1
|
Lindquist BE. Spreading depolarizations pose critical energy challenges in acute brain injury. J Neurochem 2024; 168:868-887. [PMID: 37787065 PMCID: PMC10987398 DOI: 10.1111/jnc.15966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Spreading depolarization (SD) is an electrochemical wave of neuronal depolarization mediated by extracellular K+ and glutamate, interacting with voltage-gated and ligand-gated ion channels. SD is increasingly recognized as a major cause of injury progression in stroke and brain trauma, where the mechanisms of SD-induced neuronal injury are intimately linked to energetic status and metabolic impairment. Here, I review the established working model of SD initiation and propagation. Then, I summarize the historical and recent evidence for the metabolic impact of SD, transitioning from a descriptive to a mechanistic working model of metabolic signaling and its potential to promote neuronal survival and resilience. I quantify the energetic cost of restoring ionic gradients eroded during SD, and the extent to which ion pumping impacts high-energy phosphate pools and the energy charge of affected tissue. I link energy deficits to adaptive increases in the utilization of glucose and O2, and the resulting accumulation of lactic acid and CO2 downstream of catabolic metabolic activity. Finally, I discuss the neuromodulatory and vasoactive paracrine signaling mediated by adenosine and acidosis, highlighting these metabolites' potential to protect vulnerable tissue in the context of high-frequency SD clusters.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurology, University of California, San Francisco, California, USA
- Gladstone Institute of Neurological Diseases, San Francisco, California, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| |
Collapse
|
2
|
Dreier JP, Joerk A, Uchikawa H, Horst V, Lemale CL, Radbruch H, McBride DW, Vajkoczy P, Schneider UC, Xu R. All Three Supersystems-Nervous, Vascular, and Immune-Contribute to the Cortical Infarcts After Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01242-z. [PMID: 38689162 DOI: 10.1007/s12975-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of all three supersystems-nervous, vascular, and immune-is very likely involved in the dysfunction of the neurovascular unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Alexander Joerk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hiroki Uchikawa
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Cantonal Hospital of Lucerne and University of Lucerne, Lucerne, Switzerland
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| |
Collapse
|
3
|
Dreier JP, Lemale CL, Horst V, Major S, Kola V, Schoknecht K, Scheel M, Hartings JA, Vajkoczy P, Wolf S, Woitzik J, Hecht N. Similarities in the Electrographic Patterns of Delayed Cerebral Infarction and Brain Death After Aneurysmal and Traumatic Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01237-w. [PMID: 38396252 DOI: 10.1007/s12975-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
While subarachnoid hemorrhage is the second most common hemorrhagic stroke in epidemiologic studies, the recent DISCHARGE-1 trial has shown that in reality, three-quarters of focal brain damage after subarachnoid hemorrhage is ischemic. Two-fifths of these ischemic infarctions occur early and three-fifths are delayed. The vast majority are cortical infarcts whose pathomorphology corresponds to anemic infarcts. Therefore, we propose in this review that subarachnoid hemorrhage as an ischemic-hemorrhagic stroke is rather a third, separate entity in addition to purely ischemic or hemorrhagic strokes. Cumulative focal brain damage, determined by neuroimaging after the first 2 weeks, is the strongest known predictor of patient outcome half a year after the initial hemorrhage. Because of the unique ability to implant neuromonitoring probes at the brain surface before stroke onset and to perform longitudinal MRI scans before and after stroke, delayed cerebral ischemia is currently the stroke variant in humans whose pathophysiological details are by far the best characterized. Optoelectrodes located directly over newly developing delayed infarcts have shown that, as mechanistic correlates of infarct development, spreading depolarizations trigger (1) spreading ischemia, (2) severe hypoxia, (3) persistent activity depression, and (4) transition from clustered spreading depolarizations to a negative ultraslow potential. Furthermore, traumatic brain injury and subarachnoid hemorrhage are the second and third most common etiologies of brain death during continued systemic circulation. Here, we use examples to illustrate that although the pathophysiological cascades associated with brain death are global, they closely resemble the local cascades associated with the development of delayed cerebral infarcts.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Karl Schoknecht
- Medical Faculty, Carl Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
LaSarge CL, McCoy C, Namboodiri DV, Hartings JA, Danzer SC, Batie MR, Skoch J. Spatial and Temporal Comparisons of Calcium Channel and Intrinsic Signal Imaging During in Vivo Cortical Spreading Depolarizations in Healthy and Hypoxic Brains. Neurocrit Care 2023; 39:655-668. [PMID: 36539593 DOI: 10.1007/s12028-022-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spreading depolarizations (SDs) can be viewed at a cellular level using calcium imaging (CI), but this approach is limited to laboratory applications and animal experiments. Optical intrinsic signal imaging (OISI), on the other hand, is amenable to clinical use and allows viewing of large cortical areas without contrast agents. A better understanding of the behavior of OISI-observed SDs under different brain conditions is needed. METHODS We performed simultaneous calcium and OISI of SDs in GCaMP6f mice. SDs propagate through the cortex as a pathological wave and trigger a neurovascular response that can be imaged with both techniques. We imaged both mechanically stimulated SDs (sSDs) in healthy brains and terminal SDs (tSDs) induced by system hypoxia and cardiopulmonary failure. RESULTS We observed a lag in the detection of SDs in the OISI channels compared with CI. sSDs had a faster velocity than tSDs, and tSDs had a greater initial velocity for the first 400 µm when observed with CI compared with OISI. However, both imaging methods revealed similar characteristics, including a decrease in the sSD (but not tSD) velocities as the wave moved away from the site of initial detection. CI and OISI also showed similar spatial propagation of the SD throughout the image field. Importantly, only OISI allowed regional ischemia to be detected before tSDs occurred. CONCLUSIONS Altogether, data indicate that monitoring either neural activity or intrinsic signals with high-resolution optical imaging can be useful to assess SDs, but OISI may be a clinically applicable way to predict, and therefore possibly mitigate, hypoxic-ischemic tSDs.
Collapse
Affiliation(s)
- Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carlie McCoy
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Devi V Namboodiri
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew R Batie
- Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jesse Skoch
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Mehra A, Gomez F, Bischof H, Diedrich D, Laudanski K. Cortical Spreading Depolarization and Delayed Cerebral Ischemia; Rethinking Secondary Neurological Injury in Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:9883. [PMID: 37373029 DOI: 10.3390/ijms24129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Poor outcomes in Subarachnoid Hemorrhage (SAH) are in part due to a unique form of secondary neurological injury known as Delayed Cerebral Ischemia (DCI). DCI is characterized by new neurological insults that continue to occur beyond 72 h after the onset of the hemorrhage. Historically, it was thought to be a consequence of hypoperfusion in the setting of vasospasm. However, DCI was found to occur even in the absence of radiographic evidence of vasospasm. More recent evidence indicates that catastrophic ionic disruptions known as Cortical Spreading Depolarizations (CSD) may be the culprits of DCI. CSDs occur in otherwise healthy brain tissue even without demonstrable vasospasm. Furthermore, CSDs often trigger a complex interplay of neuroinflammation, microthrombi formation, and vasoconstriction. CSDs may therefore represent measurable and modifiable prognostic factors in the prevention and treatment of DCI. Although Ketamine and Nimodipine have shown promise in the treatment and prevention of CSDs in SAH, further research is needed to determine the therapeutic potential of these as well as other agents.
Collapse
Affiliation(s)
- Ashir Mehra
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Holly Bischof
- Penn Presbyterian Medical Center, Philadelphia, PA 19104, USA
| | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Kang EJ, Prager O, Lublinsky S, Oliveira-Ferreira AI, Reiffurth C, Major S, Müller DN, Friedman A, Dreier JP. Stroke-prone salt-sensitive spontaneously hypertensive rats show higher susceptibility to spreading depolarization (SD) and altered hemodynamic responses to SD. J Cereb Blood Flow Metab 2023; 43:210-230. [PMID: 36329390 PMCID: PMC9903222 DOI: 10.1177/0271678x221135085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spreading depolarization (SD) occurs in a plethora of clinical conditions including migraine aura, delayed ischemia after subarachnoid hemorrhage and malignant hemispheric stroke. It describes waves of near-breakdown of ion homeostasis, particularly Na+ homeostasis in brain gray matter. SD induces tone alterations in resistance vessels, causing either hyperperfusion in healthy tissue; or hypoperfusion (inverse hemodynamic response = spreading ischemia) in tissue at risk. Observations from mice with genetic dysfunction of the ATP1A2-encoded α2-isoform of Na+/K+-ATPase (α2NaKA) suggest a mechanistic link between (1) SD, (2) vascular dysfunction, and (3) salt-sensitive hypertension via α2NaKA. Thus, α2NaKA-dysfunctional mice are more susceptible to SD and show a shift toward more inverse hemodynamic responses. α2NaKA-dysfunctional patients suffer from familial hemiplegic migraine type 2, a Mendelian model disease of SD. α2NaKA-dysfunctional mice are also a genetic model of salt-sensitive hypertension. To determine whether SD thresholds and hemodynamic responses are also altered in other genetic models of salt-sensitive hypertension, we examined these variables in stroke-prone spontaneously hypertensive rats (SHRsp). Compared with Wistar Kyoto control rats, we found in SHRsp that electrical SD threshold was significantly reduced, propagation speed was increased, and inverse hemodynamic responses were prolonged. These results may have relevance to both migraine with aura and stroke.
Collapse
Affiliation(s)
- Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ofer Prager
- Department of Physiology & Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Lublinsky
- Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alon Friedman
- Department of Physiology & Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
7
|
Vinokurova D, Zakharov A, Chernova K, Burkhanova-Zakirova G, Horst V, Lemale CL, Dreier JP, Khazipov R. Depth-profile of impairments in endothelin-1 - induced focal cortical ischemia. J Cereb Blood Flow Metab 2022; 42:1944-1960. [PMID: 35702017 PMCID: PMC9536115 DOI: 10.1177/0271678x221107422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of ischemic lesions has primarily been studied in horizontal cortical space. However, how ischemic lesions develop through the cortical depth remains largely unknown. We explored this question using direct current coupled recordings at different cortical depths using linear arrays of iridium electrodes in the focal epipial endothelin-1 (ET1) ischemia model in the rat barrel cortex. ET1-induced impairments were characterized by a vertical gradient with (i) rapid suppression of the spontaneous activity in the superficial cortical layers at the onset of ischemia, (ii) compartmentalization of spreading depolarizations (SDs) to the deep layers during progression of ischemia, and (iii) deeper suppression of activity and larger histological lesion size in superficial cortical layers. The level of impairments correlated strongly with the rate of spontaneous activity suppression, the rate of SD onset after ET1 application, and the amplitude of giant negative ultraslow potentials (∼-70 mV), which developed during ET1 application and were similar to the tent-shaped ultraslow potentials observed during focal ischemia in the human cortex. Thus, in the epipial ET1 ischemia model, ischemic lesions develop progressively from the surface to the cortical depth, and early changes in electrical activity at the onset of ET1-induced ischemia reliably predict the severity of ischemic damage.
