1
|
Abstract
Among all the viral infections, acquired immunodeficiency syndrome (AIDS) is considered as one of the most morbid infections caused by the human immunodeficiency virus (HIV). The prime reason for the pathogenesis is the profound immunosuppression that leads to lethal opportunistic infections (OI), neurological disorders, unexpected malignancies and pathologies of the orofacial region. Patients with OI whose HIV status is unknown have shown a mortality rate higher than those with known HIV status. Among HIV-associated infections, orofacial lesions contribute a major proportion of the OI attributed to the plethora of micro-organisms present in the oral cavity. Apart from serious clinical manifestations, opportunistic infections also lead to significant impairment of quality of life. These lesions not only indicate the HIV infection but also among the clinical manifestations, which often occur early in the course of disease. World Health Organization has also provided policies for treatment/prevention of oral lesions, strengthening the promotion and care of oral health in HIV/AIDS patients. The present review provides comprehensive information about orofacial OI in HIV/AIDS patients and emphasis was also given to the malignancies associated with EB and HTLV virus.
Collapse
|
2
|
Bessong PO, Matume ND, Tebit DM. Potential challenges to sustained viral load suppression in the HIV treatment programme in South Africa: a narrative overview. AIDS Res Ther 2021; 18:1. [PMID: 33407664 PMCID: PMC7788882 DOI: 10.1186/s12981-020-00324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background South Africa, with one of the highest HIV prevalences in the world, introduced the universal test and treat (UTT) programme in September 2016. Barriers to sustained viral suppression may include drug resistance in the pre-treated population, non-adherence, acquired resistance; pharmacokinetics and pharmacodynamics, and concurrent use of alternative treatments. Objective The purpose of this review is to highlight potential challenges to achieving sustained viral load suppression in South Africa (SA), a major expectation of the UTT initiative. Methodology Through the PRISMA approach, published articles from South Africa on transmitted drug resistance; adherence to ARV; host genetic factors in drug pharmacokinetics and pharmacodynamics, and interactions between ARV and herbal medicine were searched and reviewed. Results The level of drug resistance in the pre-treated population in South Africa has increased over the years, although it is heterogeneous across and within Provinces. At least one study has documented a pre-treated population with moderate (> 5%) or high (> 15%) levels of drug resistance in eight of the nine Provinces. The concurrent use of ARV and medicinal herbal preparation is fairly common in SA, and may be impacting negatively on adherence to ARV. Only few studies have investigated the association between the genetically diverse South African population and pharmacokinetics and pharmacodynamics of ARVs. Conclusion The increasing levels of drug resistant viruses in the pre-treated population poses a threat to viral load suppression and the sustainability of first line regimens. Drug resistance surveillance systems to track the emergence of resistant viruses, study the burden of prior exposure to ARV and the parallel use of alternative medicines, with the goal of minimizing resistance development and virologic failure are proposed for all the Provinces of South Africa. Optimal management of the different drivers of drug resistance in the pre-treated population, non-adherence, and acquired drug resistance will be beneficial in ensuring sustained viral suppression in at least 90% of those on treatment, a key component of the 90-90-90 strategy.
Collapse
|
3
|
Hassan R, Allali I, Agamah FE, Elsheikh SSM, Thomford NE, Dandara C, Chimusa ER. Drug response in association with pharmacogenomics and pharmacomicrobiomics: towards a better personalized medicine. Brief Bioinform 2020; 22:6012864. [PMID: 33253350 DOI: 10.1093/bib/bbaa292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/19/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Researchers have long been presented with the challenge imposed by the role of genetic heterogeneity in drug response. For many years, Pharmacogenomics and pharmacomicrobiomics has been investigating the influence of an individual's genetic background to drug response and disposition. More recently, the human gut microbiome has proven to play a crucial role in the way patients respond to different therapeutic drugs and it has been shown that by understanding the composition of the human microbiome, we can improve the drug efficacy and effectively identify drug targets. However, our knowledge on the effect of host genetics on specific gut microbes related to variation in drug metabolizing enzymes, the drug remains limited and therefore limits the application of joint host-microbiome genome-wide association studies. In this paper, we provide a historical overview of the complex interactions between the host, human microbiome and drugs. While discussing applications, challenges and opportunities of these studies, we draw attention to the critical need for inclusion of diverse populations and the development of an innovative and combined pharmacogenomics and pharmacomicrobiomics approach, that may provide an important basis in personalized medicine.
