results show that rhEPO significantly promoted the growth of MDA-MB-231 cells in nude mice (P<0.05). Compared with the negative control group, the expression levels of EPO, EPOR, TNF-α, IL-10, and VEGF, as well as the MVD values, were significantly elevated in the rhEPO group. However, the apoptotic index was significantly reduced (P<0.05). The ability of rhEPO to promote tumor growth may be associated with its functions in promoting microvessel formation and inhibiting tumor cell apoptosis.
Collapse
Affiliation(s)
- Wen Jin
- Department of Pathology, Fujian Medical University, Fuzhou 350004, China.
| | - Zhiwu Lin
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xiaorong Zhang
- Department of Pathology, The Affiliated Hospital of Jiujiang College, Jiangxi 332000, China
| | - Lingying Kong
- Department of Pathology, The People's Hospital of Fujian Province, Fuzhou 350001, China
| | - Li Yang
- Department of Pathology, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
27
|
Duncan K, Gonzales-Portillo GS, Acosta SA, Kaneko Y, Borlongan CV, Tajiri N. Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy. Brain Res 2015; 1623:160-5. [PMID: 25770817 DOI: 10.1016/j.brainres.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 01/01/2023]
Abstract
Distinguished by an infarct core encased within a penumbra, stroke remains a primary source of mortality within the United States. While our scientific knowledge regarding the pathology of stroke continues to improve, clinical treatment options for patients suffering from stroke are extremely limited. Tissue plasminogen activator (tPA) remains the sole FDA-approved drug proven to be helpful following stroke. However, due to the need to administer the drug within 4.5h of stroke onset its usefulness is constrained to less than 5% of all patients suffering from ischemic stroke. One experimental therapy for the treatment of stroke involves the utilization of stem cells. Stem cell transplantation has been linked to therapeutic benefit by means of cell replacement and release of growth factors; however the precise means by which this is accomplished has not yet been clearly delineated. Using a traumatic brain injury model, we recently demonstrated the ability of transplanted mesenchymal stromal cells (MSCs) to form a biobridge connecting the area of injury to the neurogenic niche within the brain. We hypothesize that MSCs may also have the capacity to create a similar biobridge following stroke; thereby forming a conduit between the neurogenic niche and the stroke core and peri-infarct area. We propose that this biobridge could assist and promote interaction of host brain cells with transplanted stem cells and offer more opportunities to enhance the effectiveness of stem cell therapy in stroke. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Kelsey Duncan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States
| | - Gabriel S Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States.
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States.
| |
Collapse
|
28
|
TRAF-mediated modulation of NF-kB AND JNK Activation by TNFR2. Cell Signal 2014; 26:2658-66. [DOI: 10.1016/j.cellsig.2014.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
|
29
|
Li Y, Liu DX, Li MY, Qin XX, Fang WG, Zhao WD, Chen YH. Ephrin-A3 and ephrin-A4 contribute to microglia-induced angiogenesis in brain endothelial cells. Anat Rec (Hoboken) 2014; 297:1908-18. [PMID: 25070915 DOI: 10.1002/ar.22998] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/05/2014] [Indexed: 12/14/2022]
Abstract
The association of microglia with brain vasculature during development and the reduced brain vascular complexity in microglia-deficient mice suggest the role of microglia in cerebrovascular angiogenesis. However, the underlying molecular mechanism remains unclear. Here, using an in vitro angiogenesis model, we found the culture supernatant of BV2 microglial cells significantly enhanced capillary-like tube formation and migration of brain microvascular endothelial cells (BMECs). The expression of angiogenic factors, ephrin-A3 and ephrin-A4, were specifically upregulated in BMECs exposed to BV2-derived culture supernatant. Knockdown of ephrin-A3 and ephrin-A4 in BMECs by siRNA significantly attenuated the enhanced angiogenesis and migration of BMECs induced by BV2 supernatant. Our further results indicated that the ability of BV2 supernatant to promote endothelial angiogenesis was caused by the soluble tumor necrosis factor α (TNF-α) released from BV2 microglial cells. Moreover, the upregulations of ephrin-A3 and ephrin-A4 in BMECs in response to BV2 supernatant were effectively abolished by neutralization antibody against TNF-α and TNF receptor 1, respectively. The present study provides evidence that microglia upregulates endothelial ephrin-A3 and ephrin-A4 to facilitate in vitro angiogenesis of brain endothelial cells, which is mediated by microglia-released TNF-α.
