1
|
Chen S, Wang J, Shui W, Xing X, Zhang Z, Hou R. Association of the TNF-α-308G>A gene polymorphism with left ventricular geometry and functional abnormalities in obstructive sleep apnea subjects. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:241-248. [PMID: 38041410 DOI: 10.1002/jcu.23624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE Tumor necrosis factor-α (TNF-α) can induce left ventricular remodeling. In this study, we investigated whether the TNF-α-308G>A polymorphism is associated with left ventricular geometry (LVG) and left ventricular functional abnormalities in obstructive sleep apnea (OSA) subjects. METHODS Two hundred and seventy-eight subjects were enrolled. Echocardiography and genetic data were assessed in all patients. Geometric patterns of the left ventricle were determined from the relative wall thickness and left ventricular mass index (LVMI). Genetic analysis for the TNF-α-308G>A SNP rs1800629 was identified by Sanger sequencing. The correlations of the TNF-α-308G>A polymorphism with LVG and left ventricular function were analyzed by difference analysis and logistic regression. RESULTS The chi-square test showed that there were differences in genotype distributions among the four groups (p = 0.033), such that the frequency of GA+AA genotypes was significantly higher in the concentric hypertrophy group than in the normal geometry group (p < 0.05). Independent sample T tests showed that the GA+AA genotypes had higher IVST, LVPWT, LVMI, E/e' values, and lower e' values than those of the GG genotype (p < 0.05). Logistic regression analysis showed that the TNF-α-308G>A polymorphism was independently correlated with eccentric hypertrophy (OR = 2.456, p = 0.047) and concentric hypertrophy (OR = 2.456, p = 0.047). CONCLUSION In OSA patients, the TNF-α-308G>A polymorphism was linked to LVG and abnormal left ventricular diastolic function, suggesting that the TNF-α-308G>A polymorphism may have an important influence on LVG alterations.
Collapse
Affiliation(s)
- Shuqiong Chen
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian Wang
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wen Shui
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xueqing Xing
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhenxia Zhang
- Department of Respiratory, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ran Hou
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Chen Z, Hu B, Feng Y, Wang Z, Jiang X, Cheng Y, He D, Zhu D, Xiao Z, Wang H, Mao Z. Incidence rate and risk factors of early repolarization in patients with growth hormone-secreting pituitary adenoma: a cohort study. Ther Clin Risk Manag 2019; 15:65-72. [PMID: 30643415 PMCID: PMC6314049 DOI: 10.2147/tcrm.s185929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the incidence and risk factors for early repolarization (ER) in patients with growth hormone (GH)-secreting pituitary adenomas. Methods From August 2014 to August 2016, patients with GH-secreting pituitary adenomas and non-functioning pituitary adenomas admitted to the First Affiliated Hospital, Sun Yat-sen University, were prospectively enrolled. Logistic regression analysis was used to investigate risk factors for ER development. Results A total of 118 patients with GH-secreting pituitary adenomas (41 with concomitant ER) and 103 patients with non-functioning pituitary adenomas were included. Compared with the non-functioning adenoma group GH and IGF-1 levels, left ventricular mass index (LVMI), and incidence of ER were significantly higher in the GH-secreting pituitary adenoma group (all P<0.05). LVMI was an independent risk factor for ER. Bivariate correlation analysis showed that course of disease, GH, IGF-1, and diabetes were correlated with LVMI. Course of disease and IGF-1 were directly correlated with LVMI. Two-year follow-up of patients who underwent transsphenoidal resection showed that incidence of ER was significantly decreased in patients with normal GH and IGF-1 levels. Conclusion Compared with non-functioning pituitary adenoma patients, patients with GH-secreting pituitary adenomas have a significantly higher incidence of ER. Elevation of serum GH and IGF-1 had positive correlations with cardiac muscle cell hypertrophy and increased LVMI.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, SunYat-sen University, Guangzhou, People's Republic of China, ; .,Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Bin Hu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, SunYat-sen University, Guangzhou, People's Republic of China, ;
| | - Yajuan Feng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, SunYat-sen University, Guangzhou, People's Republic of China, ;
| | - Xiaobing Jiang
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yunjiu Cheng
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dongsheng He
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, SunYat-sen University, Guangzhou, People's Republic of China, ;