Collapse
Affiliation(s)
- Radia Hassan
- Division of Human Genetics, Department of Pathology, University of Cape Town
| | - Imane Allali
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Francis E Agamah
- Division of Human Genetics, Department of Pathology, University of Cape Town
| | | | - Nicholas E Thomford
- Lecturers at the Department of Medical Biochemistry School of Medical Sciences, University of Cape Coast, Ghana
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, University of Cape Town
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town
| |
Collapse
|
4
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
5
|
Rajman I, Knapp L, Hanna I. Genetic Diversity in Drug Transporters: Impact in African Populations. Clin Transl Sci 2020; 13:848-860. [PMID: 32100958 PMCID: PMC7485953 DOI: 10.1111/cts.12769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/04/2020] [Indexed: 01/18/2023] Open
Abstract
Polymorphisms in drug transporters, like the adenosine triposphate-binding cassette (ABC) and solute carrier (SLC) superfamilies, may contribute to the observed diversity in drug response in African patients. This review aims to provide a comprehensive summary and analysis of the frequencies and distributions in African populations of ABC and SLC variants that affect drug pharmacokinetics (PK) and pharmacodynamics (PD). Of polymorphisms evaluated in African populations, SLCO1B1 rs4149056 and SLC22A6 rs1158626 were found at markedly higher frequencies than in non-African populations. SLCO1B1 rs4149056 was associated with reduction in rifampin exposure, which has implications for dosing this important anti-tuberculosis therapy. SLC22A6 rs1158626 was associated with increased affinity for antiretroviral drugs. Genetic diversity in SLC and ABC transporters in African populations has implications for conventional therapies, notably in tuberculosis and HIV. More PK and PD data in African populations are needed to assess potential for a different response to drugs compared with other global populations.
Collapse
|
6
|
Differential Impact of Nevirapine on Artemether-Lumefantrine Pharmacokinetics in Individuals Stratified by CYP2B6 c.516G>T Genotypes. Antimicrob Agents Chemother 2020; 64:AAC.00947-19. [PMID: 31871092 PMCID: PMC7038275 DOI: 10.1128/aac.00947-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
There is an increased recognition of the need to identify and quantify the impact of genetic polymorphisms on drug-drug interactions. This study investigated the pharmacogenetics of the pharmacokinetic drug-drug interaction between nevirapine and artemether-lumefantrine in HIV-positive and HIV-negative adult Nigerian subjects. There is an increased recognition of the need to identify and quantify the impact of genetic polymorphisms on drug-drug interactions. This study investigated the pharmacogenetics of the pharmacokinetic drug-drug interaction between nevirapine and artemether-lumefantrine in HIV-positive and HIV-negative adult Nigerian subjects. Thirty each of HIV-infected patients on nevirapine-based antiretroviral therapy and HIV-negative volunteers without clinical malaria, but with predetermined CYP2B6 c.516GG and TT genotypes, were administered a complete treatment dose of 3 days of artemether-lumefantrine. Rich pharmacokinetic sampling prior to and following the last dose was conducted, and the plasma concentrations of artemether/dihydroartemisinin and lumefantrine/desbutyl-lumefantrine were quantified using tandem mass spectrometry. Pharmacokinetic parameters of artemether-lumefantrine and its metabolites in HIV-infected patients on nevirapine were compared to those in the absence of nevirapine in HIV-negative volunteers. Overall, nevirapine reduced exposure to artemether and desbutyl-lumefantrine by 39 and 34%, respectively. These reductions were significantly greater in GG versus TT subjects for artemether (ratio of geometric mean [90% confidence interval]: 0.42 [0.29 to 0.61] versus 0.81 [0.51 to 1.28]) and for desbutyl-lumefantrine (0.56 [0.43 to 0.74] versus 0.75 [0.56 to 1.00]). On the contrary, it increased exposure to dihydroartemisinin and lumefantrine by 47 and 30%, respectively. These increases were significantly higher in TT versus GG subjects for dihydroartemisinin (1.67 [1.20 to 2.34] versus 1.25 [0.88 to 1.78]) and for lumefantrine (1.51 [1.20 to 1.90] versus 1.08 [0.82 to 1.42]). This study underscores the importance of incorporating pharmacogenetics into all drug-drug interaction studies with potential for genetic polymorphisms to influence drug disposition.