Collapse
Affiliation(s)
- Daria Vinokurova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, Marseille, France
| | - Andrey Zakharov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Department of Physiology, Kazan State Medical University, Kazan, Russia
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Viktor Horst
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Coline L Lemale
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Jens P Dreier
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Centre for Neurosciences Berlin, Berlin, Germany
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, Marseille, France
| |
Collapse
|
8
|
Eighteen-hour inhibitory effect of s-ketamine on potassium- and ischemia-induced spreading depolarizations in the gyrencephalic swine brain. Neuropharmacology 2022; 216:109176. [DOI: 10.1016/j.neuropharm.2022.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
|
9
|
Windmann V, Dreier JP, Major S, Spies C, Lachmann G, Koch S. Increased Direct Current-Electroencephalography Shifts During Induction of Anesthesia in Elderly Patients Developing Postoperative Delirium. Front Aging Neurosci 2022; 14:921139. [PMID: 35837483 PMCID: PMC9274126 DOI: 10.3389/fnagi.2022.921139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Changes in the direct current (DC) electroencephalography (EEG), so-called DC shifts, are observed during hypoxia, hypo-/hypercapnia, anesthetic administration, epileptic seizures, and spreading depolarizations. They are associated with altered cerebral ion currents across cell membranes and/or the blood–brain barrier (BBB). Here, we measured DC shifts in clinical practice during hyperventilation (HV) and anesthesia induction, and investigated whether such DC shifts correlate with the occurrence of postoperative delirium (POD) in older patients. Methods In this prospective observational study (subproject of the BioCog study, NCT02265263; EA2/092/14), a continuous pre- and perioperative DC-EEG was recorded in patients aged ≥65 years. The preoperative DC-EEG included a 2 min HV with simultaneous measurement of end-tidal CO2. Of the perioperative recordings, DC-EEG segments were chosen from a 30 s period at the start of induction of anesthesia (IOA), loss of consciousness (LOC), and during a stable anesthetic phase 30 min after skin incision (intraOP). The DC shift at Cz was determined in μV/s. All patients were screened twice daily for the first seven postoperative days for the occurrence of POD. DC-EEG shifts were compared in patients with (POD) and without postoperative delirium (noPOD). Results Fifteen patients were included in this subproject of the BioCog study. DC shifts correlated significantly with concurrent HV, with DC shifts increasing the more end-tidal CO2 decreased (P = 0.001, Spearman’s rho 0.862). During the perioperative DC-EEG, the largest DC shift was observed at LOC during IOA. POD patients (n = 8) presented with significantly larger DC shifts at LOC [POD 31.6 (22.7; 38.9) μV/s vs. noPOD 4.7 (2.2; 12.5) μV/s, P = 0.026]. Conclusion DC shifts can be observed during HV and IOA in routine clinical practice. At anesthesia induction, the DC shift was greatest at the time of LOC, with POD patients presenting with significantly stronger DC shifts. This could indicate larger changes in gas tensions, hypotension and impaired cerebral autoregulation or BBB dysfunction in these patients. Clinical Trial Registration www.clinicaltrials.gov, identifier NCT02265263.
Collapse
Affiliation(s)
- Victoria Windmann
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Lachmann
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Koch
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Susanne Koch,
| |
Collapse
|
10
|
Hund SJ, Brown BR, Lemale CL, Menon PG, Easley KA, Dreier JP, Jones SC. Numerical Simulation of Concussive-Generated Cortical Spreading Depolarization to Optimize DC-EEG Electrode Spacing for Noninvasive Visual Detection. Neurocrit Care 2022; 37:67-82. [PMID: 35233716 PMCID: PMC9262830 DOI: 10.1007/s12028-021-01430-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cortical spreading depolarization (SD) is a propagating depolarization wave of neurons and glial cells in the cerebral gray matter. SD occurs in all forms of severe acute brain injury, as documented by using invasive detection methods. Based on many experimental studies of mechanical brain deformation and concussion, the occurrence of SDs in human concussion has often been hypothesized. However, this hypothesis cannot be confirmed in humans, as SDs can only be detected with invasive detection methods that would require either a craniotomy or a burr hole to be performed on athletes. Typical electroencephalography electrodes, placed on the scalp, can help detect the possible presence of SD but have not been able to accurately and reliably identify SDs. METHODS To explore the possibility of a noninvasive method to resolve this hurdle, we developed a finite element numerical model that simulates scalp voltage changes that are induced by a brain surface SD. We then compared our simulation results with retrospectively evaluated data in patients with aneurysmal subarachnoid hemorrhage from Drenckhahn et al. (Brain 135:853, 2012). RESULTS The ratio of peak scalp to simulated peak cortical voltage, Vscalp/Vcortex, was 0.0735, whereas the ratio from the retrospectively evaluated data was 0.0316 (0.0221, 0.0527) (median [1st quartile, 3rd quartile], n = 161, p < 0.001, one sample Wilcoxon signed-rank test). These differing values provide validation because their differences can be attributed to differences in shape between concussive SDs and aneurysmal subarachnoid hemorrhage SDs, as well as the inherent limitations in human study voltage measurements. This simulated scalp surface potential was used to design a virtual scalp detection array. Error analysis and visual reconstruction showed that 1 cm is the optimal electrode spacing to visually identify the propagating scalp voltage from a cortical SD. Electrode spacings of 2 cm and above produce distorted images and high errors in the reconstructed image. CONCLUSIONS Our analysis suggests that concussive (and other) SDs can be detected from the scalp, which could confirm SD occurrence in human concussion, provide concussion diagnosis on the basis of an underlying physiological mechanism, and lead to noninvasive SD detection in the setting of severe acute brain injury.
Collapse
Affiliation(s)
- Samuel J Hund
- CerebroScope, SciencePlusPlease LLC, Pittsburgh, PA, USA
- SimulationSolutions, Pittsburgh, PA, USA
| | | | - Coline L Lemale
- Center for Stroke Research, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Prahlad G Menon
- CerebroScope, SciencePlusPlease LLC, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk A Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jens P Dreier
- Center for Stroke Research, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | | |
Collapse
|
11
|
Dreier JP, Winkler MKL, Major S, Horst V, Lublinsky S, Kola V, Lemale CL, Kang EJ, Maslarova A, Salur I, Lückl J, Platz J, Jorks D, Oliveira-Ferreira AI, Schoknecht K, Reiffurth C, Milakara D, Wiesenthal D, Hecht N, Dengler NF, Liotta A, Wolf S, Kowoll CM, Schulte AP, Santos E, Güresir E, Unterberg AW, Sarrafzadeh A, Sakowitz OW, Vatter H, Reiner M, Brinker G, Dohmen C, Shelef I, Bohner G, Scheel M, Vajkoczy P, Hartings JA, Friedman A, Martus P, Woitzik J. Spreading depolarizations in ischaemia after subarachnoid haemorrhage, a diagnostic phase III study. Brain 2022; 145:1264-1284. [PMID: 35411920 DOI: 10.1093/brain/awab457] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/18/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Focal brain damage after aneurysmal subarachnoid haemorrhage predominantly results from intracerebral haemorrhage, and early and delayed cerebral ischaemia. The prospective, observational, multicentre, cohort, diagnostic phase III trial, DISCHARGE-1, primarily investigated whether the peak total spreading depolarization-induced depression duration of a recording day during delayed neuromonitoring (delayed depression duration) indicates delayed ipsilateral infarction. Consecutive patients (n = 205) who required neurosurgery were enrolled in six university hospitals from September 2009 to April 2018. Subdural electrodes for electrocorticography were implanted. Participants were excluded on the basis of exclusion criteria, technical problems in data quality, missing neuroimages or patient withdrawal (n = 25). Evaluators were blinded to other measures. Longitudinal MRI, and CT studies if clinically indicated, revealed that 162/180 patients developed focal brain damage during the first 2 weeks. During 4.5 years of cumulative recording, 6777 spreading depolarizations occurred in 161/180 patients and 238 electrographic seizures in 14/180. Ten patients died early; 90/170 developed delayed infarction ipsilateral to the electrodes. Primary objective was to investigate whether a 60-min delayed depression duration cut-off in a 24-h window predicts delayed infarction with >0.60 sensitivity and >0.80 specificity, and to estimate a new cut-off. The 60-min cut-off was too short. Sensitivity was sufficient [= 0.76 (95% confidence interval: 0.65-0.84), P = 0.0014] but specificity was 0.59 (0.47-0.70), i.e. <0.80 (P < 0.0001). Nevertheless, the area under the receiver operating characteristic (AUROC) curve of delayed depression duration was 0.76 (0.69-0.83, P < 0.0001) for delayed infarction and 0.88 (0.81-0.94, P < 0.0001) for delayed ischaemia (reversible delayed neurological deficit or infarction). In secondary analysis, a new 180-min cut-off indicated delayed infarction with a targeted 0.62 sensitivity and 0.83 specificity. In awake patients, the AUROC curve of delayed depression duration was 0.84 (0.70-0.97, P = 0.001) and the prespecified 60-min cut-off showed 0.71 sensitivity and 0.82 specificity for reversible neurological deficits. In multivariate analysis, delayed depression duration (β = 0.474, P < 0.001), delayed median Glasgow Coma Score (β = -0.201, P = 0.005) and peak transcranial Doppler (β = 0.169, P = 0.016) explained 35% of variance in delayed infarction. Another key finding was that spreading depolarization-variables were included in every multiple regression model of early, delayed and total brain damage, patient outcome and death, strongly suggesting that they are an independent biomarker of progressive brain injury. While the 60-min cut-off of cumulative depression in a 24-h window indicated reversible delayed neurological deficit, only a 180-min cut-off indicated new infarction with >0.60 sensitivity and >0.80 specificity. Although spontaneous resolution of the neurological deficit is still possible, we recommend initiating rescue treatment at the 60-min rather than the 180-min cut-off if progression of injury to infarction is to be prevented.
Collapse
Affiliation(s)
- Jens P Dreier
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Centre for Neurosciences Berlin, Berlin, Germany
| | - Maren K L Winkler
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Robert Koch-Institute, Berlin, Germany
| | - Sebastian Major
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Svetlana Lublinsky
- Department of Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Physiology & Cell Biology, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel
| | - Vasilis Kola
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun-Jeung Kang
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany.,Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Irmak Salur
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany.,Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Janos Lückl
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.,Department of Neurology, University of Szeged, Szeged, Hungary
| | - Johannes Platz
- Department of Neurosurgery, Herz-Neuro-Zentrum Bodensee, Kreuzlingen, Switzerland
| | - Devi Jorks
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Clienia Schlössli AG, Privatklinik für Psychiatrie und Psychotherapie, Oetwil am See, Switzerland
| | - Ana I Oliveira-Ferreira
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuro-Electronics Research Flanders, Leuven, Belgium.,VIB-KU, Leuven, Belgium.,Interuniversity Microelectronics Centre, Leuven, Belgium.,Laboratory of Neural Circuits, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Karl Schoknecht
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Carl Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Clemens Reiffurth
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denny Milakara
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Research Campus STIMULATE, Otto-von-Guericke-University, Magdeburg, Germany
| | - Dirk Wiesenthal
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Univention GmbH, Bremen, Germany
| | - Nils Hecht
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nora F Dengler
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Agustin Liotta
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Anaesthesiology and Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Wolf
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christina M Kowoll
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - André P Schulte
- Department of Spinal Surgery, Krankenhaus der Augustinerinnen, Cologne, Germany
| | - Edgar Santos
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Asita Sarrafzadeh
- Division of Neurosurgery, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Medical Centre, Geneva, Switzerland
| | - Oliver W Sakowitz
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Michael Reiner
- Medical Advisory Service of the Statutory Health Insurance of North Rhine, Germany
| | - Gerrit Brinker
- Department of Neurosurgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Dohmen
- Department for Neurology and Neurological Intensive Care Medicine, LVR-Klinik Bonn, Bonn, Germany
| | - Ilan Shelef
- Department of Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Physiology & Cell Biology, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Institute of Radiology, Soroka University Medical Centre, Beer-Sheva, Israel
| | - Georg Bohner
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alon Friedman
- Department of Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Physiology & Cell Biology, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Medical Neuroscience and Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Johannes Woitzik
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Binder NF, Glück C, Middleham W, Alasoadura M, Pranculeviciute N, Wyss MT, Chuquet J, Weber B, Wegener S, El Amki M. Vascular Response to Spreading Depolarization Predicts Stroke Outcome. Stroke 2022; 53:1386-1395. [PMID: 35240860 PMCID: PMC10510800 DOI: 10.1161/strokeaha.121.038085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cortical spreading depolarization (CSD) is a massive neuro-glial depolarization wave, which propagates across the cerebral cortex. In stroke, CSD is a necessary and ubiquitous mechanism for the development of neuronal lesions that initiates in the ischemic core and propagates through the penumbra extending the tissue injury. Although CSD propagation induces dramatic changes in cerebral blood flow, the vascular responses in different ischemic regions and their consequences on reperfusion and recovery remain to be defined. METHODS Ischemia was performed using the thrombin model of stroke and reperfusion was induced by r-tPA (recombinant tissue-type plasminogen activator) administration in mice. We used in vivo electrophysiology and laser speckle contrast imaging simultaneously to assess both electrophysiological and hemodynamic characteristics of CSD after ischemia onset. Neurological deficits were assessed on day 1, 3, and 7. Furthermore, infarct sizes were quantified using 2,3,5-triphenyltetrazolium chloride on day 7. RESULTS After ischemia, CSDs were evidenced by the characteristic propagating DC shift extending far beyond the ischemic area. On the vascular level, we observed 2 types of responses: some mice showed spreading hyperemia confined to the penumbra area (penumbral spreading hyperemia) while other showed spreading hyperemia propagating in the full hemisphere (full hemisphere spreading hyperemia). Penumbral spreading hyperemia was associated with severe stroke-induced damage, while full hemisphere spreading hyperemia indicated beneficial infarct outcome and potential viability of the infarct core. In all animals, thrombolysis with r-tPA modified the shape of the vascular response to CSD and reduced lesion volume. CONCLUSIONS Our results show that different types of spreading hyperemia occur spontaneously after the onset of ischemia. Depending on their shape and distribution, they predict severity of injury and outcome. Furthermore, our data show that modulating the hemodynamic response to CSD may be a promising therapeutic strategy to attenuate stroke outcome.
