1
|
Yoshida K, Ishizuka S, Nakamura-Takahashi A, Hasegawa A, Umezawa A, Koshika K, Ichinohe T, Kasahara M. Prenatal asfotase alfa-mediated enzyme replacement therapy restores delayed calcification in a severe infantile form of hypophosphatasia model mice. Eur J Med Genet 2023; 66:104787. [PMID: 37209904 DOI: 10.1016/j.ejmg.2023.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
Hypophosphatasia (HPP) is a congenital disorder caused by mutations in the tissue-nonspecific alkaline phosphatase (TNALP) gene. The pathogenesis of HPP varies, ranging from severe cases in which there is total absence of fetal bone calcification, which leads to stillbirth, to relatively mild cases in which the effects are confined to the teeth, such as early loss of the primary teeth. In recent years, the establishment of enzyme supplementation as a treatment method has prolonged survival in patients; however, this approach does not provide sufficient improvement for failed calcification. Furthermore, the effects of enzyme replacement therapy on the jawbone and periodontal tissues have not yet been studied in detail. Therefore, in this study, we investigated the therapeutic effects of enzyme replacement therapy on jawbone hypocalcification in mice. Recombinant TNALP was administered to mothers before birth and newborns immediately after birth, and the effect of treatment was evaluated at 20 days of age. The treated HPP mice had improved mandible (mandibular length and bone quality) and tooth quality (root length of mandibular first molar, formation of cementum), as well as improved periodontal tissue structure (structure of periodontal ligament). Furthermore, prenatal treatment had an additional therapeutic effect on the degree of mandible and enamel calcification. These results suggest that enzyme replacement therapy is effective for the treatment of HPP, specifically in the maxillofacial region (including the teeth and mandible), and that early initiation of treatment may have additional beneficial therapeutic effects.
Collapse
Affiliation(s)
- Kaori Yoshida
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | | | | | - Akihiro Hasegawa
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan; Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Kyotaro Koshika
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
2
|
Okawa R, Nakano K. Dental manifestation and management of hypophosphatasia. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:208-216. [PMID: 35814738 PMCID: PMC9260292 DOI: 10.1016/j.jdsr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022] Open
Abstract
Hypophosphatasia is an inherited metabolic disorder characterized by defective mineralization of bones and teeth with a wide variety of manifestations, ranging from stillbirth to dental symptoms alone. Recently, the prognosis of severe hypophosphatasia patients has been greatly improved by the introduction of enzyme replacement therapy. The typical dental manifestation is early exfoliation of primary teeth due to disturbed cementum formation, so dentures are recommended to ensure that important oral functions are acquired. Some studies have shown that enzyme replacement therapy improves dental mineralization, resulting in the stabilization of periodontal tissues and better growth of tooth roots. A nationwide Japanese survey revealed the common genetic and dental manifestations of patients with mild hypophosphatasia, which markedly differ from those of the severe forms. There may be many undiagnosed mild patients, so dentists should contribute to the early diagnosis by screening possible cases based on the typical finding of early exfoliation of primary teeth. Early diagnosis is important for patients to receive early intervention in both medical and dental fields. The establishment of fundamental dental therapy to solve the dental problems is still underway and is eagerly anticipated.
Collapse
|
3
|
Two children with hypophosphatasia with a heterozygous c.1559delT variant in the ALPL gene, the most common variant in Japanese populations. Bone Rep 2022; 17:101626. [PMID: 36217348 PMCID: PMC9547180 DOI: 10.1016/j.bonr.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
Hypophosphatasia (HPP), a genetic disorder characterized by decreased tissue-nonspecific alkaline phosphatase (TNSALP) activity, is caused by loss-of-function mutations in the ALPL gene, which encodes TNSALP. The most frequent pathogenic variant in Japanese patients with HPP is a frameshift mutation in the ALPL gene, c.1559delT, and its carrier frequency is reported to be one in 480 in the Japanese population. We report the cases of two Japanese children with HPP who had a heterozygous c.1559delT variant in the ALPL gene. One case (involving a neonate) exhibited respiratory insufficiency associated with vitamin B6 dependent convulsions, significant defective mineralization similar to the severe form of HPP, and extremely low ALP activity. Enzyme replacement therapy (ERT) using asfotase alfa promptly improved her respiratory insufficiency, bone mineralization, and maintained her motor development during infancy. The second case involved a 10-year-old boy who demonstrated diffuse musculoskeletal pain and weakness that progressively disturbed mobility. Although he showed no bony lesions, the clinical symptoms and biochemical abnormalities were compatible with childhood HPP. ERT successfully relieved the severe generalized pain and significantly improved motor function. A heterozygous c.1559delT in ALPL is the most frequent variant in Japanese populations, with aprevalence of 1/480. Two Japanese children with this variant developed hypophosphatasia associated with a low serum alkaline phosphatase. One neonate showed respiratory insufficiency and defective bone mineralization similar to the severe form of HPP. The other 10-year-old boy demonstrated diffuse musculoskeletal pain and weakness that progressively disturbed mobility. Enzyme replacement therapy successfully improved pathological symptoms in both cases.