Collapse
|
7
|
Tshabalala S, Choudhury A, Beeton-Kempen N, Martinson N, Ramsay M, Mancama D. Targeted ultra-deep sequencing of a South African Bantu-speaking cohort to comprehensively map and characterize common and novel variants in 65 pharmacologically-related genes. Pharmacogenet Genomics 2019; 29:167-178. [PMID: 31162291 PMCID: PMC6675649 DOI: 10.1097/fpc.0000000000000380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND African populations are characterised by high genetic diversity, which provides opportunities for discovering and elucidating novel variants of clinical importance, especially those affecting therapeutic outcome. Significantly more knowledge is however needed before such populations can take full advantage of the advances in precision medicine. Coupled with the need to concisely map and better understand the pharmacological implications of genetic diversity in populations of sub-Sharan African ancestry, the aim of this study was to identify and characterize known and novel variants present within 65 important absorption, distribution, metabolism and excretion genes. PATIENTS AND METHODS Targeted ultra-deep next-generation sequencing was used to screen a cohort of 40 South African individuals of Bantu ancestry. RESULTS We identified a total of 1662 variants of which 129 are novel. Moreover, out of the 1662 variants 22 represent potential loss-of-function variants. A high level of allele frequency differentiation was observed for variants identified in this study when compared with other populations. Notably, on the basis of prior studies, many appear to be pharmacologically important in the pharmacokinetics of a broad range of drugs, including antiretrovirals, chemotherapeutic drugs, antiepileptics, antidepressants, and anticoagulants. An in-depth analysis was undertaken to interrogate the pharmacogenetic implications of this genetic diversity. CONCLUSION Despite the new insights gained from this study, the work illustrates that a more comprehensive understanding of population-specific differences is needed to facilitate the development of pharmacogenetic-based interventions for optimal drug therapy in patients of African ancestry.
Collapse
Affiliation(s)
- Sibongile Tshabalala
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences
- CSIR Biosciences Unit, Pretoria, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences
| | | | - Neil Martinson
- Perinatal HIV Research Unit, Baragwanath Hospital and Faculty of Health Sciences
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences
| | | |
Collapse
|
8
|
Mu Y, Kodidela S, Wang Y, Kumar S, Cory TJ. The dawn of precision medicine in HIV: state of the art of pharmacotherapy. Expert Opin Pharmacother 2018; 19:1581-1595. [PMID: 30234392 DOI: 10.1080/14656566.2018.1515916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Combination antiretroviral therapy (ART) reduces viral load to under the limit of detection, successfully decreasing HIV-related morbidity and mortality. Due to viral mutations, complex drug combinations and different patient response, there is an increasing demand for individualized treatment options for patients. AREAS COVERED This review first summarizes the pharmacokinetic and pharmacodynamic profile of clinical first-line drugs, which serves as guidance for antiretroviral precision medicine. Factors which have influential effects on drug efficacy and thus precision medicine are discussed: patients' pharmacogenetic information, virus mutations, comorbidities, and immune recovery. Furthermore, strategies to improve the application of precision medicine are discussed. EXPERT OPINION Precision medicine for ART requires comprehensive information on the drug, virus, and clinical data from the patients. The clinically available genetic tests are a good starting point. To better apply precision medicine, deeper knowledge of drug concentrations, HIV reservoirs, and efficacy associated genes, such as polymorphisms of drug transporters and metabolizing enzymes, are required. With advanced computer-based prediction systems which integrate more comprehensive information on pharmacokinetics, pharmacodynamics, pharmacogenomics, and the clinically relevant information of the patients, precision medicine will lead to better treatment choices and improved disease outcomes.
Collapse
Affiliation(s)
- Ying Mu
- a Department of Clinical Pharmacy and Translational Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| | - Sunitha Kodidela
- b Department of Pharmaceutical Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| | - Yujie Wang
- b Department of Pharmaceutical Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| | - Santosh Kumar
- b Department of Pharmaceutical Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| | - Theodore J Cory
- a Department of Clinical Pharmacy and Translational Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| |
Collapse
|
9
|
Hassani Idrissi H, El Khorb N, Akoudad A, Habbal R, Nadifi S. Association of CYP2B6 ( G15631T ) polymorphism with Clopidogrel resistance and genetic predisposition to Acute Coronary Syndromes (ACSs) in Morocco. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Frimpong P, Amponsah EK, Abebrese J, Kim SM. Oral manifestations and their correlation to baseline CD4 count of HIV/AIDS patients in Ghana. J Korean Assoc Oral Maxillofac Surg 2017; 43:29-36. [PMID: 28280707 PMCID: PMC5342969 DOI: 10.5125/jkaoms.2017.43.1.29] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022] Open
Abstract
Objectives Acquired immunodeficiency syndrome (AIDS) is a disease of the human immune system caused by the human immunodeficiency virus (HIV). People with AIDS are much more vulnerable to infections, including opportunistic infections and tumors, than people with a healthy immune system. The objective of this study was to correlate oral lesions associated with HIV/AIDS and immunosuppression levels by measuring clusters of differentiation 4 (CD4) cell counts among patients living in the middle western regions of Ghana. Materials and Methods A total of 120 patients who visited the HIV clinic at the Komfo Anokye Teaching Hospital and the Regional Hospital Sunyani of Ghana were consecutively enrolled in this prospective and cross-sectional study. Referred patients' baseline CD4 counts were obtained from medical records and each patient received an initial physician assessment. Intraoral diagnoses were based on the classification and diagnostic criteria of the EEC Clearinghouse, 1993. After the initial assessment, extra- and intraoral tissues from each enrolled patient were examined. Data analyses were carried out using simple proportions, frequencies and chi-square tests of significance. Results Our study included 120 patients, and was comprised of 42 (35.0%) males and 78 (65.0%) females, ranging in age from 21 to 67 years with sex-specific mean ages of 39.31 years (males) and 39.28 years (females). Patient CD4 count values ranged from 3 to 985 cells/mL with a mean baseline CD4 count of 291.29 cells/mL for males and 325.92 cells/mL for females. The mean baseline CD4 count for the entire sample was 313.80 cells/mL. Of the 120 patients we examined, 99 (82.5%) were observed to have at least one HIV-associated intraoral lesion while 21 (17.5%) had no intraoral lesions. Oral candidiasis, periodontitis, melanotic hyperpigmentation, gingivitis and xerostomia were the most common oral lesions. Conclusion From a total of nine oral lesions, six lesions that included oral candidiasis, periodontitis, melanotic hyperpigmentation, gingivitis, xerostomia and oral hairy leukoplakia were significantly correlated with declining CD4 counts.
