1
|
Ogoyama Y, Kario K. Differences in the effectiveness and safety of different renal denervation devices. Hypertens Res 2024; 47:2678-2684. [PMID: 39014117 DOI: 10.1038/s41440-024-01801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Renal denervation (RDN) is a minimally invasive, endovascular catheter-based procedure using radiofrequency, ultrasound, or alcohol-mediated ablation to treat resistant hypertension. RDN gained popularity in 2009 when it was shown to have an antihypertensive effect. However, concerns about the efficacy of RDN were raised in the HTN-3 trial published in 2014, and the development of several RDN devices was then discontinued. In the process, new randomized controlled trials were conducted after the development of some of the RDN devices, the quality assurance of the procedure, changes in ablation points, and improvements in study design. In November 2023, the U.S. Food and Drug Administration approved a radiofrequency RDN device and an ultrasound RDN device. The results of a randomized controlled trial of an alcohol-mediated RDN device have been published, and future trends are being watched closely. In this mini-review, we summarize the differences in the antihypertensive effect and safety of the different RDN devices and the endpoints of the procedure in order to contribute to the further development of RDN devices Currently available renal denervation device. A multielectrode radiofrequency ablation (Spyral), (B) ultrasound denervation (Paraise), and (C) alcohol-mediated perivascular denervation (Peregrine). ASBP ambulatory systolic blood pressure, ADBP ambulatory diastolic blood pressure, OSBP office systolic blood pressure, ODBP office diastolic blood pressure. Analysis according to types of renal denervation device (radiofrequency, ultrasound, or alcohol-mediated device). P values for interaction were 0.578 (ambulatory SBP), 0.499 (ambulatory diastolic BP), 0.853 (office SBP), and 0.870 (office diastolic BP).
Collapse
Affiliation(s)
- Yukako Ogoyama
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan.
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
2
|
Agnesi F, Carlucci L, Burjanadze G, Bernini F, Gabisonia K, Osborn JW, Micera S, Recchia FA. Complex Hemodynamic Responses to Trans-Vascular Electrical Stimulation of the Renal Nerve in Anesthetized Pigs. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:750-758. [PMID: 39691472 PMCID: PMC11651661 DOI: 10.1109/ojemb.2024.3429294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 12/19/2024] Open
Abstract
The objective of this study was to characterize hemodynamic changes during trans-vascular stimulation of the renal nerve and their dependence on stimulation parameters. We employed a stimulation catheter inserted in the right renal artery under fluoroscopic guidance, in pigs. Systolic, diastolic and pulse blood pressure and heart rate were recorded during stimulations delivered at different intravascular sites along the renal artery or while varying stimulation parameters (amplitude, frequency, and pulse width). Blood pressure changes during stimulation displayed a pattern more complex than previously described in literature, with a series of negative and positive peaks over the first two minutes, followed by a steady state elevation during the remainder of the stimulation. Pulse pressure and heart rate only showed transient responses, then they returned to baseline values despite constant stimulation. The amplitude of the evoked hemodynamic response was roughly linearly correlated with stimulation amplitude, frequency, and pulse width.