Collapse
|
4
|
Evaluation of alveolar bone hypomineralization in pediatric hypophosphatasia using orthopantomography. Sci Rep 2022; 12:1211. [PMID: 35075203 PMCID: PMC8786966 DOI: 10.1038/s41598-022-05171-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Hypophosphatasia (HPP) is a metabolic disease characterized by impaired bone mineralization and early exfoliation of primary teeth. This study was performed to develop a method for quantitatively evaluating alveolar bone hypomineralization using orthopantomographic images. Alveolar bone density was defined according to the pixel values and corrected by brightness shown by an indicator applied to the orthopantomographic device. Images of 200 healthy subjects (aged 2-15 years) were classified into five age groups. The corrected pixel values were significantly lower in the younger group than in those aged 14-15 years (2-4, 5-7, and 8-10 years versus 14-15 years: P < 0.0001, 11-13 years versus 14-15 years: P < 0.01). Orthopantomographic images of 17 patients with HPP were evaluated. The corrected pixel values of three-fourths of the patients with odonto type HPP were lower than the mean values of the healthy group. One-third of patients treated with enzyme replacement therapy showed higher corrected pixel values than the healthy group. Our results suggest that odonto type HPP without skeletal problems is occasionally accompanied by hypomineralization of alveolar bone and that alveolar bone hypomineralization in patients with severe HPP is possibly improved by enzyme replacement therapy.
Collapse
|
5
|
Hasegawa A, Nakamura-Takahashi A, Kasahara M, Saso N, Narisawa S, Millán JL, Samura O, Sago H, Okamoto A, Umezawa A. Prenatal enzyme replacement therapy for Akp2 -/- mice with lethal hypophosphatasia. Regen Ther 2021; 18:168-175. [PMID: 34277899 PMCID: PMC8267436 DOI: 10.1016/j.reth.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 11/21/2022] Open
Abstract
Hypophosphatasia (HPP) is a congenital skeletal disease. Impairment of bone mineralization and seizures are due to a deficiency of tissue-nonspecific alkaline phosphatase (TNAP). Enzyme replacement therapy (ERT) is available as a highly successful treatment for pediatric-onset HPP. However, the potential for prenatal ERT has not been fully investigated to date. In this study, we assessed outcomes and maternal safety using a combinational approach with prenatal and postnatal administration of recombinant TNAP in Akp2−/− mice as a model of infantile HPP. For the prenatal ERT, we administered subcutaneous injections of recombinant TNAP to pregnant mice from embryonic day 11.5–14.5 until delivery, and then sequentially to Akp2−/− pups from birth to day 18. For the postnatal ERT, we injected Akp2−/− pups from birth until day 18. Prenatal ERT did not cause any ectopic mineralization in heterozygous maternal mice. Both prenatal and postnatal ERT preserved growth, survival rate and improved bone calcification in Akp2−/− mice. However, the effects of additional prenatal treatment to newborn mice appeared to be minimal, and the difference between prenatal and postnatal ERT was subtle. Further improvement of the prenatal ERT schedule and long-term observation will be required. The present paper sets a standard for such future studies.
