1
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
2
|
Popiołek AK, Niznikiewicz MA, Borkowska A, Bieliński MK. Evaluation of Event-Related Potentials in Somatic Diseases - Systematic Review. Appl Psychophysiol Biofeedback 2024; 49:331-346. [PMID: 38564137 DOI: 10.1007/s10484-024-09642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many somatic illnesses (e.g. hypertension, diabetes, pulmonary and cardiac diseases, hepatitis C, kidney and heart failure, HIV infection, Sjogren's disease) may impact central nervous system functions resulting in emotional, sensory, cognitive or even personality impairments. Event-related potential (ERP) methodology allows for monitoring neurocognitive processes and thus can provide a valuable window into these cognitive processes that are influenced, or brought about, by somatic disorders. The current review aims to present published studies on the relationships between somatic illness and brain function as assessed with ERP methodology, with the goal to discuss where this field of study is right now and suggest future directions.
Collapse
Affiliation(s)
- Alicja K Popiołek
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland.
| | - Margaret A Niznikiewicz
- Medical Center, Harvard Medical School and Boston VA Healthcare System, Psychiatry 116a C/O R. McCarly 940 Belmont St, Brockton, MA, 02301, USA
| | - Alina Borkowska
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland
| | - Maciej K Bieliński
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland
| |
Collapse
|
3
|
Chang YS, Lin CL, Lee CW, Lin HC, Wu YT, Shih YH. Exercise Normalized the Hippocampal Renin-Angiotensin System and Restored Spatial Memory Function, Neurogenesis, and Blood-Brain Barrier Permeability in the 2K1C-Hypertensive Mouse. Int J Mol Sci 2022; 23:ijms23105531. [PMID: 35628344 PMCID: PMC9146761 DOI: 10.3390/ijms23105531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hypertension is associated with blood-brain barrier alteration and brain function decline. Previously, we established the 2-kidney,1-clip (2K1C) hypertensive mice model by renin-angiotensin system (RAS) stimulating. We found that 2K1C-induced hypertension would impair hippocampus-related memory function and decrease adult hippocampal neurogenesis. Even though large studies have investigated the mechanism of hypertension affecting brain function, there remains a lack of efficient ways to halt this vicious effect. The previous study indicated that running exercise ameliorates neurogenesis and spatial memory function in aging mice. Moreover, studies showed that exercise could normalize RAS activity, which might be associated with neurogenesis impairment. Thus, we hypothesize that running exercise could ameliorate neurogenesis and spatial memory function impairment in the 2K1C-hypertension mice. In this study, we performed 2K1C surgery on eight-weeks-old C57BL/6 mice and put them on treadmill exercise one month after the surgery. The results indicate that running exercise improves the spatial memory and neurogenesis impairment of the 2K1C-mice. Moreover, running exercise normalized the activated RAS and blood-brain barrier leakage of the hippocampus, although the blood pressure was not decreased. In conclusion, running exercise could halt hypertension-induced brain impairment through RAS normalization.
Collapse
Affiliation(s)
- Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan;
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan 70043, Taiwan;
| | - Han-Chen Lin
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
| | - Yi-Ting Wu
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung County 92641, Taiwan;
| | - Yao-Hsiang Shih
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2144)
| |
Collapse
|
4
|
Qiulei G, Qingguo L, Dongmei S, Binbin N. Twirling reinforcing-reducing manipulation — central mechanism underlying antihypertensive effect on spontaneous hypertension in rats. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ngwa JS, Fungwe TV, Ntekim O, Allard JS, Johnson SM, Castor C, Graham L, Nadarajah S, Gillum RF, Obisesan TO. Associations of Pulse and Blood Pressure with Hippocampal Volume by APOE and Cognitive Phenotype: The Alzheimer's Disease Neuroimaging Initiative (ADNI). Dement Geriatr Cogn Disord 2018; 45:66-78. [PMID: 29694964 PMCID: PMC6143389 DOI: 10.1159/000486955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/17/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It is increasingly evident that high blood pressure can promote reduction in global and regional brain volumes. While these effects may preferentially affect the hippocampus, reports are inconsistent. METHODS Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we examined the relationships of hippocampal volume to pulse pressure (PPR) and systolic (SBP) and diastolic (DBP) blood pressure according to apolipoprotein (APOE) ɛ4 positivity and cognitive status. The ADNI data included 1,308 participants: Alzheimer disease (AD = 237), late mild cognitive impairment (LMCI = 454), early mild cognitive impairment (EMCI = 254), and cognitively normal (CN = 365), with up to 24 months of follow-up. RESULTS Higher quartiles of PPR were significantly associated with lower hippocampal volumes (Q1 vs. Q4, p = 0.034) in the CN and AD groups, but with increasing hippocampal volume (Q1, p = 0.008; Q2, p = 0.020; Q3, p = 0.017; Q4 = reference) in the MCI groups. In adjusted stratified analyses among non-APOE ɛ4 carriers, the effects in the CN (Q1 vs. Q4, p = 0.006) and EMCI groups (Q1, p = 0.002; Q2, p = 0.013; Q3, p = 0.002; Q4 = reference) remained statistically significant. Also, higher DBP was significantly associated with higher hippocampal volume (p = 0.002) while higher SBP was significantly associated with decreasing hippocampal volume in the EMCI group (p = 0.015). CONCLUSION Changes in PPR, SBP, and DBP differentially influenced hippocampal volumes depending on the cognitive and APOE genotypic categories.