Collapse
Affiliation(s)
- Paul Frimpong
- Oral and Maxillofacial Microvascular Reconstruction LAB, Brong Ahafo Regional Hospital, Sunyani, Ghana
| | - Emmanuel Kofi Amponsah
- Oral and Maxillofacial Microvascular Reconstruction LAB, Brong Ahafo Regional Hospital, Sunyani, Ghana
| | - Jacob Abebrese
- Department of Ear, Nose and Throat, Brong Ahafo Regional Hospital, Sunyani, Ghana
| | - Soung Min Kim
- Oral and Maxillofacial Microvascular Reconstruction LAB, Brong Ahafo Regional Hospital, Sunyani, Ghana.; Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Queiroz MAF, Laurentino RV, da Silva Graça Amoras E, Araújo MSMD, Gomes STM, Lima SS, Vallinoto ACR, de Oliveira Guimarães Ishak M, Ishak R, Machado LFA. The CYP2B6 G516T polymorphism influences CD4 + T-cell counts in HIV-positive patients receiving antiretroviral therapy in an ethnically diverse region of the Amazon. Int J Infect Dis 2016; 55:4-10. [PMID: 27940179 DOI: 10.1016/j.ijid.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Cytochrome P450 (CYP) enzyme polymorphisms seem to significantly influence the variability of the responses to certain antiretroviral drugs and their toxicity levels. The objective of this study was to evaluate the influence of the CYP2B6 G516T polymorphism on hepatic, renal, immunological, and viral marker changes in HIV-1-positive patients receiving treatment in an ethnically diverse region of the Amazon. METHODS CYP2B6 G516T genotyping was performed by real-time PCR (RT-PCR) in samples from 185 patients. Urea, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), CD4+/CD8+ T-cell counts, and HIV-1 plasma viral load were measured. RESULTS The polymorphic CYP2B6 G516T allele frequency was 0.36, which is different from the frequencies in other ethnic groups. The polymorphic genotype was associated with changes in the urea and ALT levels, although the median values were within the normal range. The TT genotype was also associated with significantly lower CD4+ T-cell counts in patients using efavirenz. CONCLUSIONS The CYP2B6 G516T polymorphism seems to affect the response to efavirenz treatment by reducing CD4+ T-cell counts in patients with a high degree of miscegenation who use this antiretroviral agent.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa s/no., Guamá, CEP 66.075-110, Belém, Pará, Brazil
| | - Rogério Valois Laurentino
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa s/no., Guamá, CEP 66.075-110, Belém, Pará, Brazil
| | - Ednelza da Silva Graça Amoras
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa s/no., Guamá, CEP 66.075-110, Belém, Pará, Brazil
| | | | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa s/no., Guamá, CEP 66.075-110, Belém, Pará, Brazil
| | - Sandra Souza Lima
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa s/no., Guamá, CEP 66.075-110, Belém, Pará, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa s/no., Guamá, CEP 66.075-110, Belém, Pará, Brazil
| | - Marluísa de Oliveira Guimarães Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa s/no., Guamá, CEP 66.075-110, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa s/no., Guamá, CEP 66.075-110, Belém, Pará, Brazil
| | - Luiz Fernando Almeida Machado
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa s/no., Guamá, CEP 66.075-110, Belém, Pará, Brazil.