Collapse
Affiliation(s)
- Filippo Agnesi
- Interdisciplinary Research Center “Health Science”Scuola Superiore Sant'AnnaPisa56127Italy
| | - Lucia Carlucci
- Interdisciplinary Research Center “Health Science”Scuola Superiore Sant'AnnaPisa56127Italy
| | - Gia Burjanadze
- Interdisciplinary Research Center “Health Science”Scuola Superiore Sant'AnnaPisa56127Italy
| | - Fabio Bernini
- Interdisciplinary Research Center “Health Science”Scuola Superiore Sant'AnnaPisa56127Italy
| | - Khatia Gabisonia
- Interdisciplinary Research Center “Health Science”Scuola Superiore Sant'AnnaPisa56127Italy
| | - John W Osborn
- Department of Integrative Biology and Physiology, Medical SchoolUniversity of MinnesotaMinneapolisMN55455USA
| | - Silvestro Micera
- The BioRobotics Institute, Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPisa56127Italy
- Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Fabio A. Recchia
- Scuola Superiore Sant'AnnaPisa56127Italy
- Lewis Katz School of Medicine, Cardiovascular Research CenterTemple UniversityPhiladelphiaPA19140USA
- Institute of Clinical PhysiologyNational Research CouncilRome00185Italy
| |
Collapse
|
3
|
Hu X, Zhou H, Chen W, Li D, Du H, Xia T, Yin Y. Current problems in renal denervation and a hope to break the stage. Hypertens Res 2023; 46:2654-2660. [PMID: 37500716 DOI: 10.1038/s41440-023-01380-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Renal denervation (RDN) is currently confronted with the considerable heterogeneity of different post-procedural blood pressure responses. The challenges predominantly arise from not only the lack of selection of appropriate responders but also the absence of detection for the successful endpoints of intervention. In this paper, we summarize the significant characteristics of potentially appropriate hypertensive patients and propose a hopeful way to improve the accuracy of RDN, that is, the application of three-dimensional reconstruction technology combined with electrical renal nerve stimulation to guide the radiofrequency catheter ablation, which may promote the development of selective and accurate RDN in real-world clinical practice. This paper focuses on two current critical concerns of renal denervation (RDN): appropriate patient selection and the improvement in the accuracy of selective RDN. A hopeful way of accurate RDN may be the combination of 3D electroanatomic mapping systems for the renal artery with modified renal nerve stimulation (RNS) techniques and technology for appropriate hypertensive candidates.
Collapse
Affiliation(s)
- Xinyu Hu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
- Department of Cardiology, Chongqing University Fuling Hospital, Chongqing, China
| | - Hao Zhou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
- Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Weijie Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
- Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Dan Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
- Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Huaan Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
- Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Tianli Xia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
- Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China.
- Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China.
- Chongqing Key Laboratory of Arrhythmias, Chongqing, China.
| |
Collapse
|
4
|
Wagener M, Dolan E, Arnous S, Galvin J, Murphy AW, Casserly I, Eustace J, O’Connor S, McCreery C, Shand J, Wall C, Matiullah S, Sharif F. Renal Denervation as a Complementary Treatment Option for Uncontrolled Arterial Hypertension: A Situation Assessment. J Clin Med 2023; 12:5634. [PMID: 37685701 PMCID: PMC10488551 DOI: 10.3390/jcm12175634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Uncontrolled arterial hypertension is a major global health issue. Catheter-based renal denervation has shown to lower blood pressure in sham-controlled trials and represents a device-based, complementary treatment option for hypertension. In this situation assessment, the authors, who are practicing experts in hypertension, nephrology, general practice and cardiology in the Republic of Ireland, discuss the current evidence base for the BP-lowering efficacy and safety of catheter-based renal denervation with different modalities. Although important questions remain regarding the identification of responders, and long-term efficacy and safety of the intervention, renal denervation has the potential to provide much-needed help to address hypertension and its adverse consequences. The therapeutic approach needs to be multidisciplinary and personalised to take into account the perspective of patients and healthcare professionals in a shared decision-making process.
Collapse
Affiliation(s)
- Max Wagener
- University Hospital Galway, University of Galway, H91 TK33 Galway, Ireland
| | - Eamon Dolan
- Stroke and Hypertension Unit, Connolly Hospital, D15 X40D Dublin, Ireland
| | - Samer Arnous
- University Hospital Limerick, V94 F858 Limerick, Ireland
| | - Joseph Galvin
- The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Andrew W. Murphy
- Turloughmore Medical Centre, University of Galway, H91 TK33 Galway, Ireland
| | - Ivan Casserly
- The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | | | | | | | - James Shand
- St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | | | | | - Faisal Sharif
- University Hospital Galway, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
5
|
Xiong B, Chen S, Chen W, Yin Y, Ling Z. Advances in Renal Denervation in the Treatment of Hypertension. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2023. [DOI: 10.15212/cvia.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Hypertension significantly increases the risk of cardiovascular events and it is associated with high rates of disability and mortality. Hypertension is a common cause of cardiovascular and cerebrovascular accidents, which severely affect patients’ quality of life and lifespan. Current treatment strategies for hypertension are based primarily on medication and lifestyle interventions. The renal sympathetic nervous system plays an important role in the pathogenesis of hypertension, and catheter-based renal denervation (RDN) has provided a new concept for the treatment of hypertension. In recent years, studies on RDN have been performed worldwide. This article reviews the latest preclinical research and clinical evidence for RDN.