Collapse
Affiliation(s)
- Ying Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, 110001, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110001, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Tajiri N, Duncan K, Antoine A, Pabon M, Acosta SA, de la Pena I, Hernadez-Ontiveros DG, Shinozuka K, Ishikawa H, Kaneko Y, Yankee E, McGrogan M, Case C, Borlongan CV. Stem cell-paved biobridge facilitates neural repair in traumatic brain injury. Front Syst Neurosci 2014; 8:116. [PMID: 25009475 PMCID: PMC4068001 DOI: 10.3389/fnsys.2014.00116] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/28/2014] [Indexed: 12/18/2022] Open
Abstract
Modified mesenchymal stromal cells (MSCs) display a unique mechanism of action during the repair phase of traumatic brain injury by exhibiting the ability to build a biobridge between the neurogenic niche and the site of injury. Immunohistochemistry and laser capture assay have visualized this biobridge in the area between the neurogenic subventricular zone and the injured cortex. This biobridge expresses high levels of extracellular matrix metalloproteinases (MMPs), which are initially co-localized with a stream of transplanted MSCs, but later this region contains only few to non-detectable grafts and becomes overgrown by newly recruited host cells. We have reported that long-distance migration of host cells from the neurogenic niche to the injured brain site can be attained via these transplanted stem cell-paved biobridges, which serve as a key regenerative process for the initiation of endogenous repair mechanisms. Thus, far the two major schools of discipline in stem cell repair mechanisms support the idea of "cell replacement" and the bystander effects of "trophic factor secretion." Our novel observation of stem cell-paved biobridges as pathways for directed migration of host cells from neurogenic niche toward the injured brain site adds another mode of action underlying stem cell therapy. More in-depth investigations on graft-host interaction will likely aid translational research focused on advancing this stem cell-paved biobridge from its current place, as an equally potent repair mechanism as cell replacement and trophic factor secretion, into a new treatment strategy for traumatic brain injury and other neurological disorders.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Kelsey Duncan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Alesia Antoine
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Mibel Pabon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Sandra A Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Ike de la Pena
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Diana G Hernadez-Ontiveros
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Hiroto Ishikawa
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | | | | | | | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| |
Collapse
|
31
|
Wu DJ, Ye BD, Hu ZP, Shen YP, Shen JP, Lin SY, Chen MT, Liu YL, Zhou YH. Bone marrow angiogenesis in patients presenting with differential Chinese medicine syndrome: Correlation with the clinico-pathological features of aplastic anemia. Chin J Integr Med 2013; 19:905-12. [DOI: 10.1007/s11655-013-1652-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Indexed: 10/25/2022]
|
32
|
Tajiri N, Kaneko Y, Shinozuka K, Ishikawa H, Yankee E, McGrogan M, Case C, Borlongan CV. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One 2013; 8:e74857. [PMID: 24023965 PMCID: PMC3762783 DOI: 10.1371/journal.pone.0074857] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/06/2013] [Indexed: 01/24/2023] Open
Abstract
Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved “biobridge”. Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of “cell replacement” and bystander effects of “trophic factor secretion”. The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Hiroto Ishikawa
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Ernest Yankee
- Sanbio Inc, Mountain View, California, United States of America
| | | | - Casey Case
- Sanbio Inc, Mountain View, California, United States of America
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
33
|
Cao Y. Erythropoietin in cancer: a dilemma in risk therapy. Trends Endocrinol Metab 2013; 24:190-9. [PMID: 23218687 DOI: 10.1016/j.tem.2012.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