| | - Dimin Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, SunYat-sen University, Guangzhou, People's Republic of China, ;
| | - Zheng Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, SunYat-sen University, Guangzhou, People's Republic of China, ;
| | - Haijun Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, SunYat-sen University, Guangzhou, People's Republic of China, ;
| | - Zhigang Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, SunYat-sen University, Guangzhou, People's Republic of China, ;
| |
Collapse
|
3
|
Huang Q, Cai B. Exosomes as New Intercellular Mediators in Development and Therapeutics of Cardiomyocyte Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:91-100. [PMID: 28936734 DOI: 10.1007/978-981-10-4397-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myocardial hypertrophy is a common cardiac condition in response to hemodynamic and neurohormonal alterations. Pathological hypertrophic growth in hearts caused the decline of cardiac functions, and finally developed into congestive heart failure. The exosomes are small membrane vesicles which are secreted by various cells and play important roles in cellular communication, migration, proliferation and differentiation. Recent studies uncovered that the exosomes from cardiac fibroblasts and other tissues participates in the development of myocardial hypertrophy. Nevertheless, cardiac progenitor cells and mesenchymal stem cells-derived exosomes confer protective action on myocardial hypertrophy. Thus, the exosomes serve as new intercellular mediators between cardiomyocytes and other cells, and show broad application potential in the diagnostic and therapy of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Qi Huang
- Department of Pharmacy, The Affiliated Second Hospital of Harbin Medical University, 157# Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Benzhi Cai
- Department of Pharmacy, The Affiliated Second Hospital of Harbin Medical University, 157# Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China. .,Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
4
|
Recent Advances in the Genetics of Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:561-581. [PMID: 27957710 DOI: 10.1007/5584_2016_75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hypertension is a silent killer worldwide, caused by both genetic and environmental factors. Until now, genetic and genomic association studies of hypertension are reporting different degree of association on hypertension. Hence, it is essential to gather all the available information on the reported genetic loci and to determine if any biomarker(s) is/are significantly associated with hypertension. Current review concluded the potential biomarkers for hypertension, with regards to electrolyte and fluid transports, as well as sodium/potassium ions homeostasis, which are supported by the results of case-controls and meta-analyses.
Collapse
|
5
|
Ben-Zaken S, Meckel Y, Nemet D, Eliakim A. IGF-I receptor 275124A>C (rs1464430) polymorphism and athletic performance. J Sci Med Sport 2014; 18:323-7. [PMID: 24745653 DOI: 10.1016/j.jsams.2014.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To examine the prevalence of the Insulin-Like Growth Factor-I receptor (IGF-IR) 275124A>C polymorphism, known to be associated with exercise-related cardiac hypertrophy, among elite endurance and power athletes. DESIGN One hundred and fifty-nine athletes (118 men and 41 women, age: 35.9±12.2 yrs) participated in the study. METHODS We hypothesized that presence of the A allele will be significantly more common among endurance athletes (n=77) compared to power athletes (n=82) and non-physically active controls (n=68). Athletes within each group were further divided according to their individual best performance into elite athletes (those who had represented the country in international track-and-field or triathlon competitions or in the Olympic Games) and national-level athletes. RESULTS The prevalence of the AA genotype was significantly higher (p<0.05) in the endurance athletes group (49%) compared to the power athletes group (33%), but did not differ from the control group (46%). There was no significant difference in the prevalence of the AA genotype between elite and national level endurance athletes (44% versus 52%, respectively). In contrast, among power athletes, the prevalence of the AA genotype was significantly lower in the elite compared to national level athletes (17% versus 42%, respectively; p<0.05). CONCLUSIONS The results of the present study may suggest that the IGF-IR AA polymorphism is beneficial for endurance-type sports, but is not associated with elite endurance performance. In contrast, the presence of the AA genotype may be a disadvantage in power sports. All together the results of the present study suggest that IGF-IR polymorphism may differentiate between the two edges of the endurance-power athletic performance spectrum.