| |
Collapse
|
12
|
Swart M, Evans J, Skelton M, Castel S, Wiesner L, Smith PJ, Dandara C. An Expanded Analysis of Pharmacogenetics Determinants of Efavirenz Response that Includes 3'-UTR Single Nucleotide Polymorphisms among Black South African HIV/AIDS Patients. Front Genet 2016; 6:356. [PMID: 26779253 PMCID: PMC4703773 DOI: 10.3389/fgene.2015.00356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/10/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction: Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor prescribed as part of first-line highly active antiretroviral therapy (HAART) in South Africa. Despite administration of fixed doses of EFV, inter-individual variability in plasma concentrations has been reported. Poor treatment outcomes such as development of adverse drug reactions or treatment failure have been linked to EFV plasma concentrations outside the therapeutic range (1–4 μg/mL) in some studies. The drug metabolizing enzyme (DME), CYP2B6, is primarily responsible for EFV metabolism with minor contributions by CYP1A2, CYP2A6, CYP3A4, CYP3A5, and UGT2B7. DME coding genes are also regulated by microRNAs through targeting the 3′-untranslated region. Expanded analysis of 30 single nucleotide polymorphisms (SNPs), including those in the 3′-UTR, was performed to identify pharmacogenetics determinants of EFV plasma concentrations in addition to CYP2B6 c.516G>T and c.983T>C SNPs. Methods: SNPs in CYP1A2, CYP2B6, UGT2B7, and NR1I2 (PXR) were selected for genotyping among 222 Bantu-speaking South African HIV-infected patients receiving EFV-containing HAART. This study is a continuation of earlier pharmacogenetics studies emphasizing the role of genetic variation in the 3′-UTR of genes which products are either pharmacokinetic or pharmacodynamic targets of EFV. Results: Despite evaluating thirty SNPs, CYP2B6 c.516G>T and c.983T>C SNPs remain the most prominent predictors of EFV plasma concentration. Conclusion: We have shown that CYP2B6 c.516G>T and c.983T>C SNPs are the most important predictors of EFV plasma concentration after taking into account all other SNPs, including genetic variation in the 3′-UTR, and variables affecting EFV metabolism.
Collapse
Affiliation(s)
- Marelize Swart
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Jonathan Evans
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Michelle Skelton
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Peter J Smith
- Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| |
Collapse
|
13
|
Russo G, Paganotti GM, Soeria-Atmadja S, Haverkamp M, Ramogola-Masire D, Vullo V, Gustafsson LL. Pharmacogenetics of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in resource-limited settings: Influence on antiretroviral therapy response and concomitant anti-tubercular, antimalarial and contraceptive treatments. INFECTION GENETICS AND EVOLUTION 2015; 37:192-207. [PMID: 26602158 DOI: 10.1016/j.meegid.2015.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/11/2023]
Abstract
The burden of human immunodeficiency virus (HIV) is mainly concentrated to resources-limited countries where the response to available antiretroviral therapy is often limited by the occurrence of toxicity or by the emergence of HIV drug resistance. Efavirenz and nevirapine are the antiretroviral drugs most prescribed in resources-limited countries as part of antiretroviral combination therapy. Their metabolism and conjugation are largely influenced by enzymatic genetic polymorphisms. The genetic variability of their metabolism could be associated to different metabolic phenotypes causing reduced patients' adherence because of toxicity or drug-drug interactions with concomitant therapies. The purpose of this review is to summarize published evidence on pharmacogenetic and pharmacokinetic aspects related to efavirenz and nevirapine, the influence of concomitant anti-tubercular, anti-malarial or contraceptive treatments, and the impact of human genetic variation and drug-drug interaction on the virologic and immunologic response to antiretroviral therapy in resources-limited countries.
Collapse
Affiliation(s)
- Gianluca Russo
- Department of Public Health and Infectious Diseases, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157 ACH, Gaborone, Botswana; Medical Education Partnership Laboratory, c/o Faculty of Medicine, University of Botswana, Pvt Bag 00713, Gaborone, Botswana.
| | - Sandra Soeria-Atmadja
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, B57, SE-141 86, Stockholm, Sweden
| | - Miriam Haverkamp
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157 ACH, Gaborone, Botswana
| | - Doreen Ramogola-Masire
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157 ACH, Gaborone, Botswana
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Lars Lennart Gustafsson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| |
Collapse
|
14
|
CYP2B6 516G>T (rs3745274) and Smoking Status Are Associated With Efavirenz Plasma Concentration in a Serbian Cohort of HIV Patients. Ther Drug Monit 2014; 36:734-8. [DOI: 10.1097/ftd.0000000000000098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Čolić A, Alessandrini M, Pepper MS. Pharmacogenetics of CYP2B6, CYP2A6 and UGT2B7 in HIV treatment in African populations: focus on efavirenz and nevirapine. Drug Metab Rev 2014; 47:111-23. [PMID: 25391641 DOI: 10.3109/03602532.2014.982864] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The CYP450 and UGT enzymes are involved in phase I and phase II metabolism of the majority of clinically prescribed drugs, including the non-nucleoside reverse transcriptase inhibitors, efavirenz and nevirapine, used in the treatment of HIV/AIDS. Variations in the activity of these enzymes due to gene polymorphisms can affect an individual's drug response or may lead to adverse drug reactions. There is an inter-ethnic distribution in the frequency of these polymorphisms, with African populations exhibiting higher genetic diversity compared to other populations. African specific alleles with clinical relevance have also emerged. Given the high prevalence of HIV/AIDS in sub-Saharan Africa, understanding the frequency of pharmacogenetically relevant alleles in populations of African origin, and their impact on efavirenz and nevirapine metabolism, is becoming increasingly critical. This review aims to investigate ethnic variation of CYP2B6, CYP2A6 and UGT2B7, and to understand the pharmacogenetic relevance when comparing frequencies in African populations to other populations worldwide.