Collapse
|
6
|
Liu H, Li Y, Zhou H, Chen W, Xu Y, Du H, Zhang B, Xia T, Li D, Ou Z, Tang R, Chen Q, Zhao B, Yin Y. Renal nerve stimulation identifies renal innervation and optimizes the strategy for renal denervation in canine. J Transl Med 2023; 21:100. [PMID: 36759871 PMCID: PMC9912587 DOI: 10.1186/s12967-023-03919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Renal denervation (RDN) was still performed without any intra-procedural method for nerve mapping. Whether renal nerve stimulation (RNS) is an efficient way to identify renal autonomic innervation and optimize the strategy for RDN remain to be worthy for further exploration. METHODS The characteristics of renal autonomic innervation at the sites with different blood pressure (BP) responses to RNS were explored. Then, dogs anatomically eligible for RDN were randomly assigned into elevated BP response ablation group, reduced BP response ablation group, and RNS-control group. The postoperative outcomes were measured at baseline and after 4 weeks follow-up. RESULTS The proportion of afferent sensory nerve was higher at elevated BP response sites (ERS) than reduced BP response sites (RRS) and non-response sites (NRS) (P = 0.012 and P = 0.004). Conversely, the proportion of parasympathetic nerve at RRS was the highest (RRS vs. ERS, P = 0.017; RRS vs. NRS, P = 0.023). More importantly, there was a significant correlation between systolic blood pressure changes and the area ratios of afferent sensory and parasympathetic nerve (R = 0.859; P < 0.001). In addition, ablation at BP-elevation sites can result in a significant decrease in BP and plasma norepinephrine (NE) after 4 weeks (P = 0.002; P = 0.008), while ablation at BP-reduction sites can lead to significant increases in BP and plasma NE (P = 0.016; P = 0.033). CONCLUSIONS RNS is an effective method to identify renal autonomic innervation. It could not only help to identify optimal target sites, but also avoid ablation of sympathetic-inhibitory areas during RDN.
Collapse
Affiliation(s)
- Hang Liu
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Yidan Li
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Hao Zhou
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Weijie Chen
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Yanping Xu
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Huaan Du
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Bo Zhang
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Tianli Xia
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Dan Li
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Zhenhong Ou
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Ruotian Tang
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Qingsong Chen
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Binyi Zhao
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China. .,Chongqing Key Laboratory of Arrhythmia, Chongqing, China.
| |
Collapse
|
7
|
Lai Y, Zhou H, Chen W, Liu H, Liu G, Xu Y, Du H, Zhang B, Li Y, Woo K, Yin Y. The intrarenal blood pressure modulation system is differentially altered after renal denervation guided by different intensities of blood pressure responses. Hypertens Res 2023; 46:456-467. [PMID: 36202981 DOI: 10.1038/s41440-022-01047-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate alterations in the intrarenal blood pressure (BP) regulation system after renal denervation (RDN) guided by renal nerve stimulation (RNS). Twenty-one dogs were randomized to receive RDN at strong (SRA group, n = 7) or weak (WRA group, n = 7) BP-elevation response sites identified by RNS or underwent RNS only (RNS-control, RSC, n = 7). After 4 weeks of follow-up, renal sympathetic components, the main components of renin-angiotensin system (RAS) and the major transporters involved in sodium and water reabsorption were assessed by immunohistochemical analysis. Compared with RSC treatment, RDN therapy significantly reduced renal norepinephrine and tyrosine hydroxylase levels, decreased the renin content and inhibited the onsite generation of angiotensinogen. Moreover, the expression of exciting axis components, including angiotensin-converting enzyme (ACE), angiotensin II and angiotensin II type-1 receptor, was downregulated, while protective axis components for the cardiovascular system, including ACE2 and Mas receptors, were upregulated in both WRA and SRA groups. Moreover, RDN reduced the abundance of aquaporin-1 and aquaporin-2 in kidneys. Although RDN had a minimal effect on overall NKCC2 expression, its activation (p-NKCC2) and directional enrichment in the apical membrane (mNKCC2) were dramatically blunted. All these changes were more obvious in the SRA group than WRA group. Selective RDN guided by RNS effectively reduced systemic BP by affecting the renal neurohormone system, as well as the sodium and water transporter system, and these effects at sites with a strong BP response were more superior.