Collapse
Affiliation(s)
- Julius S. Ngwa
- Division of Cardiovascular Medicine, Department of Medicine, Howard University College of Medicine, Washington, DC, USA
| | - Thomas V. Fungwe
- Department of Nutritional Sciences, School of Nursing and Allied Health Sciences, and Department of Medicine, Howard University College of Medicine, Washington, DC, USA
| | - Oyonumo Ntekim
- Department of Nutritional Sciences, School of Nursing and Allied Health Sciences, and Department of Medicine, Howard University College of Medicine, Washington, DC, USA
| | - Joanne S. Allard
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Sheree M. Johnson
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Chimene Castor
- Department of Nutritional Sciences, School of Nursing and Allied Health Sciences, and Department of Medicine, Howard University College of Medicine, Washington, DC, USA
| | - Lennox Graham
- Department of Health Education, School of Nursing and Allied Health Sciences, and Department of Medicine, Howard University College of Medicine, Washington, DC, USA
| | - Sheeba Nadarajah
- Division of Nursing, School of Nursing and Allied Health Sciences, and Department of Medicine, Howard University College of Medicine, Washington, DC, USA
| | - Richard F. Gillum
- Division of Geriatrics, Department of Medicine and Clinical/Translational Science Program, Howard University College of Medicine/ Hospital, Washington, DC, USA
| | - Thomas O. Obisesan
- Division of Geriatrics, Department of Medicine and Clinical/Translational Science Program, Howard University College of Medicine/ Hospital, Washington, DC, USA
| | | |
Collapse
|
6
|
Sun D, Zhang J, Fan Y, Liu X, Gao Y, Wu G, Yan Y, Zeng J. Abnormal levels of brain metabolites may mediate cognitive impairment in stroke-free patients with cerebrovascular risk factors. Age Ageing 2014; 43:681-6. [PMID: 24614642 DOI: 10.1093/ageing/afu027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE conventional vascular risk factors (VRFs) are associated with cognitive impairment independent of stroke and detectable cerebral lesions. We used proton magnetic resonance spectroscopy ((1)H MRS) to examine the hypotheses that abnormal levels of brain metabolites may mediate the relationship between VRFs and cognitive impairment. METHODS a group of 54 stroke-free subjects with various VRFs underwent comprehensive cognitive assessments and (1)H MRS scan of the left hippocampus and prefrontal cortex. We indirectly measured the concentrations of N-acetylaspartate (NAA), choline, inositol, creatine (Cr) and total concentrations of glutamate plus glutamine (Glx). VRFs were quantified by Framingham stroke risk profile (FSRP) score. Subjects were divided into low- (<10%), medium- (10-20%) and high-risk (>20%) groups according to their FSRP scores. Pearson and partial correlation analysis were used to investigate the correlation between FSRP scores and cognitive performance along with the brain metabolism. RESULTS compared with subjects in low-risk group, high-risk group subjects had significantly poor performances on the tasks of working memory, delayed recall and executive function. In high-risk group, hippocampal Glx/Cr ratios and prefrontal NAA/Cr ratios were significantly lower than those in low-risk group. Lower prefrontal NAA/Cr ratios were associated with executive dysfunction, and lower hippocampal Glx/Cr ratios were associated with impaired delayed recall. CONCLUSION abnormal concentrations of brain metabolites and decreased glutamate plus glutamine concentration may play an important role in the pathophysiology of VRF-associated cognitive impairment. Brain metabolites detected by (1)H MRS may serve as important markers for monitoring VRFs burden.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, Hubei 430071, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, Hubei 430071, China
| | - Yuanteng Fan
- Department of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, Hubei 430071, China
| | - Xuan Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, Hubei 430071, China
| | - Yongzhe Gao
- Department of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, Hubei 430071, China
| | - Guangyao Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yatao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, Hubei 430071, China