Collapse
Affiliation(s)
- Nadine Felizitas Binder
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, Experimental Imaging and Neuroenergetics, University of Zurich (UZH), Switzerland (C.G., M.T.W., B.W.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - William Middleham
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - Michael Alasoadura
- Normandie University, Unirouen, INSERM U1239, Rouen, France (M.A., J.C.)
| | - Nikolete Pranculeviciute
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - Matthias Tasso Wyss
- Institute of Pharmacology and Toxicology, Experimental Imaging and Neuroenergetics, University of Zurich (UZH), Switzerland (C.G., M.T.W., B.W.)
| | - Julien Chuquet
- Normandie University, Unirouen, INSERM U1239, Rouen, France (M.A., J.C.)
- Normandie University, Unirouen, IRIB, EA3830-GRHVN, Rouen, France (J.C.)
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, Experimental Imaging and Neuroenergetics, University of Zurich (UZH), Switzerland (C.G., M.T.W., B.W.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
| | - Mohamad El Amki
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| |
Collapse
|
13
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
14
|
Schumm L, Lemale CL, Major S, Hecht N, Nieminen-Kelhä M, Zdunczyk A, Kowoll CM, Martus P, Thiel CM, Dreier JP, Woitzik J. Physiological variables in association with spreading depolarizations in the late phase of ischemic stroke. J Cereb Blood Flow Metab 2022; 42:121-135. [PMID: 34427143 PMCID: PMC8721769 DOI: 10.1177/0271678x211039628] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Physiological effects of spreading depolarizations (SD) are only well studied in the first hours after experimental stroke. In patients with malignant hemispheric stroke (MHS), monitoring of SDs is restricted to the postoperative ICU stay, typically day 2-7 post-ictus. Therefore, we investigated the role of physiological variables (temperature, intracranial pressure, mean arterial pressure and cerebral perfusion pressure) in relationship to SD during the late phase after MHS in humans. Additionally, an experimental stroke model was used to investigate hemodynamic consequences of SD during this time window. In 60 patients with MHS, the occurrence of 1692 SDs was preceded by a decrease in mean arterial pressure (-1.04 mmHg; p = .02) and cerebral perfusion pressure (-1.04 mmHg; p = .03). Twenty-four hours after middle cerebral artery occlusion in 50 C57Bl6/J mice, hypothermia led to prolonged SD-induced hyperperfusion (+2.8 min; p < .05) whereas hypertension mitigated initial hypoperfusion (-1.4 min and +18.5%Δ rCBF; p < .01). MRI revealed that SDs elicited 24 hours after experimental stroke were associated with lesion progression (15.9 vs. 14.8 mm³; p < .01). These findings of small but significant effects of physiological variables on SDs in the late phase after ischemia support the hypothesis that the impact of SDs may be modified by adjusting physiological variables.
Collapse
Affiliation(s)
- Leonie Schumm
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Zdunczyk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Martus
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Andrew RD, Hartings JA, Ayata C, Brennan KC, Dawson-Scully KD, Farkas E, Herreras O, Kirov SA, Müller M, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Shuttleworth CW, Ullah G, Dreier JP. The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention. Neurocrit Care 2022; 37:83-101. [PMID: 35257321 PMCID: PMC9259543 DOI: 10.1007/s12028-021-01431-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.
Collapse
Affiliation(s)
- R. David Andrew
- grid.410356.50000 0004 1936 8331Queen’s University, Kingston, ON Canada
| | - Jed A. Hartings
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH USA
| | - Cenk Ayata
- grid.38142.3c000000041936754XHarvard Medical School, Harvard University, Boston, MA USA
| | - K. C. Brennan
- grid.223827.e0000 0001 2193 0096The University of Utah, Salt Lake City, UT USA
| | | | - Eszter Farkas
- grid.9008.10000 0001 1016 96251HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, and the Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Oscar Herreras
- grid.419043.b0000 0001 2177 5516Instituto de Neurobiologia Ramon Y Cajal (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Sergei. A. Kirov
- grid.410427.40000 0001 2284 9329Medical College of Georgia, Augusta, GA USA
| | - Michael Müller
- grid.411984.10000 0001 0482 5331University of Göttingen, University Medical Center Göttingen, Göttingen, Germany
| | - Nikita Ollen-Bittle
- grid.39381.300000 0004 1936 8884University of Western Ontario, London, ON Canada
| | - Clemens Reiffurth
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| | - Omer Revah
- grid.168010.e0000000419368956School of Medicine, Stanford University, Stanford, CA USA
| | | | | | - Ghanim Ullah
- grid.170693.a0000 0001 2353 285XUniversity of South Florida, Tampa, FL USA
| | - Jens P. Dreier
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| |
Collapse
|
16
|
Brainstem and Cortical Spreading Depolarization in a Closed Head Injury Rat Model. Int J Mol Sci 2021; 22:ijms222111642. [PMID: 34769073 PMCID: PMC8584184 DOI: 10.3390/ijms222111642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young individuals, and is a major health concern that often leads to long-lasting complications. However, the electrophysiological events that occur immediately after traumatic brain injury, and may underlie impact outcomes, have not been fully elucidated. To investigate the electrophysiological events that immediately follow traumatic brain injury, a weight-drop model of traumatic brain injury was used in rats pre-implanted with epidural and intracerebral electrodes. Electrophysiological (near-direct current) recordings and simultaneous alternating current recordings of brain activity were started within seconds following impact. Cortical spreading depolarization (SD) and SD-induced spreading depression occurred in approximately 50% of mild and severe impacts. SD was recorded within three minutes after injury in either one or both brain hemispheres. Electrographic seizures were rare. While both TBI- and electrically induced SDs resulted in elevated oxidative stress, TBI-exposed brains showed a reduced antioxidant defense. In severe TBI, brainstem SD could be recorded in addition to cortical SD, but this did not lead to the death of the animals. Severe impact, however, led to immediate death in 24% of animals, and was electrocorticographically characterized by non-spreading depression (NSD) of activity followed by terminal SD in both cortex and brainstem.
Collapse
|
17
|
Oxygen-Induced and pH-Induced Direct Current Artifacts on Invasive Platinum/Iridium Electrodes for Electrocorticography. Neurocrit Care 2021; 35:146-159. [PMID: 34622418 PMCID: PMC8496677 DOI: 10.1007/s12028-021-01358-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Spreading depolarization (SD) and the initial, still reversible phase of neuronal cytotoxic edema in the cerebral gray matter are two modalities of the same process. SD may thus serve as a real-time mechanistic biomarker for impending parenchyma damage in patients during neurocritical care. Using subdural platinum/iridium (Pt/Ir) electrodes, SD is observed as a large negative direct current (DC) shift. Besides SD, there are other causes of DC shifts that are not to be confused with SD. Here, we systematically analyzed DC artifacts in ventilated patients by observing changes in the fraction of inspired oxygen. For the same change in blood oxygenation, we found that negative and positive DC shifts can simultaneously occur at adjacent Pt/Ir electrodes. METHODS Nurses and intensivists typically increase blood oxygenation by increasing the fraction of inspired oxygen at the ventilator before performing manipulations on the patient. We retrospectively identified 20 such episodes in six patients via tissue partial pressure of oxygen (ptiO2) measurements with an intracortical O2 sensor and analyzed the associated DC shifts. In vitro, we compared Pt/Ir with silver/silver chloride (Ag/AgCl) to assess DC responses to changes in pO2, pH, or 5-min square voltage pulses and investigated the effect of electrode polarization on pO2-induced DC artifacts. RESULTS Hyperoxygenation episodes started from a ptiO2 of 37 (30-40) mmHg (median and interquartile range) reaching 71 (50-97) mmHg. During a total of 20 episodes on each of six subdural Pt/Ir electrodes in six patients, we observed 95 predominantly negative responses in six patients, 25 predominantly positive responses in four patients, and no brain activity changes. Adjacent electrodes could show positive and negative responses simultaneously. In vitro, Pt/Ir in contrast with Ag/AgCl responded to changes in either pO2 or pH with large DC shifts. In response to square voltage pulses, Pt/Ir falsely showed smaller DC shifts than Ag/AgCl, with the worst performance under anoxia. In response to pO2 increase, Pt/Ir showed DC positivity when positively polarized and DC negativity when negatively polarized. CONCLUSIONS The magnitude of pO2-induced subdural DC shifts by approximately 6 mV was similar to that of SDs, but they did not show a sequential onset at adjacent recording sites, could be either predominantly negative or positive in contrast with the always negative DC shifts of SD, and were not accompanied by brain activity depression. Opposing polarities of pO2-induced DC artifacts may result from differences in baseline electrode polarization or subdural ptiO2 inhomogeneities relative to subdermal ptiO2 at the quasi-reference.
Collapse
|
18
|
Full-Band EEG Recordings Using Hybrid AC/DC-Divider Filters. eNeuro 2021; 8:ENEURO.0246-21.2021. [PMID: 34380654 PMCID: PMC8387152 DOI: 10.1523/eneuro.0246-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Full-band DC recordings enable recording of slow electrical brain signals that are severely compromised during conventional AC recordings. However, full-band DC recordings may be limited by the amplifier's dynamic input range and the loss of small amplitude high-frequency signals. Recently, Neuralynx has proposed full-band recordings with inverse filtering for signal reconstruction based on hybrid AC/DC-divider RRC filters that enable only partial suppression of DC signals. However, the quality of signal reconstruction for biological signals has not yet been assessed. Here, we propose a novel digital inverse filter based on a mathematical model describing RRC filter properties, which provides high computational accuracy and versatility. Second, we propose procedures for the evaluation of the inverse filter coefficients, adapted for each recording channel to minimize the error caused by the deviation of the real values of the RRC filter elements from their nominal values. We demonstrate that this approach enables near 99% reconstruction quality of high-potassium-induced cortical spreading depolarizations (SDs), endothelin-induced ischemic negative ultraslow potentials (NUPs), and whole-cell recordings of membrane potential using RRC filters. The quality of the reconstruction was significantly higher than with the existing inverse filtering procedures. Thus, RRC filters with inverse filtering are optimal for full-band EEG recordings in various applications.