Collapse
Affiliation(s)
- Akihiro Hasegawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | - Nana Saso
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| |
Collapse
|
6
|
Nakamura-Takahashi A, Tanase T, Matsunaga S, Shintani S, Abe S, Nitahara-Kasahara Y, Watanabe A, Hirai Y, Okada T, Yamaguchi A, Kasahara M. High-Level Expression of Alkaline Phosphatase by Adeno-Associated Virus Vector Ameliorates Pathological Bone Structure in a Hypophosphatasia Mouse Model. Calcif Tissue Int 2020; 106:665-677. [PMID: 32076747 DOI: 10.1007/s00223-020-00676-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/09/2020] [Indexed: 01/01/2023]
Abstract
Hypophosphatasia (HPP) is a systemic skeletal disease caused by mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). We recently reported that survival of HPP model mice can be prolonged using an adeno-associated virus (AAV) vector expressing bone-targeted TNALP with deca-aspartate at the C terminus (TNALP-D10); however, abnormal bone structure and hypomineralization remained in the treated mice. Here, to develop a more effective and clinically applicable approach, we assessed whether transfection with TNALP-D10 expressing virus vector at a higher dose than previously used would ameliorate bone structure defects. We constructed a self-complementary AAV8 vector expressing TNALP driven by the chicken beta-actin (CBA) promoter (scAAV8-CB-TNALP-D10). The vector was injected into both quadriceps femoris muscles of newborn HPP mice at a dose of 4.5 × 1012 vector genome (v.g.)/body, resulting in 20 U/mL of serum ALP activity. The 4.5 × 1012 v.g./body-treated HPP mice grew normally and displayed improved bone structure at the knee joints in X-ray images. Micro-CT analysis showed normal trabecular bone structure and mineralization. The mechanical properties of the femur were also recovered. Histological analysis of the femurs demonstrated that ALP replacement levels were sufficient to promote normal, growth plate cartilage arrangement. These results suggest that AAV vector-mediated high-dose TNALP-D10 therapy is a promising option for improving the quality of life (QOL) of patients with the infantile form of HPP.
Collapse
Affiliation(s)
- Aki Nakamura-Takahashi
- Department of Pharmacology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan.
| | - Toshiki Tanase
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Satoru Matsunaga
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Seikou Shintani
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Shinichi Abe
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Department of Molecular Therapy, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan
| | - Atsushi Watanabe
- Division of Clinical Genetics, Kanazawa University Hospital, Ishikawa, Japan
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Akira Yamaguchi
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
7
|
Michigami T, Ohata Y, Fujiwara M, Mochizuki H, Adachi M, Kitaoka T, Kubota T, Sawai H, Namba N, Hasegawa K, Fujiwara I, Ozono K. Clinical Practice Guidelines for Hypophosphatasia. Clin Pediatr Endocrinol 2020; 29:9-24. [PMID: 32029969 PMCID: PMC6958520 DOI: 10.1297/cpe.29.9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare bone disease caused by inactivating mutations in the
ALPL gene, which encodes tissue-nonspecific alkaline phosphatase
(TNSALP). Patients with HPP have varied clinical manifestations and are classified based
on the age of onset and severity. Recently, enzyme replacement therapy using bone-targeted
recombinant alkaline phosphatase (ALP) has been developed, leading to improvement in the
prognosis of patients with life-threatening HPP. Considering these recent advances,
clinical practice guidelines have been generated to provide physicians with guides for
standard medical care for HPP and to support their clinical decisions. A task force was
convened for this purpose, and twenty-one clinical questions (CQs) were formulated,
addressing the issues of clinical manifestations and diagnosis (7 CQs) and those of
management and treatment (14 CQs). A systematic literature search was conducted using
PubMed/MEDLINE, and evidence-based recommendations were developed. The guidelines have
been modified according to the evaluations and suggestions from the Clinical Guideline
Committee of The Japanese Society for Pediatric Endocrinology (JSPE) and public comments
obtained from the members of the JSPE and a Japanese HPP patient group, and then approved
by the Board of Councils of the JSPE. We anticipate that the guidelines will be revised
regularly and updated.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Hiroshi Mochizuki
- Division of Endocrinology and Metabolism, Saitama Children's Medical Center, Saitama, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Kanagawa, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Hideaki Sawai
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Hyogo, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Tottori, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Ikuma Fujiwara
- Department of Pediatrics, Sendai City Hospital, Miyagi, Japan.,Task Force for Hypophosphatasia Guidelines
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Task Force for Hypophosphatasia Guidelines
| |
Collapse
|
8
|
Mao X, Liu S, Lin Y, Chen Z, Shao Y, Yu Q, Liu H, Lu Z, Sheng H, Lu X, Huang Y, Liu L, Zeng C. Two novel mutations in the ALPL gene of unrelated Chinese children with Hypophosphatasia: case reports and literature review. BMC Pediatr 2019; 19:456. [PMID: 31760938 PMCID: PMC6876108 DOI: 10.1186/s12887-019-1800-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Hypophosphatasia (HPP) is an inherited disorder of defective skeletal mineralization caused by mutations in the ALPL gene that encodes the Tissue Non-specific Alkaline Phosphatase (TNSALP). It is subdivided into six forms depending on the age of onset: perinatal lethal, prenatal benign, infantile, childhood, adult, and odonto HPP. Among these, infantile HPP is characterized by early onset and high frequency of lethal outcome. Few studies have reported the phenotype and genetic characteristics of HPP in Chinese children. CASE PRESENTATION Three forms of HPP were identified in four unrelated patients from four different Chinese families, including one lethal infantile (patient 1), two childhood (patient 2 and 3) and one odonto HPP (patient 4). Six variants in the ALPL gene were identified, including five missense mutations and one frameshift mutation. Of which, none were reported previously in the Chinese population, and two were novel (c.359G > C: p.G120A and c.1017dupG: p.H340AfsX3). Patient 1 carrying a novel homozygous (c.359G > C) mutation showed respiratory distress and pneumonia at first day of his life. He presented nearly negligible level of serum ALP activity, overall skeletal hypominaralization and died at 3 months old. Patient 2, 3 and 4 were compound heterozygotes with decreased serum ALP activity. Patient 2 and 3 presented premature loss of deciduous teeth, muscle weakness and bone pain, whereas patient 4 had early loss of deciduous teeth only. All four pedigrees exhibited autosomal recessive pattern of inheritance. CONCLUSIONS In this study, six mutations in the ALPL gene were found in four Chinese HPP patients, two of which were novel: c.359G > C in exon 5 and c.1017dupG in exon 10. Our results strongly indicated that the novel mutation c.359G > C might be disease-causing and associated with severe infantile form of HPP.