Collapse
Affiliation(s)
- Antoinette Čolić
- Department of Biochemistry, Faculty of Natural and Agricultural SciencesSchool of Biological Science, University of Pretoria , Pretoria , South Africa and
| | | | | |
Collapse
|
16
|
Marwa KJ, Schmidt T, Sjögren M, Minzi OMS, Kamugisha E, Swedberg G. Cytochrome P450 single nucleotide polymorphisms in an indigenous Tanzanian population: a concern about the metabolism of artemisinin-based combinations. Malar J 2014; 13:420. [PMID: 25363545 PMCID: PMC4228099 DOI: 10.1186/1475-2875-13-420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/25/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Artemisinin-based combinations currently recommended for treatment of uncomplicated Plasmodium falciparum malaria in many countries of sub-Saharan Africa are substrates of CYP enzymes. The cytochrome enzyme system is responsible for metabolism of about 80-90% of clinically used drugs. It is, therefore, important to obtain the pharmacogenetics of the population in the region with respect to these combinations and thereby enable practitioners to predict treatment outcomes. The aim of this study was to detect and determine allelic frequencies of CYP2C8*2, CYP2C8*3, CYP3A4*1B, CYP3A5*3 and CYP2B6*6 variant alleles in a Tanzanian indigenous population. METHODS Genomic DNA extraction from blood obtained from 256 participants who escorted patients at Karume Health Centre in Mwanza Tanzania, was carried out using the Gene JET™ Genomic DNA purification kit (Thermo Scientific). Genotyping for the cytochrome P450 variant alleles was performed using predesigned primers. Amplification was done by PCR while differentiation between alleles was done by restriction fragment length polymorphism (PCR-RFLP) (for CYP2C8*2, CYP2C8*3) and sequencing (for CYP2B6*6, CYP3A5*3 and CYP3A4*1B). RESULTS CYP2C8*2, CYP2C8*3, CYP3A5*3, CYP3A4*1B and CYP2B6*6 variant allelic frequencies were found to be 19,10,16,78 and 36% respectively. CONCLUSION Prevalence of CYP2C8*2, CYP3A5*3, CYP3A4*1B and CYP2B6*6 mutations in a Tanzanian population/subjects are common. The impact of these point mutations on the metabolism of anti-malarial drugs, particularly artemisinin-based combinations, and their potential drug-drug interactions (DDIs) needs to be further evaluated.
Collapse
Affiliation(s)
- Karol J Marwa
- Department of Pharmacology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | | | | | | | | | | |
Collapse
|
17
|
Peraire J, Viladés C, Pacheco YM, López-Dupla M, Domingo P, Gutiérrez M, Rosado I, Leal M, Richart C, Vidal F. Evaluation of the pharmacogenetics of immune recovery in treated HIV-infected patients. Expert Opin Drug Metab Toxicol 2013; 10:81-101. [PMID: 24256435 DOI: 10.1517/17425255.2014.854330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Combination antiretroviral therapy has markedly improved the survival rate and quality of life in patients infected with HIV due to the powerful suppressor effect that current antiretroviral drugs have on the viral load. Consequently, the immune system undergoes a substantial qualitative and quantitative improvement; and this leads to an increase in the absolute CD4(+) T-lymphocyte count and the restoration of lost T-cell responses against certain opportunistic pathogens. Unfortunately, not all patients who successfully suppress plasma viremia experience sufficient CD4(+) T-cell gain and these patients, in turn, are associated with worse outcomes. Pharmacogenetic studies have been used to investigate how a patient's genetic predisposition may affect their response to antiretroviral drugs. AREAS COVERED This article reviews the investigations that have been published on the association between host genetic determinants of CD4(+) T-cell gain in treated HIV-infected patients. Studies were identified through a PubMed database search. Longitudinal studies into pharmacogenetic association were specifically selected. EXPERT OPINION While the possibility of genetic predisposition to HIV therapeutics has potential, most studies provide inconsistent data. Inconsistency is often due to partial genetic evaluation, different categorization of poor immune recovery or due to small numbers of patients evaluated. Currently, studies still belong to the research laboratory stage and more studies are required to improve our understanding.