Collapse
Affiliation(s)
- Sigal Ben-Zaken
- The Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Genetics and Molecular Biology Laboratory, Netanya, Israel
| | - Yoav Meckel
- The Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Genetics and Molecular Biology Laboratory, Netanya, Israel
| | - Dan Nemet
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Alon Eliakim
- The Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Genetics and Molecular Biology Laboratory, Netanya, Israel; Child Health and Sports Center, Pediatric Department, Meir Medical Center, Sackler School of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The insulin-like growth factor system plays an important role in renal physiology and it is perturbed in a range of kidney diseases. RECENT FINDINGS Some insulin-like growth factor (IGF) actions in the kidney are mediated by nitric oxide. Growth hormone and IGF-binding proteins may contribute to renal diseases via effects on podocytes and proximal tubule cells. In contrast, growth hormone and IGF-I may counteract the catabolic consequences of end-stage renal disease. Polymorphisms in the IGF system are associated with hypertension. SUMMARY Further studies are needed to determine whether modulating the IGF system may have a role in treating kidney diseases and/or hypertension.
Collapse
|
7
|
Yang HC, Liang YJ, Chen JW, Chiang KM, Chung CM, Ho HY, Ting CT, Lin TH, Sheu SH, Tsai WC, Chen JH, Leu HB, Yin WH, Chiu TY, Chern CI, Lin SJ, Tomlinson B, Guo Y, Sham PC, Cherny SS, Lam TH, Thomas GN, Pan WH. Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as hypertension susceptibility genes in Han Chinese with a genome-wide gene-based association study. PLoS One 2012; 7:e32907. [PMID: 22479346 PMCID: PMC3315540 DOI: 10.1371/journal.pone.0032907] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/07/2012] [Indexed: 01/11/2023] Open
Abstract
Hypertension is a complex disorder with high prevalence rates all over the world. We conducted the first genome-wide gene-based association scan for hypertension in a Han Chinese population. By analyzing genome-wide single-nucleotide-polymorphism data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip, 100 susceptibility genes for hypertension were identified and also validated with permutation tests. Seventeen of the 100 genes exhibited differential allelic and expression distributions between patient and control groups. These genes provided a good molecular signature for classifying hypertensive patients and normotensive controls. Among the 17 genes, IGF1, SLC4A4, WWOX, and SFMBT1 were not only identified by our gene-based association scan and gene expression analysis but were also replicated by a gene-based association analysis of the Hong Kong Hypertension Study. Moreover, cis-acting expression quantitative trait loci associated with the differentially expressed genes were found and linked to hypertension. IGF1, which encodes insulin-like growth factor 1, is associated with cardiovascular disorders, metabolic syndrome, decreased body weight/size, and changes of insulin levels in mice. SLC4A4, which encodes the electrogenic sodium bicarbonate cotransporter 1, is associated with decreased body weight/size and abnormal ion homeostasis in mice. WWOX, which encodes the WW domain-containing protein, is related to hypoglycemia and hyperphosphatemia. SFMBT1, which encodes the scm-like with four MBT domains protein 1, is a novel hypertension gene. GRB14, TMEM56 and KIAA1797 exhibited highly significant differential allelic and expressed distributions between hypertensive patients and normotensive controls. GRB14 was also found relevant to blood pressure in a previous genetic association study in East Asian populations. TMEM56 and KIAA1797 may be specific to Taiwanese populations, because they were not validated by the two replication studies. Identification of these genes enriches the collection of hypertension susceptibility genes, thereby shedding light on the etiology of hypertension in Han Chinese populations.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Jen Liang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Jaw-Wen Chen
- National Yang-Ming University School of Medicine and Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuang-Mao Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Public Health, National Medical Defense Center, Taipei, Taiwan
| | - Chia-Min Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Yun Ho
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Tai Ting
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsung-Hsien Lin
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sheng-Hsiung Sheu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chuan Tsai
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jyh-Hong Chen
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Bang Leu