Collapse
Affiliation(s)
- Xiaojian Mao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China
| | - Sichi Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China
| | - Zhen Chen
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Yongxian Shao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China
| | - Qiaoli Yu
- Department of Dentistry, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Haiying Liu
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Zhikun Lu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China
| | - Huiyin Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China
| | - Xinshuo Lu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China
| | - Yonglan Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China.
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd, Guangzhou, 510623, China.
| |
Collapse
|
9
|
Okawa R, Kokomoto K, Kitaoka T, Kubota T, Watanabe A, Taketani T, Michigami T, Ozono K, Nakano K. Japanese nationwide survey of hypophosphatasia reveals prominent differences in genetic and dental findings between odonto and non-odonto types. PLoS One 2019; 14:e0222931. [PMID: 31600233 PMCID: PMC6786601 DOI: 10.1371/journal.pone.0222931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/10/2019] [Indexed: 12/03/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare and intractable metabolic bone disease caused by mutations in the ALPL gene. Here, we undertook a nationwide survey of HPP in Japan, specifically regarding the prominent genetic and dental manifestations of odonto (n = 16 cases) and other (termed “non-odonto”) (n = 36 cases) types. Mean serum alkaline phosphatase (ALP) values in odonto-type patients were significantly greater than those of non-odonto-type patients (P<0.05). Autosomal dominant and autosomal recessive inheritance patterns were detected, respectively, in 89% of odonto-type and 96% of non-odonto-type patients. The ALPL “c.1559delT” mutation, associated with extremely low ALP activity, was found in approximately 70% of cases. Regarding dental manifestations, all patients classified as odonto-type showed early exfoliation of the primary teeth significantly more frequently than patients classified as non-odonto-type (100% vs. 56%; P<0.05). Tooth hypomineralisation was detected in 42% of non-odonto-type patients, but not in any odonto-type patients (0%; P<0.05). Collectively, these results suggest that genetic and dental manifestations of patients with odonto-type and non-odonto-type HPP are significantly different, and these differences should be considered during clinical treatment of patients with HPP.
Collapse
Affiliation(s)
- Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
- * E-mail:
| | - Kazuma Kokomoto
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Watanabe
- Division of Clinical Genetics, Kanazawa University Hospital, Ishikawa, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Toshimi Michigami
- Department of Pediatric Nephrology and Metabolism, and Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
10
|
Choida V, Bubbear JS. Update on the management of hypophosphatasia. Ther Adv Musculoskelet Dis 2019; 11:1759720X19863997. [PMID: 31413732 PMCID: PMC6676257 DOI: 10.1177/1759720x19863997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 06/22/2019] [Indexed: 12/13/2022] Open
Abstract
Hypophosphatasia is a rare inherited disease caused by a loss of function mutations in the gene that codes for the tissue-nonspecific alkaline phosphatase enzyme. It is autosomally inherited and at least 388 different genetic defects have been identified. The clinical presentation is variable from a severe perinatal form, that is fatal if untreated, to adult-onset disease. This review covers the pathophysiology, diagnosis and current management option including the recently licensed enzyme replacement therapy asfotase alfa.