Collapse
Affiliation(s)
- Yinchuan Lai
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
- Department of Cardiology, the Second People's Hospital of Yibin & West China Hospital, Sichuan University Yibin Hospital, Yibin City, Sichuan, China
| | - Hao Zhou
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Weijie Chen
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Hang Liu
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Guangliang Liu
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Yanping Xu
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Huaan Du
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Bo Zhang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Yidan Li
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Kamsang Woo
- Institute of Future Cities, the Chinese University of Hong Kong, Hong Kong, China
| | - Yuehui Yin
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China.
| |
Collapse
|
8
|
Huang H, Cheng H, Chia Y, Li Y, Van Minh H, Siddique S, Sukonthasarn A, Tay JC, Turana Y, Verma N, Kario K, Wang T. The role of renal nerve stimulation in percutaneous renal denervation for hypertension: A mini-review. J Clin Hypertens (Greenwich) 2022; 24:1187-1193. [PMID: 36196464 PMCID: PMC9532907 DOI: 10.1111/jch.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022]
Abstract
Recent trials have demonstrated the efficacy and safety of percutaneous renal sympathetic denervation (RDN) for blood pressure (BP)-lowering in patients with uncontrolled hypertension. Nevertheless, major challenges exist, such as the wide variation of BP-lowering responses following RDN (from strong response to no response) and lack of feasible and reproducible peri-procedural predictors for patient response. Both animal and human studies have demonstrated different patterns of BP responses following renal nerve stimulation (RNS), possibly related to varied regional proportions of sympathetic and parasympathetic nerve tissues along the renal arteries. Animal studies of RNS have shown that rapid electrical stimulation of the renal arteries caused renal artery vasoconstriction and increased norepinephrine secretion with a concomitant increase in BP, and the responses were attenuated after RDN. Moreover, selective RDN at sites with strong RNS-induced BP increases led to a more efficient BP-lowering effect. In human, when RNS was performed before and after RDN, blunted changes in RNS-induced BP responses were noted after RDN. The systolic BP response induced by RNS before RDN and blunted systolic BP response to RNS after RDN, at the site with maximal RNS-induced systolic BP response before RDN, both correlated with the 24-h ambulatory BP reductions 3-12 months following RDN. In summary, RNS-induced BP changes, before and after RDN, could be used to assess the immediate effect of RDN and predict BP reductions months following RDN. More comprehensive, large-scale and long term trials are needed to verify these findings.
Collapse
Affiliation(s)
- Hui‐Chun Huang
- Cardiovascular Center and Division of CardiologyDepartment of Internal MedicineNational Taiwan University HospitalNational Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Epidemiology and Preventive MedicineCollege of Public HealthNational Taiwan UniversityTaipeiTaiwan
| | - Hao‐min Cheng
- Department of MedicineTaipei Veterans General HospitalMedical Education and ResearchNational Yang‐Ming UniversityTaipeiTaiwan
| | - Yook‐Chin Chia
- Department of Medical SciencesSchool of Healthcare and Medical SciencesSunway UniversityBandar SunwayMalaysia
- Department of Primary Care MedicineFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Yan Li
- Department of Cardiovascular MedicineShanghai Institute of HypertensionShanghai Key Laboratory of HypertensionState Key Laboratory of Medical GenomicsNational Research Centre for Translational MedicineRuijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Huynh Van Minh
- Department of CardiologyUniversity of Medicine and PharmacyHue UniversityHue CityThua Thien‐HueVietnam
| | - Saulat Siddique
- Department of CardiologyFatima Memorial HospitalLahorePakistan
| | - Apichard Sukonthasarn
- Cardiology DivisionDepartment of Internal MedicineFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Jam Chin Tay
- Department of General MedicineTan Tock Seng HospitalSingaporeSingapore
| | - Yuda Turana
- Faculty of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaJakartaIndonesia
| | - Narsingh Verma
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineShimotsukeTochigiJapan
| | - Kazuomi Kario
- Department of PhysiologyKing George's Medical UniversityLucknowIndia
| | - Tzung‐Dau Wang
- Cardiovascular Center and Division of CardiologyDepartment of Internal MedicineNational Taiwan University HospitalNational Taiwan University College of MedicineTaipeiTaiwan
- Division of Hospital MedicineDepartment of Internal MedicineNational Taiwan University HospitalNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
9
|
Present Evidence of Determinants to Predict the Efficacy of Renal Denervation. Int J Hypertens 2022; 2022:5694127. [PMID: 35992203 PMCID: PMC9391193 DOI: 10.1155/2022/5694127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Sympathetic overactivation is one of the main contributors to development and progress of hypertension. Renal denervation (RDN) has been evidenced by series of clinical trials for its efficacy and safety to treat overactivated sympathetic nervous system induced diseases. However, the results were inconsistent and not all patients benefited from RDN. Appropriate patient selection and intraoperative factors to improve the efficacy of RDN need to be solved urgently. Over the decade, research studies on the correlations between indicators and the antihypertensive effects have been conducted and made a fairly well progress. Herein, we comprehensively reviewed the research studies on how to make RDN more predictable or improve the efficacy of RDN and summarized these potential indicators or devices which might be applied in clinical settings.