Erythropoietin (EPO) is a frequently prescribed drug for treatment of cancer-related and chemotherapy-induced anemia in cancer patients. Paradoxically, recent preclinical and clinical studies indicate that EPO could potentially accelerate tumor growth and jeopardize survival in cancer patients. In this review I critically discuss the current knowledge and broad biological functions of EPO in association with tumor growth, invasion, and angiogenesis. The emphasis is focused on discussing the complex interplay between EPO and other tumor-derived factors in angiogenesis, tumor growth, invasion, and metastasis. Understanding the multifarious functions of EPO and its reciprocal relation with other signaling pathways is crucial for developing more effective agents for cancer therapy and for minimizing risks for cancer patients.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
34
|
King MD, Alleyne CH, Dhandapani KM. TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice. Neurosci Lett 2013; 542:92-6. [PMID: 23499961 DOI: 10.1016/j.neulet.2013.02.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH), the most common form of hemorrhagic stroke, exhibits the highest acute mortality and the worst long-term prognosis of all stroke subtypes. Unfortunately, treatment options for ICH are lacking due in part to a lack of feasible therapeutic targets. Inflammatory activation is associated with neurological deficits in pre-clinical ICH models and with patient deterioration after clinical ICH. In the present study, we tested the hypothesis that R-7050, a novel cell permeable triazoloquinoxaline inhibitor of the tumor necrosis factor receptor (TNFR) complex, attenuates neurovascular injury after ICH in mice. Up to 2h post-injury administration of R-7050 significantly reduced blood-brain barrier opening and attenuated edema development at 24h post-ICH. Neurological outcomes were also improved over the first 3 days after injury. In contrast, R-7050 did not reduce hematoma volume, suggesting the beneficial effects of TNFR inhibition were downstream of clot formation/resolution. These data suggest a potential clinical utility for TNFR antagonists as an adjunct therapy to reduce neurological injury and improve patient outcomes after ICH.
Collapse
Affiliation(s)
- Melanie D King
- Department of Neurosurgery, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
35
|
Pallet N, Rabant M, Legendre C, Martinez F, Choukroun G. The nephroprotective properties of recombinant human erythropoietin in kidney transplantation: experimental facts and clinical proofs. Am J Transplant 2012; 12:3184-90. [PMID: 23057777 DOI: 10.1111/j.1600-6143.2012.04287.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adaptive responses to hypoxia, including hypoxia-inducible factor signaling, allow the cell to satisfy its basal metabolic demand and avoid death, but these responses can also be deleterious by promoting inflammation, cell dedifferentiation and fibrogenesis. Therefore, targeting hypoxia constitutes a promising therapeutic avenue. Recombinant human erythropoietin (rhEPO) appeared as a good candidate therapy because its hematopoietic properties could reverse anemia, and its tissue-protective properties could reduce cell death and limit maladaptive cellular responses to hypoxia. Despite experimental evidence on the nephroprotecive properties of rhEPO, recent clinical trials provided evidence that rhEPO was ineffective in preventing delayed graft function after ischemic acute injury but that the normalization of hemoglobin values preserved kidney function deterioration and reduced graft loss. Our aim here is to provide a survey of the rationale for evaluating the administration of rhEPO in the setting of kidney transplantation. We will discuss the intriguing findings that emerged from the clinical trials and the discrepancies between promising experimental results and negative clinical studies, as well as the differences in terms of the benefits and safety profiles of the normalization of hemoglobin values in chronic kidney disease patients and kidney transplant patients.
Collapse
Affiliation(s)
- N Pallet
- INSERM U775, Centre Universitaire des Saints Pères, et Université Paris Descartes, Paris, France.