| | - Junjie Zeng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zahr NM, Mayer D, Rohlfing T, Chanraud S, Gu M, Sullivan EV, Pfefferbaum A. In vivo glutamate measured with magnetic resonance spectroscopy: behavioral correlates in aging. Neurobiol Aging 2013; 34:1265-76. [PMID: 23116877 PMCID: PMC3545108 DOI: 10.1016/j.neurobiolaging.2012.09.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 02/07/2023]
Abstract
Altered availability of the brain biochemical glutamate might contribute to the neural mechanisms underlying age-related changes in cognitive and motor functions. To investigate the contribution of regional glutamate levels to behavior in the aging brain, we used an in vivo magnetic resonance spectroscopy protocol optimized for glutamate detection in 3 brain regions targeted by cortical glutamatergic efferents-striatum, cerebellum, and pons. Data from 61 healthy men and women ranging in age from 20 to 86 years were used. Older age was associated with lower glutamate levels in the striatum, but not cerebellum or pons. Older age was also predictive of poorer performance on tests of visuomotor skills and balance. Low striatal glutamate levels were associated with high systolic blood pressure and worse performance on a complex visuomotor task, the Grooved Pegboard. These findings suggest that low brain glutamate levels are related to high blood pressure and that changes in brain glutamate levels might mediate the behavioral changes noted in normal aging.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
- Neuroscience Program, SRI International, Menlo Park, CA 94025, United States
| | - Dirk Mayer
- Neuroscience Program, SRI International, Menlo Park, CA 94025, United States
- Radiology Department, Lucas MRS/I Center, Stanford University, 1201 Welch Road, P-273, Stanford, CA, 94305-5488, United States
| | - Torsten Rohlfing
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
| | - Sandra Chanraud
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
| | - Meng Gu
- Radiology Department, Lucas MRS/I Center, Stanford University, 1201 Welch Road, P-273, Stanford, CA, 94305-5488, United States
| | - Edith V. Sullivan
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
| | - Adolf Pfefferbaum
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
- Neuroscience Program, SRI International, Menlo Park, CA 94025, United States
| |
Collapse
|
8
|
Sutcu R, Kirbas A, Kirbas S, Kutluhan S, Delibas N. Effects of lisinopril on NMDA receptor subunits 2A and 2B levels in the hippocampus of rats with L-NAME-induced hypertension. J Recept Signal Transduct Res 2012; 32:279-84. [PMID: 22943192 DOI: 10.3109/10799893.2012.714788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension is major risk factor leading to cerebrovascular pathologies. N-methyl D-aspartate receptors (NMDARs) and renin-angiotensin system are involved in neuronal plasticity, as well as cognitive functions in the hippocampus. In this study, we examined the effects of lisinopril, an ACE inhibitor, on the levels of hippocampal NMDAR subunits; NR2A and NR2B in L-NAME (N(ε)-nitro-L-arginine Methyl Ester)-induced hypertensive rats. In addition, malondialdehyde (MDA) levels were measured as a marker for lipid peroxidation. Compared with the control group, the MDA level was significantly increased after 8 weeks in the L-NAME-treated group. Rats treated with lisinopril and L-NAME plus lisinopril were found to have significantly decreased hippocampal MDA levels. Regarding the hippocampal concentrations of NR2A and NR2B, there were no statistically significant differences between groups. We demonstrated that lisinopril treatment has no direct regulatory effect on the levels of NR2A and NR2B in the rat hippocampus. Our results showed that Lisinopril could act as an antioxidant agent against hypertension-induced oxidative stress in rat hippocampus. The findings support that the use of lisinopril may offer a good alternative in the treatment of hypertension by reducing not only blood pressure but also prevent hypertensive complications in the brain.
Collapse
Affiliation(s)
- Recep Sutcu
- Medical Faculty Department of Biochemistry, Izmir Katip Celebi University, Izmir, Turkey.
| | | | | | | | | |
Collapse
|