Collapse
|
10
|
Hoogerwaard AF, Adiyaman A, de Jong MR, Smit JJJ, Heeg JE, van Hasselt BAAM, Elvan A. Renal nerve stimulation: complete versus incomplete renal sympathetic denervation. Blood Press 2021; 30:376-385. [PMID: 34647513 DOI: 10.1080/08037051.2021.1982376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Blood pressure (BP) reduction after renal sympathetic denervation (RDN) is highly variable. Renal nerve stimulation (RNS) can localize sympathetic nerves. The RNS trial aimed to investigate the medium-term BP-lowering effects of the use of RNS during RDN, and explore if RNS can check the completeness of the denervation. MATERIAL AND METHODS Forty-four treatment-resistant hypertensive patients were included in the prospective, single-center RNS trial. The primary study endpoint was change in 24-h BP at 6- to 12-month follow-up after RDN. The secondary study endpoints were the acute procedural RNS-induced BP response before and after RDN; number of antihypertensive drugs at follow-up; and the correlation between the RNS-induced BP increase before versus after RDN (delta [Δ] RNS-induced BP). RESULTS Before RDN, the RNS-induced systolic BP rise was 43(±21) mmHg, and decreased to 9(±12) mmHg after RDN (p < 0.001). Mean 24-h systolic/diastolic BP decreased from 147(±12)/82(±11) mmHg at baseline to 135(±11)/76(±10) mmHg (p < 0.001/<0.001) at follow-up (10 [6-12] months), with 1 antihypertensive drug less compared to baseline. The Δ RNS-induced BP and the 24-h BP decrease at follow-up were correlated for systolic (R = 0.44, p = 0.004) and diastolic (R = 0.48, p = 0.003) BP. Patients with ≤0 mmHg residual RNS-induced BP response after RDN had a significant lower mean 24-h systolic BP at follow-up compared to the patients with >0 mmHg residual RNS-induced BP response (126 ± 4 mmHg versus 135 ± 10 mmHg, p = 0.04). 83% of the patients with ≤0 mmHg residual RNS-induced BP response had normal 24-h BP at follow-up, compared to 33% in the patients with >0 mmHg residual RNS-induced BP response (p = 0.023). CONCLUSION The use of RNS during RDN leads to clinically significant and sustained lowering of 24-h BP with fewer antihypertensive drugs at follow-up. RNS-induced BP changes were correlated with 24-h BP changes at follow-up. Moreover, patients with complete denervation had significant lower BP compared to the patients with incomplete denervation.