| | | | | | | | | |
Collapse
|
36
|
Brines M, Cerami A. The receptor that tames the innate immune response. Mol Med 2012; 18:486-96. [PMID: 22183892 DOI: 10.2119/molmed.2011.00414] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/14/2011] [Indexed: 11/06/2022] Open
Abstract
Tissue injury, hypoxia and significant metabolic stress activate innate immune responses driven by tumor necrosis factor (TNF)-α and other proinflammatory cytokines that typically increase damage surrounding a lesion. In a compensatory protective response, erythropoietin (EPO) is synthesized in surrounding tissues, which subsequently triggers antiinflammatory and antiapoptotic processes that delimit injury and promote repair. What we refer to as the sequelae of injury or disease are often the consequences of this intentionally discoordinated, primitive system that uses a "scorched earth" strategy to rid the invader at the expense of a serious lesion. The EPO-mediated tissue-protective system depends on receptor expression that is upregulated by inflammation and hypoxia in a distinctive temporal and spatial pattern. The tissue-protective receptor (TPR) is generally not expressed by normal tissues but becomes functional immediately after injury. In contrast to robust and early receptor expression within the immediate injury site, EPO production is delayed, transient and relatively weak. The functional EPO receptor that attenuates tissue injury is distinct from the hematopoietic receptor responsible for erythropoiesis. On the basis of current evidence, the TPR is composed of the β common receptor subunit (CD131) in combination with the same EPO receptor subunit that is involved in erythropoiesis. Additional receptors, including that for the vascular endothelial growth factor, also appear to be a component of the TPR in some tissues, for example, the endothelium. The discoordination of the EPO response system and its relative weakness provide a window of opportunity to intervene with the exogenous ligand. Recently, molecules were designed that preferentially activate only the TPR and thus avoid the potential adverse consequences of activating the hematopoietic receptor. On administration, these agents successfully substitute for a relative deficiency of EPO production in damaged tissues in multiple animal models of disease and may pave the way to effective treatment of a wide variety of insults that cause tissue injury, leading to profoundly expanded lesions and attendant, irreversible sequelae.
Collapse
|
37
|
Kang HJ, Yoon EJ, Lee EJ, Kim MK, Suh JW, Park KW, Lee HY, Park KU, Cho YS, Koo BK, Chae IH, Choi DJ, Han KS, Kim HS, Park YB. Cotreatment with darbepoetin and granulocyte colony-stimulating factor is efficient to recruit proangiogenic cell populations in patients with acute myocardial infarction. Cell Transplant 2012; 21:1055-61. [PMID: 22449332 DOI: 10.3727/096368911x627499] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED To determine whether newer combination cytokine treatment with granulocyte colony-stimulating factor (G-CSF) and darbepoetin can improve efficacy of stem cell therapy, we evaluated safety and peripheral blood stem/progenitor cell (PBSC) mobilizing effects of combination cytokine in comparison with G-CSF alone in patients with acute myocardial infarction (AMI). We randomized 60 patients with AMI into two groups under 2:1 ratio; combination treatment with darbepoetin and G-CSF (n = 41: Combicytokine group) and the G-CSF alone (n = 19: G-CSF group). After coronary angioplasty, G-CSF was treated for 3 days with dose of 10 μg/kg/day in both groups. Only in the combicytokine group, additional single intravenous injection of 4.5 μg/kg of darbepoetin was administrated immediate after coronary angioplasty. Combination cytokine treatment was well tolerated as was G-CSF alone. PBSCs were obtained by apheresis for intracoronary infusion after completion of cytokine treatment and were analyzed by flow cytometry. The purity of proangiogenic cells was higher in combination cytokine group than the G-CSF group. Specifically, proportion of CD34(+)/KDR(+) endothelial progenitor cells, CD3(+)/CD31(+) angiogenic T cells and Tie2(+)/CXCR4(+) cells in apheresis products were higher in the combicytokine group. These meant that the combicytokine treatment recruited PBSCs in higher purity and fewer unwanted inflammatory cells than G-CSF alone in apheresis products. Combination treatment with darbepoetin and G-CSF is safe and more efficient to mobilize and recruit proangiogenic cells than G-CSF alone in patients with AMI. ( TRIAL REGISTRATION www.ClinicalTrials. gov identifier: NCT00501917).