Collapse
|
19
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Petzold GC, Dreier JP. Spreading depolarization evoked by endothelin-1 is inhibited by octanol but not by carbenoxolone. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Schoknecht K, Kikhia M, Lemale CL, Liotta A, Lublinsky S, Mueller S, Boehm-Sturm P, Friedman A, Dreier JP. The role of spreading depolarizations and electrographic seizures in early injury progression of the rat photothrombosis stroke model. J Cereb Blood Flow Metab 2021; 41:413-430. [PMID: 32241203 PMCID: PMC7812510 DOI: 10.1177/0271678x20915801] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spreading depolarization (SD) and seizures are pathophysiological events associated with cerebral ischemia. Here, we investigated their role for injury progression in the cerebral cortex. Cerebral ischemia was induced in anesthetized male Wistar rats using the photothrombosis (PT) stroke model. SD and spontaneous neuronal activity were recorded in the presence of either urethane or ketamine/xylazine anesthesia. Blood-brain barrier (BBB) permeability, cerebral perfusion, and cellular damage were assessed through a cranial window and repeated intravenous injection of fluorescein sodium salt and propidium iodide until 4 h after PT. Neuronal injury and early lesion volume were quantified by stereological cell counting and manual and automated assessment of ex vivo T2-weighted magnetic resonance imaging. Onset SDs originated at the thrombotic core and invaded neighboring cortex, whereas delayed SDs often showed opposite propagation patterns. Seizure induction by 4-aminopyridine caused no increase in lesion volume or neuronal injury in urethane-anesthetized animals. Ketamine/xylazine anesthesia was associated with a lower number of onset SDs, reduced lesion volume, and neuronal injury despite a longer duration of seizures. BBB permeability increase inversely correlated with the number of SDs at 3 and 4 h after PT. Our results provide further evidence that ketamine may counteract the early progression of ischemic injury.
Collapse
Affiliation(s)
- Karl Schoknecht
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Majed Kikhia
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Agustin Liotta
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Anesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Svetlana Lublinsky
- Departments of Physiology & Cell Biology, Cognitive & Brain Sciences, the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Susanne Mueller
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Boehm-Sturm
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology & Cell Biology, Cognitive & Brain Sciences, the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Jens P Dreier
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
22
|
Pinkowski NJ, Guerin J, Zhang H, Carpentier ST, McCurdy KE, Pacheco JM, Mehos CJ, Brigman JL, Morton RA. Repeated mild traumatic brain injuries impair visual discrimination learning in adolescent mice. Neurobiol Learn Mem 2020; 175:107315. [PMID: 32980477 DOI: 10.1016/j.nlm.2020.107315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Cognitive deficits following a mild traumatic brain injury (mTBI) are common and are associated with learning deficits in school-age children. Some of these deficits include problems with long-term memory, working memory, processing speeds, attention, mental fatigue, and executive function. Processing speed deficits have been associated with alterations in white matter, but the underlying mechanisms of many of the other deficits are unclear. Without a clear understanding of the underlying mechanisms we cannot effectively treat these injuries. The goal of these studies is to validate a translatable touchscreen discrimination/reversal task to identify deficits in executive function following a single or repeated mTBIs. Using a mild closed skull injury model in adolescent mice we were able to identify clear deficits in discrimination learning following repeated injuries that were not present from a single mTBI. The repeated injuries were not associated with any deficits in motor-based behavior but did induce a robust increase in astrocyte activation. These studies provide an essential platform to interrogate the underlying neurological dysfunction associated with these injuries.
Collapse
Affiliation(s)
- Natalie J Pinkowski
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Juliana Guerin
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Haikun Zhang
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Sydney T Carpentier
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Kathryn E McCurdy
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Johann M Pacheco
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Carissa J Mehos
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States; Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States; Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
23
|
Kirov SA, Fomitcheva IV, Sword J. Rapid Neuronal Ultrastructure Disruption and Recovery during Spreading Depolarization-Induced Cytotoxic Edema. Cereb Cortex 2020; 30:5517-5531. [PMID: 32483593 PMCID: PMC7566686 DOI: 10.1093/cercor/bhaa134] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 01/29/2023] Open
Abstract
Two major pathogenic events that cause acute brain damage during neurologic emergencies of stroke, head trauma, and cardiac arrest are spreading depolarizing waves and the associated brain edema that course across the cortex injuring brain cells. Virtually nothing is known about how spreading depolarization (SD)-induced cytotoxic edema evolves at the ultrastructural level immediately after insult and during recovery. In vivo 2-photon imaging followed by quantitative serial section electron microscopy was used to assess synaptic circuit integrity in the neocortex of urethane-anesthetized male and female mice during and after SD evoked by transient bilateral common carotid artery occlusion. SD triggered a rapid fragmentation of dendritic mitochondria. A large increase in the density of synapses on swollen dendritic shafts implies that some dendritic spines were overwhelmed by swelling or merely retracted. The overall synaptic density was unchanged. The postsynaptic dendritic membranes remained attached to axonal boutons, providing a structural basis for the recovery of synaptic circuits. Upon immediate reperfusion, cytotoxic edema mainly subsides as affirmed by a recovery of dendritic ultrastructure. Dendritic recuperation from swelling and reversibility of mitochondrial fragmentation suggests that neurointensive care to improve tissue perfusion should be paralleled by treatments targeting mitochondrial recovery and minimizing the occurrence of SDs.
Collapse
Affiliation(s)
- Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ioulia V Fomitcheva
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
24
|
Takizawa T, Ayata C, Chen SP. Therapeutic implications of cortical spreading depression models in migraine. PROGRESS IN BRAIN RESEARCH 2020; 255:29-67. [PMID: 33008510 DOI: 10.1016/bs.pbr.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Migraine is among the most common and disabling neurological diseases in the world. Cortical spreading depression (CSD) is a wave of near-complete depolarization of neurons and glial cells that slowly propagates along the cortex creating the perception of aura. Evidence suggests that CSD can trigger migraine headache. Experimental models of CSD have been considered highly translational as they recapitulate migraine-related phenomena and have been validated for screening migraine therapeutics. Here we outline the essential components of validated experimental models of CSD and provide a comprehensive review of potential modulators and targets against CSD. We further focus on novel interventions that have been recently shown to suppress CSD susceptibility that may lead to therapeutic targets in migraine.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio Universrity School of Medicine, Tokyo, Japan
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
25
|
Oliveira-Ferreira AI, Major S, Przesdzing I, Kang EJ, Dreier JP. Spreading depolarizations in the rat endothelin-1 model of focal cerebellar ischemia. J Cereb Blood Flow Metab 2020; 40:1274-1289. [PMID: 31280632 PMCID: PMC7232780 DOI: 10.1177/0271678x19861604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Focal brain ischemia is best studied in neocortex and striatum. Both show highly vulnerable neurons and high susceptibility to spreading depolarization (SD). Therefore, it has been hypothesized that these two variables generally correlate. However, this hypothesis is contradicted by findings in cerebellar cortex, which contains highly vulnerable neurons to ischemia, the Purkinje cells, but is said to be less susceptible to SD. Here, we found in the rat cerebellar cortex that elevated K+ induced a long-lasting depolarizing event superimposed with SDs. Cerebellar SDs resembled those in neocortex, but negative direct current (DC) shifts and regional blood flow responses were usually smaller. The K+ threshold for SD was higher in cerebellum than in previous studies in neocortex. We then topically applied endothelin-1 (ET-1) to the cerebellum, which is assumed to cause SD via vasoconstriction-induced focal ischemia. Although the blood flow decrease was similar to that in previous studies in neocortex, the ET-1 threshold for SD was higher. Quantitative cell counting found that the proportion of necrotic Purkinje cells was significantly higher in ET-1-treated rats than sham controls even if ET-1 had not caused SDs. Our results suggest that ischemic death of Purkinje cells does not require the occurrence of SD.
Collapse
Affiliation(s)
- Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingo Przesdzing
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
26
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Abstract
Cortical spreading depolarizations (SD) are strongly associated with worse tissue injury and clinical outcomes in the setting of aneurysmal subarachnoid hemorrhage (SAH). Animal studies have suggested a causal relationship, and new therapies to target SDs are starting to be tested in clinical studies. A recent set of single-center randomized trials assessed the effect of the phosphodiesterase inhibitor cilostazol in patients with SAH. Cilostazol led to improved functional outcomes and SD-related metrics in treated patients through a putative mechanism of improved cerebral blood flow. Another promising therapeutic approach includes attempts to block SDs with, for example, the NMDA receptor antagonist ketamine. SDs have emerged not only as a therapeutic target but also as a potentially useful biomarker for brain injury following SAH. Additional clinical and preclinical experimental work is greatly needed to assess the generalizability of existing therapeutic trials and to better delineate the relationship between SDs, SAH, and functional outcome.
Collapse
Affiliation(s)
- Kazutaka Sugimoto
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6403, Charlestown, MA, 02129, USA
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6403, Charlestown, MA, 02129, USA.
- Division of Neurocritical Care, Department of Neurology, Boston Medical Center, Boston, MA, USA.
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia. Brain Stimul 2020; 13:881-890. [PMID: 32289721 DOI: 10.1016/j.brs.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intracellular acidosis in the ischemic penumbra can contribute to further cell death, effectively enlarging the infarct core. Restoring the acid-base balance may enhance tissue survivability after cerebral ischemia. OBJECTIVE This study investigated whether translocating protons out of penumbral neurons could mitigate tissue acidification and induce neuroprotection in a rodent model of acute cerebral ischemia. METHODS We modulated the penumbral neurons via a light-driven pump to translocate protons out (i.e., archaerhodopsin/ArchT group) or into (i.e., channelrhodopsin-2/ChR2 group) neurons after focal cerebral ischemia in rats. Intracellular pH values were imaged via neutral red (NR) fluorescence and cerebral blood flow (CBF) was monitored through laser speckle contrast imaging (LSCI). Global CBF responses to electrical stimulation of the hindlimbs were obtained 24 h and 48 h after ischemia to assess neurological function. Behavioral and histological outcomes were evaluated 48 h after ischemia. A control group without gene modification was included. RESULTS The reduction of relative pH (RpH), the amplitude of negative peak of hypoemic response (RNP) and the hemispheric lateralization index (LI) in ArchT group were significantly less than those of the ChR2 or control group. Moreover, RpH was strongly correlated with RNP (r = 0.60) and LI (r24h = 0.80, r48h = 0.59). In addition, behavioral and histological results supported a neuroprotective effect of countering neuronal acidosis in penumbra through optogenetic stimulation. CONCLUSION(S) These results indicate that countering intracellular acidosis by optogenetically translocating protons out of penumbral neurons during the acute ischemic stage could induce protection after ischemic brain injury.
Collapse
|
29
|
Kentar M, Mann M, Sahm F, Olivares-Rivera A, Sanchez-Porras R, Zerelles R, Sakowitz OW, Unterberg AW, Santos E. Detection of spreading depolarizations in a middle cerebral artery occlusion model in swine. Acta Neurochir (Wien) 2020; 162:581-592. [PMID: 31940093 DOI: 10.1007/s00701-019-04132-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The main objective of this study was to generate a hemodynamically stable swine model to detect spreading depolarizations (SDs) using electrocorticography (ECoG) and intrinsic optical signal (IOS) imaging and laser speckle flowmetry (LSF) after a 30-h middle cerebral artery (MCA) occlusion (MCAo) in German Landrace Swine. METHODS A total of 21 swine were used. The study comprised a training group (group 1, n = 7), a group that underwent bilateral craniectomy and MCAo (group 2, n = 10) and a group used for 2,3,5-triphenyltetrazolium (TTC) staining (group 3, n = 5). RESULTS In group 2, nine animals that underwent MCAo survived for 30 h, and one animal survived for 12 h. We detected MCA variants with 2 to 4 vessels. In all cases, all of the MCAs were occluded. The intensity changes exhibited by IOS and LSF after clipping were closely correlated and indicated a lower blood volume and reduced blood flow in the middle cerebral artery territory. Using IOS, we detected a mean of 2.37 ± (STD) 2.35 SDs/h. Using ECoG, we detected a mean of 0.29 ± (STD) 0.53 SDs/h. Infarctions were diagnosed using histological analysis. TTC staining in group 3 confirmed that the MCA territory was compromised and that the anterior and posterior cerebral arteries were preserved. CONCLUSIONS We confirm the reliability of performing live monitoring of cerebral infarctions using our MCAo protocol to detect SDs.