Collapse
Affiliation(s)
- V Choida
- Metabolic Unit, Royal National Orthopaedic Hospital, Stanmore, UK
| | - J S Bubbear
- Metabolic Unit, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| |
Collapse
|
11
|
Ishijima Y, Iizuka T, Kagami K, Masumoto S, Nakade K, Mitani Y, Niida Y, Watanabe A, Yamazaki R, Ono M, Fujiwara H. Prenatal diagnosis facilitated prompt enzyme replacement therapy for prenatal benign hypophosphatasia. J OBSTET GYNAECOL 2019; 40:132-134. [PMID: 31335231 DOI: 10.1080/01443615.2019.1606177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuka Ishijima
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sakiko Masumoto
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kyohei Nakade
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Mitani
- Department of Pediatrics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Japan
| | - Atsushi Watanabe
- Clinical Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Rena Yamazaki
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Dillon S, Staines KA, Millán JL, Farquharson C. How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond. JBMR Plus 2019; 3:e10202. [PMID: 31372594 PMCID: PMC6659447 DOI: 10.1002/jbm4.10202] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Since its characterization two decades ago, the phosphatase PHOSPHO1 has been the subject of an increasing focus of research. This work has elucidated PHOSPHO1's central role in the biomineralization of bone and other hard tissues, but has also implicated the enzyme in other biological processes in health and disease. During mineralization PHOSPHO1 liberates inorganic phosphate (Pi) to be incorporated into the mineral phase through hydrolysis of its substrates phosphocholine (PCho) and phosphoethanolamine (PEA). Localization of PHOSPHO1 within matrix vesicles allows accumulation of Pi within a protected environment where mineral crystals may nucleate and subsequently invade the organic collagenous scaffold. Here, we examine the evidence for this process, first discussing the discovery and characterization of PHOSPHO1, before considering experimental evidence for its canonical role in matrix vesicle–mediated biomineralization. We also contemplate roles for PHOSPHO1 in disorders of dysregulated mineralization such as vascular calcification, along with emerging evidence of its activity in other systems including choline synthesis and homeostasis, and energy metabolism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Scott Dillon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA USA
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| |
Collapse
|
13
|
Nakano C, Kitabatake Y, Takeyari S, Ohata Y, Kubota T, Taketani K, Kogo M, Ozono K. Genetic correction of induced pluripotent stem cells mediated by transcription activator-like effector nucleases targeting ALPL recovers enzyme activity and calcification in vitro. Mol Genet Metab 2019; 127:158-165. [PMID: 31178256 DOI: 10.1016/j.ymgme.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 01/22/2023]
Abstract
Hypophosphatasia (HPP) is an inheritable disease affecting both skeletal systems and extra-skeletal organs due to mutations of the gene ALPL, which encodes tissue-nonspecific alkaline phosphatase. Recently, an enzyme replacement therapy using asfotase alfa was developed to ameliorate the complications of HPP. However, it requires frequent injections and is expensive to maintain. As an alternative, cell and gene therapy using human induced pluripotent stem cells (iPSCs) after precise correction of the mutation is feasible due to advances in genome-editing technology. In the study, we examined the alkaline phosphatase (ALP) activity and calcification in vitro of two childhood HPP patient-derived iPSCs after the correction of the c.1559delT mutation, which is the most frequent mutation in Japanese patients with HPP, using transcription activator-like effector nucleases (TALENs). The gene correction targeting vector was designed for site-directed mutagenesis using TALEN. After selection with antibiotics, some clones with the selection cassette were obtained. Gene correction was confirmed by Sanger sequencing. The mutation was corrected in one allele of ALPL in homozygous patients and compound heterozygous patients. The correction of ALPL did not result in an increase in ALP when the selection cassette remained. Conversely, iPSCs exhibited ALP activity after the elimination of the cassette using Cre/LoxP. The quantitative analysis showed the half ALP activity in corrected iPSCs of that of control iPSCs, corresponding to heterozygous correction of the mutation. In addition, osteoblasts differentiated from the corrected iPSCs exhibited high ALP activity and some calcification in vitro. Moreover, the osteoblast-like phenotype was confirmed by increased expression of osteoblast-specific genes such as COL1A1 and osteocalcin. These results suggest that gene correction in iPSCs may be a candidate treatment for HPP patients.
