1
|
Rahmani Z, Banisadr A, Ghodsinezhad V, Dibaj M, Aryani O. P. Ala278Val mutation might cause a pathogenic defect in HEXB folding leading to the Sandhoff disease. Metab Brain Dis 2022; 37:2669-2675. [PMID: 36190588 DOI: 10.1007/s11011-021-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
Sandhoff disease is a rare neurodegenerative and autosomal recessive disorder, which is characterized by a defect in ganglioside metabolism. Also, it is caused by mutations in the HEXB gene for the β-subunit isoform 1 of β-N-acetyl hexosaminidase. In the present study, an Iranian 14- month -old girl with 8- month history of unsteady walking and involuntary movements was described. In this regard, biochemical testing showed some defects in the normal activity of beta-hexosaminidase protein. Following sequencing of HEXB gene, a homozygous c.833C > T mutation was identified in the patient's genome. After recognition of p.A278V, several different in silico methods were used to assess the mutant protein stability, ranging from mutation prediction methods to ligand docking. The p.A278V mutation might be disruptive because of changing the three-dimensional folding at the end of the 5th alpha helix. According to the medical prognosis, in silico and structural analyses, it was predicted to be disease cause.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Medical Genetics, Golestan University of Medical Sciences, Gorgan, Iran
| | - Arsham Banisadr
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vadieh Ghodsinezhad
- Molecular Medicine Department, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mohsen Dibaj
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Omid Aryani
- Neuroscience Department, Iran University of Medical sciences, Tehran, Iran
| |
Collapse
|
2
|
Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells 2022; 11:cells11060981. [PMID: 35326432 PMCID: PMC8946949 DOI: 10.3390/cells11060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
Hereditary cerebellar ataxia (HCA) comprises a clinical and genetic heterogeneous group of neurodegenerative disorders characterized by incoordination of movement, speech, and unsteady gait. In this study, we performed whole-exome sequencing (WES) in 19 families with HCA and presumed autosomal recessive (AR) inheritance, to identify the causal genes. A phenotypic classification was performed, considering the main clinical syndromes: spastic ataxia, ataxia and neuropathy, ataxia and oculomotor apraxia (AOA), ataxia and dystonia, and ataxia with cognitive impairment. The most frequent causal genes were associated with spastic ataxia (SACS and KIF1C) and with ataxia and neuropathy or AOA (PNKP). We also identified three families with autosomal dominant (AD) forms arising from de novo variants in KIF1A, CACNA1A, or ATP1A3, reinforcing the importance of differential diagnosis (AR vs. AD forms) in families with only one affected member. Moreover, 10 novel causal-variants were identified, and the detrimental effect of two splice-site variants confirmed through functional assays. Finally, by reviewing the molecular mechanisms, we speculated that regulation of cytoskeleton function might be impaired in spastic ataxia, whereas DNA repair is clearly associated with AOA. In conclusion, our study provided a genetic diagnosis for HCA families and proposed common molecular pathways underlying cerebellar neurodegeneration.
Collapse
|
3
|
Alonso-Pérez J, Casasús A, Gimenez-Muñoz Á, Duff J, Rojas-Garcia R, Illa I, Straub V, Töpf A, Díaz-Manera J. Late onset Sandhoff disease presenting with lower motor neuron disease and stuttering. Neuromuscul Disord 2021; 31:769-772. [PMID: 34210542 DOI: 10.1016/j.nmd.2021.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Defects in the HEXB gene which encodes the β-subunit of β-hexosaminidase A and B enzymes, cause a GM2 gangliosidosis, also known as Sandhoff disease, which is a rare lysosomal storage disorder. The most common form of the disease lead to quickly progressing mental and motor decline in infancy; however there are other less severe forms with later onset that can also involve lower motor neurons. The diagnosis of this disease is based on low serum β-hexosaminidases A and B levels and confirmed using genetic test. We report two siblings with compound heterozygous HEXB mutations whose phenotype was extremely mild consisting in stuttering in both cases associated to mild proximal weakness in one of the cases, broadening the clinical spectrum of late onset Sandhoff disease.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Casasús
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom; Neuromuscular Research Unit, IIS La Fe, Valencia, Spain
| | | | - Jennifer Duff
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Ricard Rojas-Garcia
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Isabel Illa
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
4
|
Mansouri‐Movahed F, Akhoundi F, Nikpour P, Garshasbi M, Emadi‐Baygi M. Identification of a novel HEXB Mutation in an Iranian Family with suspected patient to GM2-gangliosidoses. Clin Case Rep 2020; 8:2583-2591. [PMID: 33363784 PMCID: PMC7752470 DOI: 10.1002/ccr3.3103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Sandhoff disease is one of the GM2-gangliosidoses which is caused by a mutation in the HEXB preventing the breakdown of GM2-ganglioside. We report a novel HEXB variant in a family with a history of a dead girl with Sandhoff disease which was not found in controls.
Collapse
Affiliation(s)
| | - Fatemeh Akhoundi
- Department of GeneticsFaculty of Basic SciencesShahrekord UniversityShahrekordIran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular BiologyFaculty of MedicineIsfahan University of Medical SciencesIsfahanIran
- Child Growth and Development Research CenterResearch Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Masoud Garshasbi
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Modjtaba Emadi‐Baygi
- Department of GeneticsFaculty of Basic SciencesShahrekord UniversityShahrekordIran
- Research Institute of BiotechnologyShahrekord UniversityShahrekordIran
| |
Collapse
|
5
|
Ariyasu D, Kubo E, Higa D, Shibata S, Takaoka Y, Sugimoto M, Imaizumi K, Hasegawa T, Araki K. Decreased Activity of the Ghrhr and Gh Promoters Causes Dominantly Inherited GH Deficiency in Humanized GH1 Mouse Models. Endocrinology 2019; 160:2673-2691. [PMID: 31436800 DOI: 10.1210/en.2019-00306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Isolated growth hormone deficiency type II (IGHD2) is mainly caused by heterozygous splice-site mutations in intron 3 of the GH1 gene. A dominant-negative effect of the mutant GH lacking exon 3 on wild-type GH secretion has been proposed; however, the molecular mechanisms involved are elusive. To uncover the molecular systems underlying GH deficiency in IGHD2, we established IGHD2 model mice, which carry both wild-type and mutant copies of the human GH1 gene, replacing each of the endogenous mouse Gh loci. Our IGHD2 model mice exhibited growth retardation along with intact cellular architecture and mildly activated endoplasmic reticulum stress in the pituitary gland, caused by decreased GH-releasing hormone receptor (Ghrhr) and Gh gene promoter activities. Decreased Ghrhr and Gh promoter activities were likely caused by reduced levels of nuclear CREB3L2, which was demonstrated to stimulate Ghrhr and Gh promoter activity. To our knowledge, this is the first in vivo study to reveal a novel molecular mechanism of GH deficiency in IGHD2, representing a new paradigm that differs from widely accepted models.
Collapse
Affiliation(s)
- Daisuke Ariyasu
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Graduate School of Medicine, Keio University, Tokyo, Japan
| | - Emika Kubo
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Daisuke Higa
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Takaoka
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Hyogo, Japan
| | - Michihiko Sugimoto
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Ebrahimzadeh-Vesal R, Hosseini S, Moghaddassian M, Abbaszadegan MR. Identification of novel missense HEXB gene mutation in Iranian-child with juvenile Sandhoff disease. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|