Collapse
|
30
|
Major S, Huo S, Lemale CL, Siebert E, Milakara D, Woitzik J, Gertz K, Dreier JP. Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury. GeroScience 2020; 42:57-80. [PMID: 31820363 PMCID: PMC7031471 DOI: 10.1007/s11357-019-00142-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Spreading depolarization is observed as a large negative shift of the direct current potential, swelling of neuronal somas, and dendritic beading in the brain's gray matter and represents a state of a potentially reversible mass injury. Its hallmark is the abrupt, massive ion translocation between intraneuronal and extracellular compartment that causes water uptake (= cytotoxic edema) and massive glutamate release. Dependent on the tissue's energy status, spreading depolarization can co-occur with different depression or silencing patterns of spontaneous activity. In adequately supplied tissue, spreading depolarization induces spreading depression of activity. In severely ischemic tissue, nonspreading depression of activity precedes spreading depolarization. The depression pattern determines the neurological deficit which is either spreading such as in migraine aura or migraine stroke or nonspreading such as in transient ischemic attack or typical stroke. Although a clinical distinction between spreading and nonspreading focal neurological deficits is useful because they are associated with different probabilities of permanent damage, it is important to note that spreading depolarization, the neuronal injury potential, occurs in all of these conditions. Here, we first review the scientific basis of the continuum of spreading depolarizations. Second, we highlight the transition zone of the continuum from reversibility to irreversibility using clinical cases of aneurysmal subarachnoid hemorrhage and cerebral amyloid angiopathy. These illustrate how modern neuroimaging and neuromonitoring technologies increasingly bridge the gap between basic sciences and clinic. For example, we provide direct electrophysiological evidence for the first time that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura.
Collapse
Affiliation(s)
- Sebastian Major
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shufan Huo
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eberhard Siebert
- Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denny Milakara
- Solution Centre for Image Guided Local Therapies (STIMULATE), Otto-von-Guericke-University, Magdeburg, Germany
| | - Johannes Woitzik
- Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Karen Gertz
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| |
Collapse
|
31
|
Santos E, Olivares-Rivera A, Major S, Sánchez-Porras R, Uhlmann L, Kunzmann K, Zerelles R, Kentar M, Kola V, Aguilera AH, Herrera MG, Lemale CL, Woitzik J, Hartings JA, Sakowitz OW, Unterberg AW, Dreier JP. Lasting s-ketamine block of spreading depolarizations in subarachnoid hemorrhage: a retrospective cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:427. [PMID: 31888772 PMCID: PMC6937792 DOI: 10.1186/s13054-019-2711-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Objective Spreading depolarizations (SD) are characterized by breakdown of transmembrane ion gradients and excitotoxicity. Experimentally, N-methyl-d-aspartate receptor (NMDAR) antagonists block a majority of SDs. In many hospitals, the NMDAR antagonist s-ketamine and the GABAA agonist midazolam represent the current second-line combination treatment to sedate patients with devastating cerebral injuries. A pressing clinical question is whether this option should become first-line in sedation-requiring individuals in whom SDs are detected, yet the s-ketamine dose necessary to adequately inhibit SDs is unknown. Moreover, use-dependent tolerance could be a problem for SD inhibition in the clinic. Methods We performed a retrospective cohort study of 66 patients with aneurysmal subarachnoid hemorrhage (aSAH) from a prospectively collected database. Thirty-three of 66 patients received s-ketamine during electrocorticographic neuromonitoring of SDs in neurointensive care. The decision to give s-ketamine was dependent on the need for stronger sedation, so it was expected that patients receiving s-ketamine would have a worse clinical outcome. Results S-ketamine application started 4.2 ± 3.5 days after aSAH. The mean dose was 2.8 ± 1.4 mg/kg body weight (BW)/h and thus higher than the dose recommended for sedation. First, patients were divided according to whether they received s-ketamine at any time or not. No significant difference in SD counts was found between groups (negative binomial model using the SD count per patient as outcome variable, p = 0.288). This most likely resulted from the fact that 368 SDs had already occurred in the s-ketamine group before s-ketamine was given. However, in patients receiving s-ketamine, we found a significant decrease in SD incidence when s-ketamine was started (Poisson model with a random intercept for patient, coefficient − 1.83 (95% confidence intervals − 2.17; − 1.50), p < 0.001; logistic regression model, odds ratio (OR) 0.13 (0.08; 0.19), p < 0.001). Thereafter, data was further divided into low-dose (0.1–2.0 mg/kg BW/h) and high-dose (2.1–7.0 mg/kg/h) segments. High-dose s-ketamine resulted in further significant decrease in SD incidence (Poisson model, − 1.10 (− 1.71; − 0.49), p < 0.001; logistic regression model, OR 0.33 (0.17; 0.63), p < 0.001). There was little evidence of SD tolerance to long-term s-ketamine sedation through 5 days. Conclusions These results provide a foundation for a multicenter, neuromonitoring-guided, proof-of-concept trial of ketamine and midazolam as a first-line sedative regime.
Collapse
Affiliation(s)
- Edgar Santos
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Arturo Olivares-Rivera
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Renán Sánchez-Porras
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Lorenz Uhlmann
- Institute of Medical Biometry and Informatics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Kevin Kunzmann
- Institute of Medical Biometry and Informatics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Roland Zerelles
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Modar Kentar
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Adrian Hernández Aguilera
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Mildred Gutierrez Herrera
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Coline L Lemale
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jed A Hartings
- UC Gardner Neuroscience Institute, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
| | - Oliver W Sakowitz
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Neurosurgery Center Ludwigsburg-Heilbronn, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Andreas W Unterberg
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
32
|
Kondziella D, Olsen MH, Lemale CL, Dreier JP. Migraine aura, a predictor of near-death experiences in a crowdsourced study. PeerJ 2019; 7:e8202. [PMID: 31824781 PMCID: PMC6898989 DOI: 10.7717/peerj.8202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Near-death experiences (NDE) occur with imminent death and in situations of stress and danger but are poorly understood. Evidence suggests that NDE are associated with rapid eye movement (REM) sleep intrusion, a feature of narcolepsy. Previous studies further found REM abnormalities and an increased frequency of dream-enacting behavior in migraine patients, as well as an association between migraine with aura and narcolepsy. We therefore investigated if NDE are more common in people with migraine aura. Methods We recruited 1,037 laypeople from 35 countries and five continents, without any filters except for English language and age ≥18 years, via a crowdsourcing platform. Reports were validated using the Greyson NDE Scale. Results Eighty-one of 1,037 participants had NDE (7.8%; CI [6.3-9.7%]). There were no significant associations between NDE and age (p > 0.6, t-test independent samples) or gender (p > 0.9, Chi-square test). The only significant association was between NDE and migraine aura: 48 (6.1%) of 783 subjects without migraine aura and 33 (13.0%) of 254 subjects with migraine aura had NDE (p < 0.001, odds ratio (OR) = 2.29). In multiple logistic regression analysis, migraine aura remained significant after adjustment for age (p < 0.001, OR = 2.31), gender (p < 0.001, OR = 2.33), or both (p < 0.001, OR = 2.33). Conclusions In our sample, migraine aura was a predictor of NDE. This indirectly supports the association between NDE and REM intrusion and might have implications for the understanding of NDE, because a variant of spreading depolarization (SD), terminal SD, occurs in humans at the end of life, while a short-lasting variant of SD is considered the pathophysiological correlate of migraine aura.
Collapse
Affiliation(s)
- Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanesthesiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
33
|
Pacheco JM, Hines-Lanham A, Stratton C, Mehos CJ, McCurdy KE, Pinkowski NJ, Zhang H, Shuttleworth CW, Morton RA. Spreading Depolarizations Occur in Mild Traumatic Brain Injuries and Are Associated with Postinjury Behavior. eNeuro 2019; 6:ENEURO.0070-19.2019. [PMID: 31748237 PMCID: PMC6893232 DOI: 10.1523/eneuro.0070-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer mild traumatic brain injuries (mTBIs) every year, and there is growing evidence that repeated injuries can result in long-term pathology. The acute symptoms of these injuries may or may not include the loss of consciousness but do include disorientation, confusion, and/or the inability to concentrate. Most of these acute symptoms spontaneously resolve within a few hours or days. However, the underlying physiological and cellular mechanisms remain unclear. Spreading depolarizations (SDs) are known to occur in rodents and humans following moderate and severe TBIs, and SDs have long been hypothesized to occur in more mild injuries. Using a closed skull impact model, we investigated the presence of SDs immediately following a mTBI. Animals remained motionless for multiple minutes following an impact and once recovered had fewer episodes of movement. We recorded the defining electrophysiological properties of SDs, including the large extracellular field potential shifts and suppression of high-frequency cortical activity. Impact-induced SDs were also associated with a propagating wave of reduced cerebral blood flow (CBF). In the wake of the SD, there was a prolonged period of reduced CBF that recovered in approximately 90 min. Similar to SDs in more severe injuries, the impact-induced SDs could be blocked with ketamine. Interestingly, impacts at a slower velocity did not produce the prolonged immobility and did not initiate SDs. Our data suggest that SDs play a significant role in mTBIs and SDs may contribute to the acute symptoms of mTBIs.
Collapse
Affiliation(s)
- Johann M Pacheco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Ashlyn Hines-Lanham
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Claire Stratton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Carissa J Mehos
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kathryn E McCurdy
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Natalie J Pinkowski
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Haikun Zhang
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
34
|
Carlson AP, Shuttleworth CW, Major S, Lemale CL, Dreier JP, Hartings JA. Terminal spreading depolarizations causing electrocortical silencing prior to clinical brain death: case report. J Neurosurg 2019; 131:1773-1779. [PMID: 30544340 DOI: 10.3171/2018.7.jns181478] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/16/2018] [Indexed: 11/06/2022]
Abstract
The authors report on a 57-year-old woman in whom progression to brain death occurred on day 9 after aneurysmal subarachnoid hemorrhage without evidence of significant brain edema or vasospasm. Neuromonitoring demonstrated that brain death was preceded by a series of cortical spreading depolarizations that occurred in association with progressive hypoxic episodes. The depolarizations induced final electrical silence in the cortex and ended with a terminal depolarization that persisted > 7 hours. To the authors' knowledge, this is the first report of terminal spreading depolarization in the human brain prior to clinical brain death and major cardiopulmonary failure.