Collapse
Affiliation(s)
- Chiho Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan; Unit of Dentistry, Osaka University Hospital, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken Taketani
- Department of Pediatrics, Shimane University, Osaka, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
14
|
Abstract
Hypophosphatasia (HPP) is the inborn-error-of-metabolism that features low serum alkaline phosphatase (ALP) activity (hypophosphatasemia) caused by loss-of-function mutation(s) of the gene that encodes the tissue-nonspecific isoenzyme of ALP (TNSALP). Autosomal recessive or autosomal dominant inheritance from among >300 TNSALP (ALPL) mutations largely explains HPP's remarkably broad-ranging severity. TNSALP is a cell-surface homodimeric phosphohydrolase richly expressed in the skeleton, liver, kidney, and developing teeth. In HPP, TNSALP substrates accumulate extracellularly. Among them is inorganic pyrophosphate (PPi), a potent inhibitor of mineralization. Superabundance of extracellular PPi explains the hard tissue complications of HPP that feature premature loss of deciduous teeth and often rickets or osteomalacia as well as calcific arthropathies in some affected adults. In infants with severe HPP, blocked entry of minerals into the skeleton can cause hypercalcemia, and insufficient hydrolysis of pyridoxal 5'-phosphate (PLP), the major circulating form of vitamin B6, can cause pyridoxine-dependent seizures. Elevated circulating PLP is a sensitive and specific biochemical marker for HPP. Also, the TNSALP substrate phosphoethanolamine (PEA) is usually elevated in serum and urine in HPP, though less reliably for diagnosis. Pathognomonic radiographic changes occur in pediatric HPP when the skeletal disease is severe. TNSALP mutation analysis is essential for recurrence risk assessment for HPP in future pregnancies and for prenatal diagnosis. HPP was the final rickets/osteomalacia to have a medical treatment. Now, significant successes using asfotase alfa, a mineral-targeted recombinant TNSALP, are published concerning severely affected newborns, infants, and children. Asfotase alfa was approved by regulatory agencies multinationally in 2015 typically for pediatric-onset HPP.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri, USA.
| |
Collapse
|
15
|
Kitaoka T, Tajima T, Nagasaki K, Kikuchi T, Yamamoto K, Michigami T, Okada S, Fujiwara I, Kokaji M, Mochizuki H, Ogata T, Tatebayashi K, Watanabe A, Yatsuga S, Kubota T, Ozono K. Safety and efficacy of treatment with asfotase alfa in patients with hypophosphatasia: Results from a Japanese clinical trial. Clin Endocrinol (Oxf) 2017; 87:10-19. [PMID: 28374482 DOI: 10.1111/cen.13343] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Hypophosphatasia (HPP) is a rare skeletal disease characterized by hypomineralization and low alkaline phosphatase activity. Asfotase alfa (AA) has been recently developed to treat HPP complications. This study evaluated its safety and efficacy in Japan. DESIGN Open-label, multicentre, prospective trial. Patients were enrolled in 11 hospitals from June 2014 to July 2015. PATIENTS Thirteen patients (9 females, 4 males) ages 0 days to 34 years at baseline were enrolled and treated with AA (2 mg/kg three times weekly subcutaneously in all but one patient). All had ALPL gene mutations. HPP forms were perinatal (n=6), infantile (n=5), childhood (n=1) and adult (n=1). MEASUREMENTS Safety determined from adverse events (AEs) and laboratory data was the primary outcome measure. Efficacy was assessed as a secondary outcome measure from overall survival, respiratory status, rickets severity and gross motor development. RESULTS Injection site reactions were the most frequent AEs. Serious AEs possibly related to treatment were convulsion and hypocalcaemia observed in a patient with the perinatal form. In addition, hypercalcaemia and/or hyperphosphatemia was observed in three patients with the infantile form and a low-calcium and/or low-phosphate formula was given to these patients. With respect to efficacy, all patients survived and the radiographic findings, developmental milestones and respiratory function improved. CONCLUSION Asfotase alfa therapy improved skeletal, respiratory and physical symptoms with a few serious AEs in patients with HPP. Our results add support to the safety and efficacy of AA therapy for HPP patients.