Collapse
Affiliation(s)
- Joaquim Peraire
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili , Tarragona , Spain +0034977295833 ; +0034977295833 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bellusci CP, Rocco C, Aulicino P, Mecikovsky D, Curras V, Hegoburu S, Bramuglia GF, Bologna R, Sen L, Mangano A. Influence of MDR1 C1236T polymorphism on lopinavir plasma concentration and virological response in HIV-1-infected children. Gene 2013; 522:96-101. [DOI: 10.1016/j.gene.2013.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/07/2013] [Indexed: 01/11/2023]
|
19
|
Alessandrini M, Asfaha S, Dodgen TM, Warnich L, Pepper MS. Cytochrome P450 pharmacogenetics in African populations. Drug Metab Rev 2013; 45:253-75. [PMID: 23590174 DOI: 10.3109/03602532.2013.783062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Cytochrome P450 (CYP450) family of enzymes is involved in the oxidative metabolism of many therapeutic drugs, carcinogens and various endogenous substrates. These enzymes are highly polymorphic at an inter-individual and inter-ethnic level. Polymorphisms or genetic variations account for up to 30% of inter-individual differences seen in a variety of drug responses. The frequencies of the different metabolizer categories (slow, intermediate, extensive and ultra-rapid), the distribution of genetic variants, genotype-phenotype correlations and the clinical importance of the CYP450 enzymes have been extensively documented in Caucasian and Oriental populations. Limited data exists for African populations, despite the fact that this knowledge is critically important for these populations who experience a heavy burden of communicable and non-communicable diseases. In addition, the costs incurred through adverse drug reactions and non-responsiveness to therapy could be reduced through the wide-scale application of pharmacogenetics. This review provides an overview and investigation of CYP450 genotypic and phenotypic reports published from 1980 to present in African populations. Our findings confirm the high degree of variability that is expected when comparing individuals of African origin to other ethnic groups and also highlight the distribution of clinically relevant CYP450 alleles amongst the various African populations. The notable discordance in genotypic and phenotypic data amongst African populations exemplifies the need for in-depth and well-orchestrated molecular and pharmacological investigations of these populations in the future, for which whole genome sequencing and association studies will be critical.
Collapse
Affiliation(s)
- Marco Alessandrini
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
20
|
Dandara C, Lombard Z, Du Plooy I, McLellan T, Norris SA, Ramsay M. Genetic variants in CYP (-1A2, -2C9, -2C19, -3A4 and -3A5), VKORC1 and ABCB1 genes in a black South African population: a window into diversity. Pharmacogenomics 2012; 12:1663-70. [PMID: 22118051 DOI: 10.2217/pgs.11.106] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM The frequencies of variants of pharmacogenetic importance differ across populations. African populations exhibit the greatest genetic heterogeneity, cautioning against extrapolating results among African groups. The aim of this study was to genotype pharmacogenetically relevant variants in black South Africans, to expand the limited data set available for indigenous African populations. SUBJECTS & METHODS A total of 14 SNPs associated with seven genes known to influence drug metabolism or transport (CYP1A2, CYP2C19, CYP2C9, CYP3A4, CYP3A5, VKORC1 and ABCB1) were investigated in a South African black (SAB) population (n = 993) and allele frequencies were compared with populations of African, Asian and European origin. RESULTS The majority of SNPs in the SAB demonstrated significant allele frequency differences when compared with both Europeans and Asians. There was greater similarity between the SAB and the Luhya (Kenya) and the Yoruba (Nigeria), than with Maasai (Kenya) individuals. The CYP2C9 SNP (rs1799853) was not polymorphic in the SAB and two VKORC1 SNPs (rs17708472 and rs9934438) had low variant allele frequencies, limiting their relevance to warfarin dose in this population. Population differences are emphasized by the significant differences in ABCB1 and the CYP3A gene family allele frequencies, with implications for drug metabolism and transport. CONCLUSION This study highlights the importance of investigating and documenting genetic variation at loci of pharmacogenetic relevance among different populations since this information could be used to inform drug efficacy, safety and recommended dosage.
Collapse
Affiliation(s)
- Collet Dandara
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
21
|
Reed K, Parissenti AM. The effect of ABCB1 genetic variants on chemotherapy response in HIV and cancer treatment. Pharmacogenomics 2012; 12:1465-83. [PMID: 22008050 DOI: 10.2217/pgs.11.84] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite their clearly distinct pathophysiologies, HIV and cancer are diseases whose response to chemotherapy treatment varies substantially amongst patients, in particular for those with prior drug exposure. This has been attributed, in part, to elevated expression of the ABCB1 drug transporter in some patients, which results in reduced drug accumulation in target tissues. Many mechanisms have been identified for this elevated expression of ABCB1, including variations in the sequence of the gene coding for the transporter (ABCB1). Over 50 SNPs within ABCB1 have been identified. Associations have been made between the presence of specific ABCB1 SNPs/haplotypes and both ABCB1 expression and the efficacy or toxicity of certain chemotherapy regimens. If these associations are strong and reproducibly demonstrated, then this would greatly aid in the development of individualized therapy regimes for specific cancer or HIV patients, based on their ABCB1 genotypes. This article highlights the significant recent progress made in this direction, but cautions that the utility of ABCB1 gene variants as biomarkers of chemotherapy drug response remains unclear to date.