Collapse
Affiliation(s)
| | | | - Sebastian Major
- 3Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 4Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 5Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Coline L Lemale
- 3Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 4Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Jens P Dreier
- 3Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 4Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 5Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- 6Bernstein Center for Computational Neuroscience Berlin
- 7Einstein Center for Neurosciences Berlin, Germany; and
| | - Jed A Hartings
- 8Department of Neurosurgery, University of Cincinnati, Ohio
| |
Collapse
|
35
|
Harriott AM, Takizawa T, Chung DY, Chen SP. Spreading depression as a preclinical model of migraine. J Headache Pain 2019; 20:45. [PMID: 31046659 PMCID: PMC6734429 DOI: 10.1186/s10194-019-1001-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of near-complete depolarization of neurons and glial cells across the cortex. SD is thought to contribute to the underlying pathophysiology of migraine aura, and possibly also an intrinsic brain activity causing migraine headache. Experimental models of SD have recapitulated multiple migraine-related phenomena and are considered highly translational. In this review, we summarize conventional and novel methods to trigger SD, with specific focus on optogenetic methods. We outline physiological triggers that might affect SD susceptibility, review a multitude of physiological, biochemical, and behavioral consequences of SD, and elaborate their relevance to migraine pathophysiology. The possibility of constructing a recurrent episodic or chronic migraine model using SD is also discussed.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tsubasa Takizawa
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - David Y Chung
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Shih-Pin Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
36
|
Dreier JP, Major S, Lemale CL, Kola V, Reiffurth C, Schoknecht K, Hecht N, Hartings JA, Woitzik J. Correlates of Spreading Depolarization, Spreading Depression, and Negative Ultraslow Potential in Epidural Versus Subdural Electrocorticography. Front Neurosci 2019; 13:373. [PMID: 31068779 PMCID: PMC6491820 DOI: 10.3389/fnins.2019.00373] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
Spreading depolarizations (SDs) are characterized by near-complete breakdown of the transmembrane ion gradients, neuronal oedema and activity loss (=depression). The SD extreme in ischemic tissue, termed ‘terminal SD,’ shows prolonged depolarization, in addition to a slow baseline variation called ‘negative ultraslow potential’ (NUP). The NUP is the largest bioelectrical signal ever recorded from the human brain and is thought to reflect the progressive recruitment of neurons into death in the wake of SD. However, it is unclear whether the NUP is a field potential or results from contaminating sensitivities of platinum electrodes. In contrast to Ag/AgCl-based electrodes in animals, platinum/iridium electrodes are the gold standard for intracranial direct current (DC) recordings in humans. Here, we investigated the full continuum including short-lasting SDs under normoxia, long-lasting SDs under systemic hypoxia, and terminal SD under severe global ischemia using platinum/iridium electrodes in rats to better understand their recording characteristics. Sensitivities for detecting SDs or NUPs were 100% for both electrode types. Nonetheless, the platinum/iridium-recorded NUP was 10 times smaller in rats than humans. The SD continuum was then further investigated by comparing subdural platinum/iridium and epidural titanium peg electrodes in patients. In seven patients with either aneurysmal subarachnoid hemorrhage or malignant hemispheric stroke, two epidural peg electrodes were placed 10 mm from a subdural strip. We found that 31/67 SDs (46%) on the subdural strip were also detected epidurally. SDs that had longer negative DC shifts and spread more widely across the subdural strip were more likely to be observed in epidural recordings. One patient displayed an SD-initiated NUP while undergoing brain death despite continued circulatory function. The NUP’s amplitude was -150 mV subdurally and -67 mV epidurally. This suggests that the human NUP is a bioelectrical field potential rather than an artifact of electrode sensitivity to other factors, since the dura separates the epidural from the subdural compartment and the epidural microenvironment was unlikely changed, given that ventilation, arterial pressure and peripheral oxygen saturation remained constant during the NUP. Our data provide further evidence for the clinical value of invasive electrocorticographic monitoring, highlighting important possibilities as well as limitations of less invasive recording techniques.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nils Hecht
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- UC Gardner Neuroscience Institute, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
37
|
Eriksen N, Rostrup E, Fabricius M, Scheel M, Major S, Winkler MKL, Bohner G, Santos E, Sakowitz OW, Kola V, Reiffurth C, Hartings JA, Vajkoczy P, Woitzik J, Martus P, Lauritzen M, Pakkenberg B, Dreier JP. Early focal brain injury after subarachnoid hemorrhage correlates with spreading depolarizations. Neurology 2018; 92:e326-e341. [PMID: 30593517 DOI: 10.1212/wnl.0000000000006814] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/11/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To investigate whether spreading depolarization (SD)-related variables at 2 different time windows (days 1-4 and 5-8) after aneurysmal subarachnoid hemorrhage (aSAH) correlate with the stereologically determined volume of early focal brain injury on the preinterventional CT scan. METHODS In this observational multicenter study of 54 patients, volumes of unaffected brain tissue, ventricles, cerebellum, aSAH, intracerebral hemorrhage, and focal parenchymal hypodensity were stereologically estimated. Patients were electrocorticographically monitored using subdural electrodes for 81.8 hours (median) (interquartile range: 70.6-90.5) during days 1-4 (n = 54) and for 75.9 (59.5-88.7) hours during days 5-8 (n = 51). Peak total SD-induced depression duration of a recording day (PTDDD) and peak numbers of (1) SDs, (2) isoelectric SDs, and (3) spreading depressions of a recording day were determined following the recommendations of the Co-Operative Studies on Brain Injury Depolarizations. RESULTS Thirty-three of 37 patients with early focal brain injury (intracerebral hemorrhage and/or hypodensity) in contrast to 7 of 17 without displayed SDs during days 1-4 (sensitivity: 89% [95% confidence interval, CI: 75%-97%], specificity: 59% [CI: 33%-82%], positive predictive value: 83% [CI: 67%-93%], negative predictive value: 71% [CI: 42%-92%], Fisher exact test, p < 0.001). All 4 SD-related variables during days 1-4 significantly correlated with the volume of early focal brain injury (Spearman rank order correlations). A multiple ordinal regression analysis identified the PTDDD as the most important predictor. CONCLUSIONS Our findings suggest that early focal brain injury after aSAH is associated with early SDs and further support the notion that SDs are a biomarker of focal brain lesions.
Collapse
Affiliation(s)
- Nina Eriksen
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Egill Rostrup
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Martin Fabricius
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Michael Scheel
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Sebastian Major
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Maren K L Winkler
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Georg Bohner
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Edgar Santos
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Oliver W Sakowitz
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Vasilis Kola
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Clemens Reiffurth
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Jed A Hartings
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Peter Vajkoczy
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Johannes Woitzik
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Peter Martus
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Martin Lauritzen
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Bente Pakkenberg
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany
| | - Jens P Dreier
- From the Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital (N.E., B.P.), University of Copenhagen; Departments of Clinical Physiology and Nuclear Medicine (E.R.) and Clinical Neurophysiology (M.F., M.L.), Rigshospitalet, University of Copenhagen, Denmark; Department of Neuroradiology (M.S., G.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Stroke Research Berlin (S.M., M.K.L.W., V.K., C.R., P.V., J.W., J.P.D.) and Departments of Experimental Neurology (S.M., C.R., J.P.D.), Neurology (S.M., J.P.D.), and Neurosurgery (P.V., J.W.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurosurgery (E.S., O.W.S.), University Hospital Heidelberg, Ruprecht Karls University Heidelberg; Neurosurgery Center Ludwigsburg-Heilbronn (O.W.S.), RKH Klinikum Ludwigsburg, Germany; UC Gardner Neuroscience Institute (J.A.H.) and Department of Neurosurgery (J.A.H.), University of Cincinnati (UC) College of Medicine, OH; Institute for Clinical Epidemiology and Applied Biostatistics (P.M.), University of Tübingen, Germany; Department of Neuroscience and Center for Healthy Aging, Panum Institute (M.L.), and Faculty of Health and Medical Sciences (B.P.), University of Copenhagen, Denmark; Bernstein Center for Computational Neuroscience Berlin (J.P.D.), Berlin; and Einstein Center for Neurosciences Berlin (J.P.D.), Germany.
| |
Collapse
|
38
|
Lückl J, Lemale CL, Kola V, Horst V, Khojasteh U, Oliveira-Ferreira AI, Major S, Winkler MKL, Kang EJ, Schoknecht K, Martus P, Hartings JA, Woitzik J, Dreier JP. The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain 2018; 141:1734-1752. [PMID: 29668855 PMCID: PMC5972557 DOI: 10.1093/brain/awy102] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/20/2018] [Accepted: 02/17/2018] [Indexed: 12/19/2022] Open
Abstract
Spreading depolarizations are characterized by abrupt, near-complete breakdown of the transmembrane ion gradients, neuronal oedema, mitochondrial depolarization, glutamate excitotoxicity and activity loss (depression). Spreading depolarization induces either transient hyperperfusion in normal tissue; or hypoperfusion (inverse coupling = spreading ischaemia) in tissue at risk for progressive injury. The concept of the spreading depolarization continuum is critical since many spreading depolarizations have intermediate characteristics, as opposed to the two extremes of spreading depolarization in either severely ischaemic or normal tissue. In animals, the spreading depolarization extreme in ischaemic tissue is characterized by prolonged depolarization durations, in addition to a slow baseline variation termed the negative ultraslow potential. The negative ultraslow potential is initiated by spreading depolarization and similar to the negative direct current (DC) shift of prolonged spreading depolarization, but specifically refers to a negative potential component during progressive recruitment of neurons into cell death in the wake of spreading depolarization. We here first quantified the spreading depolarization-initiated negative ultraslow potential in the electrocorticographic DC range and the activity depression in the alternate current range after middle cerebral artery occlusion in rats. Relevance of these variables to the injury was supported by significant correlations with the cortical infarct volume and neurological outcome after 72 h of survival. We then identified negative ultraslow potential-containing clusters of spreading depolarizations in 11 patients with aneurysmal subarachnoid haemorrhage. The human platinum/iridium-recorded negative ultraslow potential showed a tent-like shape. Its amplitude of 45.0 (39.0, 69.4) mV [median (first, third quartile)] was 6.6 times larger and its duration of 3.7 (3.3, 5.3) h was 34.9 times longer than the negative DC shift of spreading depolarizations in less compromised tissue. Using Generalized Estimating Equations applied to a logistic regression model, we found that negative ultraslow potential displaying electrodes were significantly more likely to overlie a developing ischaemic lesion (90.0%, 27/30) than those not displaying a negative ultraslow potential (0.0%, 0/20) (P = 0.004). Based on serial neuroimages, the lesions under the electrodes developed within a time window of 72 (56, 134) h. The negative ultraslow potential occurred in this time window in 9/10 patients. It was often preceded by a spreading depolarization cluster with increasingly persistent spreading depressions and progressively prolonged DC shifts and spreading ischaemias. During the negative ultraslow potential, spreading ischaemia lasted for 40.0 (28.0, 76.5) min, cerebral blood flow fell from 57 (53, 65) % to 26 (16, 42) % (n = 4) and tissue partial pressure of oxygen from 12.5 (9.2, 15.2) to 3.3 (2.4, 7.4) mmHg (n = 5). Our data suggest that the negative ultraslow potential is the electrophysiological correlate of infarction in human cerebral cortex and a neuromonitoring-detected medical emergency.awy102media15775596049001.
Collapse
Affiliation(s)
- Janos Lückl
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uldus Khojasteh
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maren K L Winkler
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Jed A Hartings
- UC Gardner Neuroscience Institute, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
| | - Johannes Woitzik
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Spreading depolarizations are unique in being discrete pathologic entities that are well characterized experimentally and also occur commonly in patients with substantial acute brain injury. Here, we review essential concepts in depolarization monitoring, highlighting its clinical significance, interpretation, and future potential. RECENT FINDINGS Cortical lesion development in diverse animal models is mediated by tissue waves of mass spreading depolarization that cause the toxic loss of ion homeostasis and limit energy substrate supply through associated vasoconstriction. The signatures of such deterioration are observed in electrocorticographic recordings from perilesional cortex of patients with acute stroke or brain trauma. Experimental work suggests that depolarizations are triggered by energy supply-demand mismatch in focal hotspots of the injury penumbra, and depolarizations are usually observed clinically when other monitoring variables are within recommended ranges. These results suggest that depolarizations are a sensitive measure of relative ischemia and ongoing secondary injury, and may serve as a clinical guide for personalized, mechanistically targeted therapy. Both existing and future candidate therapies offer hope to limit depolarization recurrence. SUMMARY Electrocorticographic monitoring of spreading depolarizations in patients with acute brain injury provides a sensitive measure of relative energy shortage in focal, vulnerable brains regions and indicates ongoing secondary damage. Depolarization monitoring holds potential for targeted clinical trial design and implementation of precision medicine approaches to acute brain injury therapy.