Collapse
Affiliation(s)
- Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshihiro Tajima
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toru Kikuchi
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsusuke Yamamoto
- Department of Pediatric Nephrology and Metabolism, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Ikuma Fujiwara
- Department of Pediatrics, Tohoku University School of Medicine, Miyagi, Japan
| | - Masayuki Kokaji
- Department of Pediatrics, Showa General Hospital, Tokyo, Japan
| | - Hiroshi Mochizuki
- Division of Endocrinology and Metabolism, Saitama Children's Medical Center, Saitama, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Atsushi Watanabe
- Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | - Shuichi Yatsuga
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
Whyte MP. Hypophosphatasia: Enzyme Replacement Therapy Brings New Opportunities and New Challenges. J Bone Miner Res 2017; 32:667-675. [PMID: 28084648 DOI: 10.1002/jbmr.3075] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 11/11/2022]
Abstract
Hypophosphatasia (HPP) is caused by loss-of-function mutation(s) of the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). Autosomal inheritance (dominant or recessive) from among more than 300 predominantly missense defects of TNSALP (ALPL) explains HPP's broad-ranging severity, the greatest of all skeletal diseases. In health, TNSALP is linked to cell surfaces and richly expressed in the skeleton and developing teeth. In HPP,TNSALP substrates accumulate extracellularly, including inorganic pyrophosphate (PPi), an inhibitor of mineralization. The PPi excess can cause tooth loss, rickets or osteomalacia, calcific arthropathies, and perhaps muscle weakness. Severely affected infants may seize from insufficient hydrolysis of pyridoxal 5'-phosphate (PLP), the major extracellular vitamin B6 . Now, significant successes are documented for newborns, infants, and children severely affected by HPP given asfotase alfa, a hydroxyapatite-targeted recombinant TNSALP. Since fall 2015, this biologic is approved by regulatory agencies multinationally typically for pediatric-onset HPP. Safe and effective treatment is now possible for this last rickets to have a medical therapy, but a number of challenges involving diagnosis, understanding prognosis, and providing this treatment are reviewed herein. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael P Whyte
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, and Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA
| |
Collapse
|
17
|
Abstract
Hypophosphatasia is the inborn error of metabolism characterized by low serum alkaline phosphatase activity (hypophosphatasaemia). This biochemical hallmark reflects loss-of-function mutations within the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). TNSALP is a cell-surface homodimeric phosphohydrolase that is richly expressed in the skeleton, liver, kidney and developing teeth. In hypophosphatasia, extracellular accumulation of TNSALP natural substrates includes inorganic pyrophosphate, an inhibitor of mineralization, which explains the dento-osseous and arthritic complications featuring tooth loss, rickets or osteomalacia, and calcific arthopathies. Severely affected infants sometimes also have hypercalcaemia and hyperphosphataemia due to the blocked entry of minerals into the skeleton, and pyridoxine-dependent seizures from insufficient extracellular hydrolysis of pyridoxal 5'-phosphate, the major circulating form of vitamin B6, required for neurotransmitter synthesis. Autosomal recessive or dominant inheritance from ~300 predominantly missense ALPL (also known as TNSALP) mutations largely accounts for the remarkably broad-ranging expressivity of hypophosphatasia. High serum concentrations of pyridoxal 5'-phosphate represent a sensitive and specific biochemical marker for hypophosphatasia. Also, phosphoethanolamine levels are usually elevated in serum and urine, though less reliably for diagnosis. TNSALP mutation detection is important for recurrence risk assessment and prenatal diagnosis. Diagnosing paediatric hypophosphatasia is aided by pathognomic radiographic changes when the skeletal disease is severe. Hypophosphatasia was the last type of rickets or osteomalacia to await a medical treatment. Now, significant successes for severely affected paediatric patients are recognized using asfotase alfa, a bone-targeted recombinant TNSALP.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, 4400 Clayton Avenue, Saint Louis, Missouri 63110, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| |
Collapse
|
18
|
Nahabet EH, Gatherwright J, Vockley J, Henderson N, Tomei KL, Grigorian AP, Kaminski B, Bass N, Selman WR, Lakin GE. Postnatal Pancraniosynostosis in a Patient With Infantile Hypophosphatasia. Cleft Palate Craniofac J 2015; 53:741-744. [PMID: 26171568 DOI: 10.1597/15-027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypophosphatasia is a rare metabolic bone disorder that predisposes patients to craniosynostosis. Typically, patients born with hypophosphatasia will exhibit fused cranial sutures at birth. This is the first reported case of delayed onset of pancraniosynostosis in a patient with infantile hypophosphatasia. The severity of onset and delayed presentation in this patient are of interest and should give pause to those care providers who treat and evaluate patients with hypophosphatasia.