Collapse
Affiliation(s)
- Kerry Reed
- Regional Cancer Program, Sudbury Regional Hospital, 41 Ramsey Lake Rd, Sudbury, Ontario, Canada
| | | |
Collapse
|
22
|
Warnich L, Drögemöller BI, Pepper MS, Dandara C, Wright GEB. Pharmacogenomic Research in South Africa: Lessons Learned and Future Opportunities in the Rainbow Nation. ACTA ACUST UNITED AC 2011; 9:191-207. [PMID: 22563365 PMCID: PMC3228231 DOI: 10.2174/187569211796957575] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/25/2011] [Accepted: 05/28/2011] [Indexed: 12/11/2022]
Abstract
South Africa, like many other developing countries, stands to benefit from novel diagnostics and drugs developed by pharmacogenomics guidance due to high prevalence of disease burden in the region. This includes both communicable (e.g., HIV/AIDS and tuberculosis) and non-communicable (e.g., diabetes and cardiovascular) diseases. For example, although only 0.7% of the world's population lives in South Africa, the country carries 17% of the global HIV/AIDS burden and 5% of the global tuberculosis burden. Nobel Peace Prize Laureate Archbishop Emeritus Desmond Tutu has coined the term Rainbow Nation, referring to a land of wealth in its many diverse peoples and cultures. It is now timely and necessary to reflect on how best to approach new genomics biotechnologies in a manner that carefully considers the public health needs and extant disease burden in the region. The aim of this paper is to document and review the advances in pharmacogenomics in South Africa and importantly, to evaluate the direction that future research should take. Previous research has shown that the populations in South Africa exhibit unique allele frequencies and novel genetic variation in pharmacogenetically relevant genes, often differing from other African and global populations. The high level of genetic diversity, low linkage disequilibrium and the presence of rare variants in these populations question the feasibility of the use of current commercially available genotyping platforms, and may partially account for genotype-phenotype discordance observed in past studies. However, the employment of high throughput technologies for genomic research, within the context of large clinical trials, combined with interdisciplinary studies and appropriate regulatory guidelines, should aid in acceleration of pharmacogenomic discoveries in high priority therapeutic areas in South Africa. Finally, we suggest that projects such as the H3Africa Initiative, the SAHGP and PGENI should play an integral role in the coordination of genomic research in South Africa, but also other African countries, by providing infrastructure and capital to local researchers, as well as providing aid in addressing the computational and statistical bottlenecks encountered at present.
Collapse
Affiliation(s)
- Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
23
|
Ikediobi O, Aouizerat B, Xiao Y, Gandhi M, Gebhardt S, Warnich L. Analysis of pharmacogenetic traits in two distinct South African populations. Hum Genomics 2011; 5:265-82. [PMID: 21712189 PMCID: PMC3525241 DOI: 10.1186/1479-7364-5-4-265] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/11/2023] Open
Abstract
Our knowledge of pharmacogenetic variability in diverse populations is scarce, especially in sub-Saharan Africa. To bridge this gap in knowledge, we characterised population frequencies of clinically relevant pharmacogenetic traits in two distinct South African population groups. We genotyped 211 tagging single nucleotide polymorphisms (tagSNPs) in 12 genes that influence antiretroviral drug disposition, in 176 South African individuals belonging to two distinct population groups residing in the Western Cape: the Xhosa (n = 109) and Cape Mixed Ancestry (CMA) (n = 67) groups. The minor allele frequencies (MAFs) of eight tagSNPs in six genes (those encoding the ATP binding cassette sub-family B, member 1 [ABCB1], four members of the cytochrome P450 family [CYP2A7P1, CYP2C18, CYP3A4, CYP3A5] and UDP-glucuronosyltransferase 1 [UGT1A1]) were significantly different between the Xhosa and CMA populations (Bonferroni p < 0.05). Twenty-seven haplotypes were inferred in four genes (CYP2C18, CYP3A4, the gene encoding solute carrier family 22 member 6 [SLC22A6] and UGT1A1) between the two South African populations. Characterising the Xhosa and CMA population frequencies of variant alleles important for drug transport and metabolism can help to establish the clinical relevance of pharmacogenetic testing in these populations.
Collapse
Affiliation(s)
- Ogechi Ikediobi
- University of California, San Francisco, School of Pharmacy, Department of Clinical Pharmacy, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|