Collapse
Affiliation(s)
| | - Ahmet Adiyaman
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | - Mark R de Jong
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | - Jaap-Jan J Smit
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | - Jan-Evert Heeg
- Department of Internal Medicine, Isala Hospital, Zwolle, The Netherlands
| | | | - Arif Elvan
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| |
Collapse
|
11
|
Zhou H, Li Y, Xu Y, Liu H, Lai Y, Tan K, Liu X, Ou Z, Chen W, Du H, Liu Z, Yin Y. Mapping Renal Innervations by Renal Nerve Stimulation and Characterizations of Blood Pressure Response Patterns. J Cardiovasc Transl Res 2021; 15:29-37. [PMID: 34282540 DOI: 10.1007/s12265-021-10149-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Increased sympathetic nervous activity is one of main contributors to pathogenesis and progression of hypertension. Renal denervation (RDN) has been demonstrated as a potential therapy for treatment of hypertension; however, lack of indicators of intra-/post-procedure results in inconsistent clinical outcomes. Renal nerve stimulation (RNS), a simple and promising method, could evoke elevated blood pressure as an intraoperative indicator for RDN. But related researches on patterns of blood pressure responses to RNS are still incomplete. To investigate and categorize the phenotypes of blood pressure response to RNS and heart rate alteration before and after RNS, 24 Chinese Kunming dogs were used to perform RNS from bifurcation to ostium of renal arteries after angiography, and a total of 483 stimulated sites were complete. We identified five different patterns of blood pressure response to RNS in 483 stimulated sites, (1) continuous ascending and finally keeping steady above baseline (26.9%), (2) declining and then rising over baseline (11.8%), (3) declining and then rising but below baseline (14.5%), (4) fluctuating in the vicinity of baseline (39.5%), and (5) continuous declining and finally keeping steady below baseline (7.2%), and found no difference in RR intervals among five blood pressure responses before and after renal nerve stimulation. Renal nerve stimulation could elicit different patterns of blood pressure response, which could potentially assist in distinguishing sympathetic-excitatory sites and sympathetic-inhibitory sites from mixed nerve components, which might help to improve the efficacy of RDN.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Yidan Li
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Yanping Xu
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Hang Liu
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Yinchuan Lai
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Kunyue Tan
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Xueyuan Liu
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Zhenhong Ou
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Weijie Chen
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Huaan Du
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Zengzhang Liu
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China.
| |
Collapse
|
12
|
Mahfoud F, Azizi M, Ewen S, Pathak A, Ukena C, Blankestijn PJ, Böhm M, Burnier M, Chatellier G, Durand Zaleski I, Grassi G, Joner M, Kandzari DE, Kirtane A, Kjeldsen SE, Lobo MD, Lüscher TF, McEvoy JW, Parati G, Rossignol P, Ruilope L, Schlaich MP, Shahzad A, Sharif F, Sharp ASP, Sievert H, Volpe M, Weber MA, Schmieder RE, Tsioufis C, Wijns W. Proceedings from the 3rd European Clinical Consensus Conference for clinical trials in device-based hypertension therapies. Eur Heart J 2021; 41:1588-1599. [PMID: 32211888 PMCID: PMC7174031 DOI: 10.1093/eurheartj/ehaa121] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Felix Mahfoud
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michel Azizi
- Université de Paris, INSERM CIC1418, F-75015 Paris, France.,APHP, Hôpital Européen Georges Pompidou, Hypertension Unit, F-75015 Paris, France.,F-CRIN INI-CRCT Network, Nancy, France
| | - Sebastian Ewen
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany
| | - Atul Pathak
- F-CRIN INI-CRCT Network, Nancy, France.,Department of Cardivascular Medicine, INSERM 1048, Princess Grace Hospital (CHPG), Avenue Pasteur, 98000 Monaco, Monaco
| | - Christian Ukena
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany
| | | | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany
| | | | - Gilles Chatellier
- Université de Paris, INSERM CIC1418, F-75015 Paris, France.,APHP, Hôpital Européen Georges Pompidou, Clinical Trial Unit, F-75015 Paris, France
| | | | - Guido Grassi
- Clinica Medica, University of Milano Bicocca, Milan, Italy
| | - Michael Joner