Collapse
Affiliation(s)
- Hyun-Jae Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hematopoietic Growth Factor Family for Stroke Drug Development. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 2011; 82:1291-303. [DOI: 10.1016/j.bcp.2011.06.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/21/2022]
|
40
|
Holstein JH, Orth M, Scheuer C, Tami A, Becker SC, Garcia P, Histing T, Mörsdorf P, Klein M, Pohlemann T, Menger MD. Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone 2011; 49:1037-45. [PMID: 21851867 DOI: 10.1016/j.bone.2011.08.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 11/23/2022]
Abstract
The glycoprotein erythropoietin (EPO) has been demonstrated to stimulate fracture healing. The aim of the present study was to investigate the effect of EPO treatment on bone repair in a femoral segmental defect model. Bone repair was analyzed in mice which were treated by EPO (500IE/kg/d intraperitoneally; n=38) and in mice which received the vehicle for control (n=40). Two and 10 weeks after creating a 1.8mm femoral segmental defect, bone repair was studied by micro-CT, histology, and Western blot analysis. At 10 weeks, micro-CT and histomorphometric analyses showed a significantly higher bridging rate of the bone defects in EPO-treated animals than in controls. This was associated by a significantly higher bone volume within the segmental defects of the EPO-treated animals. At 2 weeks, Western blot analyses revealed a significantly higher expression of vascular endothelial growth factor (VEGF) in EPO-treated animals compared to controls. Accordingly, the number of blood vessels was significantly increased in the EPO group at 2 weeks. At 10 weeks, we found a significantly higher expression of proliferating cell nuclear antigen (PCNA) in EPO-treated animals when compared to controls. Western blot analyses showed no significant differences between the groups in the expression of the endothelial and inducible nitric oxide synthases (eNOS and iNOS) and the angiopoietin receptor Tie-2. Immunohistochemistry confirmed the results of the Western blot analyses, demonstrating a significantly higher number of VEGF- and PCNA-positive cells in EPO-treated animals than in controls at 2 and 10 weeks, respectively. We conclude that EPO is capable of stimulating bone formation, cell proliferation and VEGF-mediated angiogenesis in a femoral segmental defect model.
Collapse
Affiliation(s)
- J H Holstein
- Department of Trauma, Hand & Reconstructive Surgery, University of Saarland, Kirrberger Strasse 1, 66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Meng Y, Xiong Y, Mahmood A, Zhang Y, Qu C, Chopp M. Dose-dependent neurorestorative effects of delayed treatment of traumatic brain injury with recombinant human erythropoietin in rats. J Neurosurg 2011; 115:550-60. [PMID: 21495821 DOI: 10.3171/2011.3.jns101721] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECT Delayed (24 hours postinjury) treatment with erythropoietin (EPO) improves functional recovery following experimental traumatic brain injury (TBI). In this study, the authors tested whether therapeutic effects of delayed EPO treatment for TBI are dose dependent in an attempt to establish an optimal dose paradigm for the delayed EPO treatment. METHODS Experimental TBI was performed in anesthetized young adult male Wistar rats using a controlled cortical impact device. Sham animals underwent the same surgical procedure without injury. The animals (8 rats/group) received 3 intraperitoneal injections of EPO (0, 1000, 3000, 5000, or 7000 U/kg body weight, at 24, 48, and 72 hours) after TBI. Sensorimotor and cognitive functions were assessed using a modified neurological severity score and foot fault test, and Morris water maze tests, respectively. Animals were killed 35 days after injury, and the brain sections were stained for immunohistochemical analyses. RESULTS Compared with the saline treatment, EPO treatment at doses from 1000 to 7000 U/kg did not alter lesion volume but significantly reduced hippocampal neuron loss, enhanced angiogenesis and neurogenesis in the injured cortex and hippocampus, and significantly improved sensorimotor function and spatial learning. The animals receiving the medium dose of 5000 U/kg exhibited a significant improvement in histological and functional outcomes compared with the lower or higher EPO dose groups. CONCLUSIONS These data demonstrate that delayed (24 hours postinjury) treatment with EPO provides dose-dependent neurorestoration, which may contribute to improved functional recovery after TBI, implying that application of an optimal dose of EPO is likely to increase successful preclinical and clinical trials for treatment of TBI.
Collapse
Affiliation(s)
- Yuling Meng
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|