Collapse
|
19
|
Abstract
Hypophosphatasia (HPP) is a bone metabolic disorder caused by mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL), which encodes tissue-nonspecific alkaline phosphatase (TNAP). This disease is characterized by disrupted bone and tooth mineralization, and reduced serum AP activity. Along with bone and tooth symptoms, many neurological symptoms, seizure, encephalopathy, intracranial hypertension, mental retardation, deafness, and growth hormone deficiency (GHD), are frequently found in HPP patients. Seizure occurs in severe HPP types soon after birth, and responds to pyridoxine, but is an indicator of lethal prognosis. Encephalopathy rarely presents in severe HPP types, but has severe sequelae. Intracranial hypertension complicated in mild HPP types develops after the age of 1 year and sometimes need neurosurgical intervention. Mental retardation, deafness and GHD are more frequently found in Japanese HPP patients. Mental retardation occurs in all HPP types. Deafness in perinatal lethal type is both conductive and sensorineural. GHD develops in all but perinatal lethal type and the diagnosis tends to delay. The pathogenesis of these neural features of HPP might be due to impairment of both vitamin B6 metabolism and central nervous system development by ALPL mutations.
Collapse
|
20
|
Watanabe A, Satoh S, Fujita A, Naing BT, Orimo H, Shimada T. Perinatal hypophosphatasia caused by uniparental isodisomy. Bone 2014; 60:93-7. [PMID: 24334170 DOI: 10.1016/j.bone.2013.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/30/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disorder characterized by defective bone mineralization caused by mutations in the alkaline phosphatase gene (ALPL). Clinically, the disease spans a great continuum of disease severity and six forms can be distinguished according to the age of onset. The most severe is the autosomal recessive perinatal form, a major prenatal skeletal dysplasia in Japan. The ALPL mutation c.1559delT causes perinatal HPP and occurs frequently in the Japanese. Most patients with perinatal HPP in Japan are homozygous for c.1559delT, and their parents are usually heterozygous with no evidence of consanguinity. Here we identified a fetus with perinatal HPP resulting from an unusual mechanism known as paternal uniparental isodisomy (UPD) of chromosome 1. Sequence analysis of ALPL in the patient revealed the presence of the homozygous mutation c.1559delT. We suspected UPD because the father and mother were heterozygous and wild type, respectively. Analysis of polymorphic microsatellite markers spanning chromosome 1 and whole-genome arrays revealed a uniparental inheritance from the father and excluded deletions or de novo mutations. This is the first description of perinatal HPP caused by UPD. This report also emphasizes the low recurrence risk of a non-Mendelian inheritance pattern in UPD and the value of determining parental genotypes with homozygous mutations in a patient to confirm whether the condition is caused by UPD or not, even when the mutation is detected as a hot spot, as described in the literature.
Collapse
Affiliation(s)
- Atsushi Watanabe
- Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.
| | - Shuhei Satoh
- Aomori Prefectural Central Hospital, Aomori, Japan
| | - Atsushi Fujita
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Banyar Than Naing
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Hideo Orimo
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Takashi Shimada
- Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
21
|
Taketani T, Onigata K, Kobayashi H, Mushimoto Y, Fukuda S, Yamaguchi S. Clinical and genetic aspects of hypophosphatasia in Japanese patients. Arch Dis Child 2014; 99:211-5. [PMID: 24276437 DOI: 10.1136/archdischild-2013-305037] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE We examined the clinical and genetic features of hypophosphatasia (HPP) in Japanese patients. HPP is a rare metabolic bone disorder of bone mineralisation caused by mutations in the liver/bone/kidney alkaline phosphatase (ALPL) gene, which encodes tissue-non-specific alkaline phosphatase isoenzyme. METHODS We retrospectively investigate the incidence and clinical features of 52 patients with paediatric HPP who were born between 1999 and 2010. Mutations of the ALPL gene were analysed in 31 patients. RESULTS The annual incidence of perinatal lethal HPP (PLH) was estimated to be 2-3/1 000 000 births. The most frequent clinical type was PLH followed by prenatal benign. In addition to bone symptoms, cerebral manifestations were frequently observed including convulsion, mental retardation, deafness and short stature with growth hormone deficiency. Respiratory failure was the most significant predictor of a poor prognosis for PLH. The first and second most frequent mutations in the ALPL gene were c.1559delT and c.T979C (p.F327L), respectively. The c.1559delT homozygous mutation was lethal with respiratory failure. Patients with the p.F327L compound heterozygous mutation had the different non-lethal type with short stature and a gradual improvement in ALP level and bone mineralisation. CONCLUSIONS The most frequent clinical type was the PLH type with prognosis related to respiratory failure, biochemical/radiological changes and ALPL mutations. Cerebral manifestations frequently occurred. Genotype-phenotype correlations were associated with specific outcomes in the PLH type, whereas different clinical features were associated with the same genotype in the non-lethal type.
Collapse
Affiliation(s)
- Takeshi Taketani
- Division of Blood Transfusion, Shimane University Hospital, , Shimane, Japan
| | | | | | | | | | | |
Collapse
|