- Deutsches Herzzentrum München, Munich, Germany.,Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | | | - Ajay Kirtane
- Columbia University Irving Medical Center/NewYork-Presbyterian Hospital and the Cardiovascular Research Foundation, New York, NY, USA
| | | | - Melvin D Lobo
- William Harvey Research Institute, Centre for Clinical Pharmacology, Barts NIHR Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, Zürich, Switzerland.,Royal Brompton and Harefield Hospital Trust, Imperial College London, London, UK
| | | | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca-Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | - Patrick Rossignol
- F-CRIN INI-CRCT Network, Nancy, France.,Université de Lorraine, Inserm, Centre d'Investigations cliniques-plurithématique 1433, Inserm U1116, Nancy, France.,CHRU Nancy, Nancy, France
| | - Luis Ruilope
- Institute of Research i+12 and CIBER CV, Hospital 12 de Octubre and Faculty of Sport Medicine, European University, Madrid, Spain
| | - Markus P Schlaich
- Dobney Hypertension Centre, The University of Western Australia-Royal Perth Hospital Campus, Perth, Australia.,Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Atif Shahzad
- National University of Ireland Galway, Galway, Ireland.,Galway University Hospital, Galway, Ireland
| | - Faisal Sharif
- National University of Ireland Galway, Galway, Ireland.,Galway University Hospital, Galway, Ireland
| | - Andrew S P Sharp
- University Hospital of Wales, Cardiff, UK.,University of Exeter, Exeter, UK
| | - Horst Sievert
- CardioVascular Center Frankfurt CVC, Frankfurt, Germany.,Anglia Ruskin University, Chelmsford, UK.,University California San Francisco UCSF, San Francisco, USA.,Yunnan Hospital Fuwai, Kunming, China
| | - Massimo Volpe
- Sapienza University of Rome-Sant'Andrea Hospital Rome and IRCCS Neuromed, Pozzilli, Italy
| | | | - Roland E Schmieder
- Department of Nephrology and Hypertension, University Hospital, Erlangen, Germany
| | - Costas Tsioufis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - William Wijns
- The Lambe Institute for Translational Medicine, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
13
|
Miroslawska AK, Gjessing PF, Solbu MD, Norvik JV, Fuskevåg OM, Hanssen TA, Steigen TK. Metabolic effects two years after renal denervation in insulin resistant hypertensive patients. The Re-Shape CV-risk study. Clin Nutr 2021; 40:1503-1509. [PMID: 33743285 DOI: 10.1016/j.clnu.2021.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/18/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Denervation of renal sympathetic nerves (RDN) is an invasive endovascular procedure introduced as an antihypertensive treatment with a potential beneficial effect on insulin resistance (IR). We have previously demonstrated a reduction in blood pressure (BP) six months after RDN, but severe hepatic and peripheral IR, assessed by glucose tracer and two step hyperinsulinemic-euglycemic clamp (HEC), did not improve. The aim of the current study was to evaluate IR and adipokines profiles in relation to BP and arterial stiffness changes two years after RDN. METHODS In 20 non-diabetic patients with true treatment-resistant hypertension, ambulatory and office BP were measured after witnessed intake of medications prior to, six and 24 months after RDN. Arterial stiffness index (AASI) was calculated from ambulatory BP. Insulin sensitivity (IS) was assessed using an oral glucose tolerance test (OGTT), the Homeostasis Model Assessment (HOMA-IR), HOMA-Adiponectin Model Assessment (HOMA-AD), the Quantitative Insulin Sensitivity Check Index (QUICKI), the Triglyceride and Glucose Index (TyG) and the Leptin-to-Adiponectin Ratio (LAR). These surrogate indices of IS were compared with tracer/HEC measurements to identify which best correlated in this group of patients. RESULTS All measured metabolic variables and IS surrogate indices remained essentially unchanged two years after RDN apart from a significant increase in HOMA-AD. OGTT peak at 30 min correlated best with reduction in endogenous glucose release (EGR) during low insulin HEC (r = -0.6, p = 0.01), whereas HOMA-IR correlated best with whole-body glucose disposal (WGD) (r = -0.6, p = 0.01) and glucose infusion rate (r = -0.6, p = 0.01) during high insulin HEC. BP response was unrelated to IS prior to RDN. Nocturnal systolic BP and arterial stiffness before RDN correlated positively with a progression in hepatic IR at six-month follow-up. CONCLUSION IR, adiponectin and leptin did not improve two years after RDN. There was no correlation between baseline IS and BP response. Our study does not support the notion of a beneficial metabolic effect of RDN in patients with treatment resistant hypertension.