Collapse
|
40
|
Dreier JP, Major S, Foreman B, Winkler MKL, Kang EJ, Milakara D, Lemale CL, DiNapoli V, Hinzman JM, Woitzik J, Andaluz N, Carlson A, Hartings JA. Terminal spreading depolarization and electrical silence in death of human cerebral cortex. Ann Neurol 2018; 83:295-310. [PMID: 29331091 PMCID: PMC5901399 DOI: 10.1002/ana.25147] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Restoring the circulation is the primary goal in emergency treatment of cerebral ischemia. However, better understanding of how the brain responds to energy depletion could help predict the time available for resuscitation until irreversible damage and advance development of interventions that prolong this span. Experimentally, injury to central neurons begins only with anoxic depolarization. This potentially reversible, spreading wave typically starts 2 to 5 minutes after the onset of severe ischemia, marking the onset of a toxic intraneuronal change that eventually results in irreversible injury. METHODS To investigate this in the human brain, we performed recordings with either subdural electrode strips (n = 4) or intraparenchymal electrode arrays (n = 5) in patients with devastating brain injury that resulted in activation of a Do Not Resuscitate-Comfort Care order followed by terminal extubation. RESULTS Withdrawal of life-sustaining therapies produced a decline in brain tissue partial pressure of oxygen (pti O2 ) and circulatory arrest. Silencing of spontaneous electrical activity developed simultaneously across regional electrode arrays in 8 patients. This silencing, termed "nonspreading depression," developed during the steep falling phase of pti O2 (intraparenchymal sensor, n = 6) at 11 (interquartile range [IQR] = 7-14) mmHg. Terminal spreading depolarizations started to propagate between electrodes 3.9 (IQR = 2.6-6.3) minutes after onset of the final drop in perfusion and 13 to 266 seconds after nonspreading depression. In 1 patient, terminal spreading depolarization induced the initial electrocerebral silence in a spreading depression pattern; circulatory arrest developed thereafter. INTERPRETATION These results provide fundamental insight into the neurobiology of dying and have important implications for survivable cerebral ischemic insults. Ann Neurol 2018;83:295-310.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Departments of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Departments of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Brandon Foreman
- UC Gardner Neuroscience Institute.,Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Maren K L Winkler
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Denny Milakara
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Vince DiNapoli
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Mayfield Clinic, Cincinnati, OH
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Norberto Andaluz
- UC Gardner Neuroscience Institute.,Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Mayfield Clinic, Cincinnati, OH
| | - Andrew Carlson
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM
| | - Jed A Hartings
- UC Gardner Neuroscience Institute.,Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
41
|
Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology 2017; 134:189-207. [PMID: 28941738 DOI: 10.1016/j.neuropharm.2017.09.027] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
Spreading depolarization (SD) is a phenomenon of various cerebral gray matter structures that only occurs under pathological conditions. In the present paper, we summarize the evidence from several decades of research that SD and cytotoxic edema in these structures are largely overlapping terms. SD/cytotoxic edema is a toxic state that - albeit initially reversible - leads eventually to cellular death when it is persistent. Both hemorrhagic and ischemic stroke are among the most prominent causes of SD/cytotoxic edema. SD/cytotoxic edema is the principal mechanism that mediates neuronal death in these conditions. This applies to gray matter structures in both the ischemic core and the penumbra. SD/cytotoxic edema is often a single terminal event in the core whereas, in the penumbra, a cluster of repetitive prolonged SDs is typical. SD/cytotoxic edema also propagates widely into healthy surrounding tissue as short-lasting, relatively harmless events so that regional electrocorticographic monitoring affords even remote detection of ischemic zones. Ischemia cannot only cause SD/cytotoxic edema but it can also be its consequence through inverse neurovascular coupling. Under this condition, ischemia does not start simultaneously in different regions but spreads in the tissue driven by SD/cytotoxic edema-induced microvascular constriction (= spreading ischemia). Spreading ischemia prolongs SD/cytotoxic edema. Thus, it increases the likelihood for the transition from SD/cytotoxic edema into cellular death. Vasogenic edema is the other major type of cerebral edema with relevance to ischemic stroke. It results from opening of the blood-brain barrier. SD/cytotoxic edema and vasogenic edema are distinct processes with important mutual interactions. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Departments of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
42
|
Simulation of spreading depolarization trajectories in cerebral cortex: Correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage. NEUROIMAGE-CLINICAL 2017; 16:524-538. [PMID: 28948141 PMCID: PMC5602748 DOI: 10.1016/j.nicl.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/23/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022]
Abstract
In many cerebral grey matter structures including the neocortex, spreading depolarization (SD) is the principal mechanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons. Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage (aSAH) and malignant hemispheric stroke using subdural electrode strips. SD is observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. Velocity and SD susceptibility typically correlate positively in various animal models. In patients monitored in neurocritical care, the Co-Operative Studies on Brain Injury Depolarizations (COSBID) recommends several variables to quantify SD occurrence and susceptibility, although accurate measures of SD velocity have not been possible. Therefore, we developed an algorithm to estimate SD velocities based on reconstructing SD trajectories of the wave-front's curvature center from magnetic resonance imaging scans and time-of-SD-arrival-differences between subdural electrode pairs. We then correlated variables indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correlations supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase in tissue undergoing injury. An algorithm has been developed to estimate spreading depolarization (SD) velocities in neurocritical care. The algorithm is based on reconstructing SD trajectories of the wave-front's curvature center. It utilizes MRI scans and time-of-SD-arrival-differences between subdural electrode pairs. Variables indicating SD susceptibility correlated with algorithm-estimated SD velocities. The findings establish the opportunity to exploit the SD velocity as part of the multimodal assessment in neurocritical care.
Collapse
Key Words
- 3D, three dimensional
- AC, alternating current
- ADC, apparent diffusion coefficient
- COSBID, Co-Operative Studies on Brain Injury Depolarizations
- CT, computed tomography
- Cytotoxic edema
- DC, direct current
- DWI, diffusion-weighted imaging
- E, electrode
- ECoG, electrocorticography
- FLAIR, fluid-attenuated inversion recovery
- HU, Hounsfield units
- ICH, intracerebral hemorrhage
- IOS, intrinsic optical signal
- Ischemia
- MCA, middle cerebral artery
- MHS, malignant hemispheric stroke
- MPRAGE, magnetization prepared rapid gradient echo
- MRI, magnetic resonance imaging
- NO, nitric oxide
- PTDDD, peak total SD-induced depression duration of a recording day
- R_diff, radius difference
- SAH, subarachnoid hemorrhage
- SD, spreading depolarization
- SPC, slow potential change
- Spreading depression
- Stroke
- Subarachnoid hemorrhage
- TBI, traumatic brain injury
- TOAD, time-of-SD-arrival-difference
- Traumatic brain injury
- V_diff, velocity difference
- WFNS, World Federation of Neurosurgical Societies
- aSAH, aneurysmal subarachnoid hemorrhage
Collapse
|
43
|
Hartings JA, Li C, Hinzman JM, Shuttleworth CW, Ernst GL, Dreier JP, Wilson JA, Andaluz N, Foreman B, Carlson AP. Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations. J Cereb Blood Flow Metab 2017; 37:1857-1870. [PMID: 27286981 PMCID: PMC5435287 DOI: 10.1177/0271678x16653135] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spreading depolarizations cause cortical electrical potential changes over a wide spectral range that includes slow potentials approaching the direct current (or 0 Hz) level. The negative direct current shift (<0.05 Hz) is an important identifier of cortical depolarization and its duration is a measure of potential tissue injury associated with longer lasting depolarizations. To determine the feasibility of monitoring the full signal bandwidth of spreading depolarizations in patients, we performed subdural electrocorticography using platinum electrode strips and direct current-coupled amplifiers in 27 patients with acute brain injury at two neurosurgical centers. While large baseline direct current offsets developed, loss of data due to amplifier saturation was minimal and rates of baseline drift throughout recordings were generally low. Transient negative direct current shifts of spreading depolarizations were easily recognized and in 306/551 (56%) cases had stereotyped, measurable characteristics. Following a standardized training session, novice scorers achieved a high degree of accuracy and interobserver reliability in identifying depolarizations, suggesting that direct current-coupled recordings can facilitate bedside diagnosis for future trials or clinical decision-making. We conclude that intracranial monitoring of slow potentials can be achieved with platinum electrodes and that unfiltered, direct current-coupled recordings are advantageous for identifying and assessing the impact of spreading depolarizations.
Collapse
Affiliation(s)
- Jed A Hartings
- Department of Neurosurgery, University of Cincinnati (UC), Cincinnati, USA
- Neurotrauma Center at UC Neuroscience Institute, Cincinnati, USA
- Mayfield Clinic, Cincinnati, USA
- Jed A Hartings, University of Cincinnati, 231 Albert Sabin Way, ML0517, Cincinnati, OH 45267, USA.
| | - Chunyan Li
- Cushing Neuromonitoring Laboratory, Feinstein Institute for Medical Research, Manhasset, USA
- Department of Neurosurgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, USA
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati (UC), Cincinnati, USA
| | | | - Griffin L Ernst
- School of Medicine, University of New Mexico, Albuquerque, USA
| | - Jens P Dreier
- Departments of Experimental Neurology and Neurology and Center for Stroke Research, Charité University Medicine Berlin, Berlin, Germany
| | - J Adam Wilson
- Department of Neurosurgery, University of Cincinnati (UC), Cincinnati, USA
| | - Norberto Andaluz
- Department of Neurosurgery, University of Cincinnati (UC), Cincinnati, USA
- Neurotrauma Center at UC Neuroscience Institute, Cincinnati, USA
- Mayfield Clinic, Cincinnati, USA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati (UC) College of Medicine, Cincinnati, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico, Albuquerque, USA
| |
Collapse
|
44
|
Winkler MKL, Dengler N, Hecht N, Hartings JA, Kang EJ, Major S, Martus P, Vajkoczy P, Woitzik J, Dreier JP. Oxygen availability and spreading depolarizations provide complementary prognostic information in neuromonitoring of aneurysmal subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 2017; 37:1841-1856. [PMID: 27025768 PMCID: PMC5435278 DOI: 10.1177/0271678x16641424] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/27/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022]
Abstract
Multimodal neuromonitoring in neurocritical care increasingly includes electrocorticography to measure epileptic events and spreading depolarizations. Spreading depolarization causes spreading depression of activity (=isoelectricity) in electrically active tissue. If the depression is long-lasting, further spreading depolarizations occur in still isoelectric tissue where no activity can be suppressed. Such spreading depolarizations are termed isoelectric and are assumed to indicate energy compromise. However, experimental and clinical recordings suggest that long-lasting spreading depolarization-induced depression and isoelectric spreading depolarizations are often recorded outside of the actual ischemic zones, allowing the remote diagnosis of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Here, we analyzed simultaneous electrocorticography and tissue partial pressure of oxygen recording in 33 aneurysmal subarachnoid hemorrhage patients. Multiple regression showed that both peak total depression duration per recording day and mean baseline tissue partial pressure of oxygen were independent predictors of outcome. Moreover, tissue partial pressure of oxygen preceding spreading depolarization was similar and differences in tissue partial pressure of oxygen responses to spreading depolarization were only subtle between isoelectric spreading depolarizations and spreading depressions. This further supports that, similar to clustering of spreading depolarizations, long spreading depolarization-induced periods of isoelectricity are useful to detect energy compromise remotely, which is valuable because the exact location of future developing pathology is unknown at the time when the neurosurgeon implants recording devices.
Collapse
Affiliation(s)
- Maren KL Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Nora Dengler
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Eun J Kang
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
45
|
Pinczolits A, Zdunczyk A, Dengler NF, Hecht N, Kowoll CM, Dohmen C, Graf R, Winkler MK, Major S, Hartings JA, Dreier JP, Vajkoczy P, Woitzik J. Standard-sampling microdialysis and spreading depolarizations in patients with malignant hemispheric stroke. J Cereb Blood Flow Metab 2017; 37:1896-1905. [PMID: 28350195 PMCID: PMC5435299 DOI: 10.1177/0271678x17699629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spreading depolarizations (SD) occur in high frequency in patients with malignant hemispheric stroke (MHS). Experimentally, SDs cause marked increases in glutamate and lactate, whereas glucose decreases. Here, we studied extracellular brain glutamate, glucose, lactate, pyruvate and the lactate/pyruvate ratio in relationship to SDs after MHS. We inserted two microdialysis probes in peri-infarct tissue at 5 and 15 mm to the infarct in close proximity to a subdural electrode strip. During 2356.6 monitoring hours, electrocorticography (ECoG) revealed 697 SDs in 16 of 18 patients. Ninety-nine SDs in electrically active tissue (spreading depressions, SDd) were single (SDds) and 485 clustered (SDdc), whereas 10 SDs with at least one electrode in electrically inactive tissue (isoelectric SDs, SDi) were single (SDis) and 103 clustered (SDic). More SDs and a significant number of clustered SDs occurred during the first 36 h post-surgery when glutamate was significantly elevated (> 100 µM). In a grouped analysis, we observed minor glutamate elevations with more than two SDs per hour. Glucose slightly decreased during SDic at 5 mm from the infarct. Directions of SD-related metabolic changes correspond to the experimental setting but the long sampling time of standard microdialysis precludes a more adequate account of the dynamics revealed by ECoG.
