1
|
Li X, Shen X, Wang Z, Jiang H, Ma Z, Yu P, Yu Z, Qian X, Liu J. Gene expression profiling in nucleus pulposus of human ruptured lumbar disc herniation. Front Pharmacol 2022; 13:892594. [PMID: 36506585 PMCID: PMC9732013 DOI: 10.3389/fphar.2022.892594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: To examine the differences in gene expression between ruptured and non-ruptured nucleus pulposus tissues of the intervertebral discs using gene chip technology. Methods: A total of 8 patients with nucleus pulposus from a lumbar disc herniation (LDH) undergoing discectomy in our hospital were selected, including 4 ruptured and 4 non-ruptured herniated nucleus pulposus cases. Total RNA was extracted from cells by using TRIzol reagent. Nucleus pulposus cDNA probes of the two groups were obtained by the single marker method and hybridized with a human gene expression profiling chip (Agilent). The fluorescence signal images were scanned by a laser, and the obtained genes were analyzed by bioinformatics. Results: There were 75 differentially expressed genes with more than 2-fold-changes, of which 56 were up-regulated and 19 were down-regulated. The differential expression of THSD7A, which was up-regulated 18 times, was the most significant, followed by CCL5, AQP3 and SDC4. Conclusion: THSD7A can be used as a characteristic differentially expressed gene in human ruptured nucleus pulposus. Moreover, CCL5, AQP3 and SDC4 may improve the chemotaxis of stem cell migration for self-healing of damaged disc tissue, increase water uptake by nucleus accumbens cells, and inhibit the inflammatory response, thus delaying the process of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Xiaochun Li
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xueqiang Shen
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhiqiang Wang
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Hong Jiang
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhijia Ma
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Pengfei Yu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhan Yu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiang Qian
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jintao Liu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China,*Correspondence: Jintao Liu,
| |
Collapse
|
2
|
Mori S, Zhou H. Implementation of personalized medicine for fracture risk assessment in osteoporosis. Geriatr Gerontol Int 2016; 16 Suppl 1:57-65. [DOI: 10.1111/ggi.12721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Seijiro Mori
- Center for the Promotion of Clinical Investigation; Tokyo Metropolitan Geriatric Hospital; Tokyo Japan
| | - Heying Zhou
- Center for the Promotion of Clinical Investigation; Tokyo Metropolitan Geriatric Hospital; Tokyo Japan
| |
Collapse
|
3
|
Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BONEKEY REPORTS 2013; 2:447. [PMID: 24501681 DOI: 10.1038/bonekey.2013.181] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/27/2013] [Indexed: 02/06/2023]
Abstract
The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, affiliated with Weill Medical College of Cornell University , New York, NY, USA ; Department of Biophysics and Systems Biology, Weill Medical College of Cornell University , New York, NY, USA
| |
Collapse
|