- National Yang-Ming University School of Medicine and Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Hsian Yin
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Center, Taipei, Taiwan
| | - Ting-Yu Chiu
- Division of Cardiology, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Ching-Iuan Chern
- Division of Cardiology, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Shing-Jong Lin
- National Yang-Ming University School of Medicine and Taipei Veterans General Hospital, Taipei, Taiwan
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Youling Guo
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Pak C. Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Stacey S. Cherny
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Tai Hing Lam
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - G. Neil Thomas
- Public Health, Epidemiology and Biostatistics, School of Health and Population Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Division of Preventive Medicine and Health Services Research, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Della-Morte D, Beecham A, Rundek T, Wang L, McClendon MS, Slifer S, Blanton SH, Di Tullio MR, Sacco RL. A follow-up study for left ventricular mass on chromosome 12p11 identifies potential candidate genes. BMC MEDICAL GENETICS 2011; 12:100. [PMID: 21791083 PMCID: PMC3199748 DOI: 10.1186/1471-2350-12-100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/26/2011] [Indexed: 11/14/2022]
Abstract
Background Left ventricular mass (LVM) is an important risk factor for cardiovascular disease. Previously we found evidence for linkage to chromosome 12p11 in Dominican families, with a significant increase in a subset of families with high average waist circumference (WC). In the present study, we use association analysis to further study the genetic effect on LVM. Methods Association analysis with LVM was done in the one LOD critical region of the linkage peak in an independent sample of 897 Caribbean Hispanics. Genotype data were available on 7085 SNPs from 23 to 53 MB on chromosome 12p11. Adjustment was made for vascular risk factors and population substructure using an additive genetic model. Subset analysis by WC was performed to test for a difference in genetic effects between the high and low WC subsets. Results In the overall analysis, the most significant association was found to rs10743465, downstream of the SOX5 gene (p = 1.27E-05). Also, 19 additional SNPs had nominal p < 0.001. In the subset analysis, the most significant difference in genetic effect between those with high and low WC occurred with rs1157480 (p = 1.37E-04 for the difference in β coefficients), located upstream of TMTC1. Twelve additional SNPs in or near 6 genes had p < 0.001. Conclusions The current study supports previously identified evidence by linkage for a genetic effect on LVM on chromosome 12p11 using association analysis in population-based Caribbean Hispanic cohort. SOX5 may play an important role in the regulation of LVM. An interaction of TMTC1 with abdominal obesity may contribute to phenotypic variation of LVM.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
IGF-1 (insulin-like growth factor-1) plays a unique role in the cell protection of multiple systems, where its fine-tuned signal transduction helps to preserve tissues from hypoxia, ischaemia and oxidative stress, thus mediating functional homoeostatic adjustments. In contrast, its deprivation results in apoptosis and dysfunction. Many prospective epidemiological surveys have associated low IGF-1 levels with late mortality, MI (myocardial infarction), HF (heart failure) and diabetes. Interventional studies suggest that IGF-1 has anti-atherogenic actions, owing to its multifaceted impact on cardiovascular risk factors and diseases. The metabolic ability of IGF-1 in coupling vasodilation with improved function plays a key role in these actions. The endothelial-protective, anti-platelet and anti-thrombotic activities of IGF-1 exert critical effects in preventing both vascular damage and mechanisms that lead to unstable coronary plaques and syndromes. The pro-survival and anti-inflammatory short-term properties of IGF-1 appear to reduce infarct size and improve LV (left ventricular) remodelling after MI. An immune-modulatory ability, which is able to suppress 'friendly fire' and autoreactivity, is a proposed important additional mechanism explaining the anti-thrombotic and anti-remodelling activities of IGF-1. The concern of cancer risk raised by long-term therapy with IGF-1, however, deserves further study. In the present review, we discuss the large body of published evidence and review data on rhIGF-1 (recombinant human IGF-1) administration in cardiovascular disease and diabetes, with a focus on dosage and safety issues. Perhaps the time has come for the regenerative properties of IGF-1 to be assessed as a new pharmacological tool in cardiovascular medicine.
Collapse
|