Collapse
Affiliation(s)
- Alexandra Pinczolits
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Zdunczyk
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nora F Dengler
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Hecht
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christina M Kowoll
- 3 Department of Neurology, University of Cologne, Cologne, Germany.,4 Max Planck Institute for Neurological Research, Cologne, Germany
| | - Christian Dohmen
- 3 Department of Neurology, University of Cologne, Cologne, Germany.,4 Max Planck Institute for Neurological Research, Cologne, Germany
| | - Rudolf Graf
- 4 Max Planck Institute for Neurological Research, Cologne, Germany
| | - Maren Kl Winkler
- 2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,5 Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- 2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,5 Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jed A Hartings
- 6 Department of Neurosurgery, University of Cincinnati College of Medicine, Mayfield Clinic, Cincinnati, OH, USA
| | - Jens P Dreier
- 2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,5 Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Woitzik
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
46
|
Dreier JP, Fabricius M, Ayata C, Sakowitz OW, William Shuttleworth C, Dohmen C, Graf R, Vajkoczy P, Helbok R, Suzuki M, Schiefecker AJ, Major S, Winkler MKL, Kang EJ, Milakara D, Oliveira-Ferreira AI, Reiffurth C, Revankar GS, Sugimoto K, Dengler NF, Hecht N, Foreman B, Feyen B, Kondziella D, Friberg CK, Piilgaard H, Rosenthal ES, Westover MB, Maslarova A, Santos E, Hertle D, Sánchez-Porras R, Jewell SL, Balança B, Platz J, Hinzman JM, Lückl J, Schoknecht K, Schöll M, Drenckhahn C, Feuerstein D, Eriksen N, Horst V, Bretz JS, Jahnke P, Scheel M, Bohner G, Rostrup E, Pakkenberg B, Heinemann U, Claassen J, Carlson AP, Kowoll CM, Lublinsky S, Chassidim Y, Shelef I, Friedman A, Brinker G, Reiner M, Kirov SA, Andrew RD, Farkas E, Güresir E, Vatter H, Chung LS, Brennan KC, Lieutaud T, Marinesco S, Maas AIR, Sahuquillo J, Dahlem MA, Richter F, Herreras O, Boutelle MG, Okonkwo DO, Bullock MR, Witte OW, Martus P, van den Maagdenberg AMJM, Ferrari MD, Dijkhuizen RM, Shutter LA, Andaluz N, Schulte AP, MacVicar B, Watanabe T, Woitzik J, Lauritzen M, Strong AJ, Hartings JA. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group. J Cereb Blood Flow Metab 2017; 37:1595-1625. [PMID: 27317657 PMCID: PMC5435289 DOI: 10.1177/0271678x16654496] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 01/18/2023]
Abstract
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver W Sakowitz
- Department of Neurosurgery, Klinikum Ludwigsburg, Ludwigsburg, Germany
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christian Dohmen
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Rudolf Graf
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Peter Vajkoczy
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Raimund Helbok
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Alois J Schiefecker
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Maren KL Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Denny Milakara
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Gajanan S Revankar
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Kazutaka Sugimoto
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Nora F Dengler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Hecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, Neurocritical Care Division, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bart Feyen
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | | | | | - Henning Piilgaard
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - Daniel Hertle
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | | | - Sharon L Jewell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Baptiste Balança
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Johannes Platz
- Department of Neurosurgery, Goethe-University, Frankfurt, Germany
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Janos Lückl
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Schöll
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Christoph Drenckhahn
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neurological Center, Segeberger Kliniken, Bad Segeberg, Germany
| | - Delphine Feuerstein
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Nina Eriksen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Julia S Bretz
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Paul Jahnke
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Georg Bohner
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Egill Rostrup
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Uwe Heinemann
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Jan Claassen
- Neurocritical Care, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christina M Kowoll
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Svetlana Lublinsky
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoash Chassidim
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Gerrit Brinker
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Michael Reiner
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Sergei A Kirov
- Department of Neurosurgery and Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - R David Andrew
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, Canada
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Lee S Chung
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - KC Brennan
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Thomas Lieutaud
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Stephane Marinesco
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- AniRA-Neurochem Technological Platform, Lyon, France
| | - Andrew IR Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Juan Sahuquillo
- Department of Neurosurgery, Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Frank Richter
- Institute of Physiology I/Neurophysiology, Friedrich Schiller University Jena, Jena, Germany
| | - Oscar Herreras
- Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid, Spain
| | | | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - M Ross Bullock
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick M Dijkhuizen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lori A Shutter
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Critical Care Medicine and Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Norberto Andaluz
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| | - André P Schulte
- Department of Spinal Surgery, St. Franziskus Hospital Cologne, Cologne, Germany
| | - Brian MacVicar
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| |
Collapse
|
47
|
Helbok R, Schiefecker AJ, Friberg C, Beer R, Kofler M, Rhomberg P, Unterberger I, Gizewski E, Hauerberg J, Möller K, Lackner P, Broessner G, Pfausler B, Ortler M, Thome C, Schmutzhard E, Fabricius M. Spreading depolarizations in patients with spontaneous intracerebral hemorrhage: Association with perihematomal edema progression. J Cereb Blood Flow Metab 2017; 37:1871-1882. [PMID: 27207168 PMCID: PMC5435285 DOI: 10.1177/0271678x16651269] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/05/2016] [Accepted: 04/26/2016] [Indexed: 11/16/2022]
Abstract
Pathophysiologic mechanisms of secondary brain injury after intracerebral hemorrhage and in particular mechanisms of perihematomal-edema progression remain incompletely understood. Recently, the role of spreading depolarizations in secondary brain injury was established in ischemic stroke, subarachnoid hemorrhage and traumatic brain injury patients. Its role in intracerebral hemorrhage patients and in particular the association with perihematomal-edema is not known. A total of 27 comatose intracerebral hemorrhage patients in whom hematoma evacuation and subdural electrocorticography was performed were studied prospectively. Hematoma evacuation and subdural strip electrode placement was performed within the first 24 h in 18 patients (67%). Electrocorticography recordings started 3 h after surgery (IQR, 3-5 h) and lasted 157 h (median) per patient and 4876 h in all 27 patients. In 18 patients (67%), a total of 650 spreading depolarizations were observed. Spreading depolarizations were more common in the initial days with a peak incidence on day 2. Median electrocorticography depression time was longer than previously reported (14.7 min, IQR, 9-22 min). Postoperative perihematomal-edema progression (85% of patients) was significantly associated with occurrence of isolated and clustered spreading depolarizations. Monitoring of spreading depolarizations may help to better understand pathophysiologic mechanisms of secondary insults after intracerebral hemorrhage. Whether they may serve as target in the treatment of intracerebral hemorrhage deserves further research.
Collapse
Affiliation(s)
- Raimund Helbok
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | | | - Christian Friberg
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Ronny Beer
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Mario Kofler
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Paul Rhomberg
- Department of Neuroradiology, Medical University Innsbruck, Austria
| | - Iris Unterberger
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Elke Gizewski
- Department of Neuroradiology, Medical University Innsbruck, Austria
| | - John Hauerberg
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Möller
- Department of Neuroanesthesiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Lackner
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Gregor Broessner
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Bettina Pfausler
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Martin Ortler
- Department of Neurosurgery, Medical University Innsbruck, Austria
| | - Claudius Thome
- Department of Neurosurgery, Medical University Innsbruck, Austria
| | - Erich Schmutzhard
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Martin Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
48
|
Complications in Aneurysmal Subarachnoid Hemorrhage Patients With and Without Subdural Electrode Strip for Electrocorticography. J Clin Neurophysiol 2017; 33:250-9. [PMID: 27258449 DOI: 10.1097/wnp.0000000000000274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Patients with aneurysmal subarachnoid hemorrhage (aSAH) frequently develop secondary noninfectious and infectious complications with an important impact on clinical course and outcome. In this study, we report on the rate of typical extracranial and intracranial complications in 30 prospectively enrolled patients with severe aSAH who received a linear subdural recording strip for continuous electrocorticography to detect ictal epileptiform events and spreading depolarizations. METHODS The group was compared with 30 retrospectively included patients with aSAH who had not received a subdural recording strip, but were treated during the same period. The control group was matched according to an aSAH grading system, sex, and establishment of external ventricular drainage, but could not be matched according to aneurysm treatment and focal brain lesions such as initial intracerebral hemorrhages. RESULTS No evidence was found that procedures of the electrocorticography study led to clinically relevant complications. In particular, the subdural strip did not lead to local damage of brain tissue or any increased rate of meningitis/ventriculitis. The median score on the modified Rankin Scale on day 15 was the same in both groups. Minor differences between both groups are explained by the limitations in the study design. CONCLUSIONS Our study suggests that neuromonitoring with a subdural recording strip for up to 15 days can be safely performed in patients with aSAH.
Collapse
|
49
|
Ansari MZ, Kang EJ, Manole MD, Dreier JP, Humeau-Heurtier A. Monitoring microvascular perfusion variations with laser speckle contrast imaging using a view-based temporal template method. Microvasc Res 2017; 111:49-59. [PMID: 28065672 DOI: 10.1016/j.mvr.2016.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE Laser speckle contrast imaging (LSCI) continues to gain an increased interest in clinical and research studies to monitor microvascular perfusion. Due to its high spatial and temporal resolutions, LSCI may lead to a large amount of data. The analysis of such data, as well as the determination of the regions where the perfusion varies, can become a lengthy and tedious task. We propose here to analyze if a view-based temporal template method, the motion history image (MHI) algorithm, may be of use in detecting the perfusion variations locations. METHODS LSCI data recorded during three different kinds of perfusion variations are considered: (i) cerebral blood flow during spreading depolarization (SD) in a mouse; (ii) cerebral blood flow during SD in a rat; (iii) cerebral blood flow during cardiac arrest in a rat. Each of these recordings was processed with MHI. RESULTS We show that, for the three pathophysiological situations, MHI identifies the area in which perfusion evolves with time. The results are more easily obtained compared with a visual inspection of all of the frames constituting the recordings. MHI also has the advantage of relying on a rather simple algorithm. CONCLUSIONS MHI can be tested in clinical and research studies to aid the user in perfusion analyses.
Collapse
Affiliation(s)
- Mohammad Zaheer Ansari
- Department of Physics, Cambridge Institute of Polytechnic, Baheya, Angara, Ranchi 835103, Jharkhand, India.
| | - Eun-Jeung Kang
- Department of Experimental Neurology, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mioara D Manole
- University of Pittsburgh, Safar Center for Resuscitation Research, USA
| | - Jens P Dreier
- Department of Experimental Neurology, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anne Humeau-Heurtier
- Univ Angers, LARIS - Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Angers, France
| |
Collapse
|
50
|
Papadimitriou KI, Wang C, Rogers ML, Gowers SAN, Leong CL, Boutelle MG, Drakakis EM. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring. Front Hum Neurosci 2016; 10:212. [PMID: 27242477 PMCID: PMC4871864 DOI: 10.3389/fnhum.2016.00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/25/2016] [Indexed: 01/18/2023] Open
Abstract
Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30-40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation.
Collapse
Affiliation(s)
- Konstantinos I. Papadimitriou
- Department of Bioengineering, Imperial College LondonLondon, UK
- Bioinspired VLSI Circuits and Systems GroupLondon, UK
| | - Chu Wang
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Michelle L. Rogers
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Sally A. N. Gowers
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Chi L. Leong
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Martyn G. Boutelle
- Department of Bioengineering, Imperial College LondonLondon, UK
- Biomedical Sensors GroupLondon, UK
| | - Emmanuel M. Drakakis
- Department of Bioengineering, Imperial College LondonLondon, UK
- Bioinspired VLSI Circuits and Systems GroupLondon, UK
| |
Collapse
|