Collapse
Affiliation(s)
- A K Miroslawska
- Department of Cardiology, University Hospital of North Norway, Tromsø, Norway; Cardiovascular Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - P F Gjessing
- Gastrosurgery Research Group, UiT, The Arctic University of Norway, Norway
| | - M D Solbu
- Section of Nephrology, University Hospital of North Norway, Tromsø, Norway; Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - J V Norvik
- Section of Nephrology, University Hospital of North Norway, Tromsø, Norway; Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - O M Fuskevåg
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - T A Hanssen
- Department of Health and Care Sciences, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - T K Steigen
- Department of Cardiology, University Hospital of North Norway, Tromsø, Norway; Cardiovascular Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
14
|
Lauder L, Böhm M, Mahfoud F. The current status of renal denervation for the treatment of arterial hypertension. Prog Cardiovasc Dis 2021; 65:76-83. [PMID: 33587963 DOI: 10.1016/j.pcad.2021.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Despite the availability of safe and effective antihypertensive drugs, blood pressure (BP) control to guideline-recommended target values is poor. Several device-based therapies have been introduced to lower BP. The most extensively investigated approach is catheter-based renal sympathetic denervation (RDN), which aims to interrupt the activity of afferent and efferent renal sympathetic nerves by applying radiofrequency energy, ultrasound energy, or injection of alcohol in the perivascular space. The second generation of placebo-controlled trials have provided solid evidence for the BP-lowering efficacy of radiofrequency- and ultrasound-based RDN in patients with and without concomitant pharmacological therapy. In addition, the safety profile of RDN appears to be excellent in all registries and clinical trials. However, there remain unsolved issues to be addressed. This review summarizes the rationale as well as the current evidence and discusses open questions and possible future indications of catheter-based RDN.
Collapse
Affiliation(s)
- Lucas Lauder
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany; Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.
| |
Collapse
|
15
|
Song WH, Baik J, Choi EK, Lee HY, Kim HH, Park SM, Jeong CW. Quantitative analysis of renal arterial variations affecting the eligibility of catheter-based renal denervation using multi-detector computed tomography angiography. Sci Rep 2020; 10:19720. [PMID: 33184427 PMCID: PMC7665003 DOI: 10.1038/s41598-020-76812-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
Catheter-based renal denervation (RDN) was introduced to treat resistant hypertension. However, the reduction in blood pressure after the RDN was modest. Catheter-based RDN was performed only at main renal arteries, except for accessory and branch arteries due to the diameter being too small for the catheter to approach. Here, we retrospectively analyzed the anatomy of diverse renal arteries via 64-channel multi-detector computed tomography angiograms of 314 consecutive donors who underwent living donor nephrectomy from January 2012 to July 2017. Occurrence rates of one or more accessory renal arteries in donors were 25.3% and 19.4% on the left and right sides, respectively. Early branching rates before 25 mm from the aorta to the right and left renal arteries were 13.7% and 10.5%, respectively. Overall, 63.1% and 78.3% of donors had no accessory artery bilaterally and no branched renal artery, respectively. As a result, 47.1% had only main renal arteries without an accessory artery and early-branching artery. Approximately half of the donors had multiple small renal arteries bilaterally, for which catheter-based denervation may not be suitable. Thus, preoperative computed tomography angiography requires careful attention to patient selection, and there is a need for improved methods for denervation at various renal arteries.
Collapse
Affiliation(s)
- Won Hoon Song
- Department of Urology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Urology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Jinhwan Baik
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Eue-Keun Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hae-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sung-Min Park
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
16
|
|
17
|
Lateef N, Virk HU, Khan MS, Lakhter V, Haseeb A, Ahsan MJ, Mirza M, Rangaswami J, Zidar DA, Holmberg M, Janzer S. Role of renal sympathetic denervation in hypertension. Future Cardiol 2020; 16:211-216. [PMID: 32166965 DOI: 10.2217/fca-2019-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Noman Lateef
- Department of Medicine, Creighton University Medical Center, Omaha, NE 68124, USA
| | - Hafeez Uh Virk
- Department of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA
| | - Muhammad Shahzeb Khan
- Department of Medicine, John H Stroger Jr. Hospital of Cook County, Chicago, IL 60612, USA
| | - Vladimir Lakhter
- Department of Cardiovascular Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Abdul Haseeb
- Department of Medicine, Wright Center of Graduate Medical Education, Scranton, PA 18505, USA
| | | | - Mohsin Mirza
- Department of Medicine, Creighton University Medical Center, Omaha, NE 68124, USA
| | - Janani Rangaswami
- Department of Nephrology, Einstein Medical Center, Philadelphia, PA 19141, USA
| | - David A Zidar
- Division of Cardiovascular Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Mark Holmberg
- Division of Cardiovascular Medicine, Creighton University Medical Center, Omaha, NE 68124, USA
| | - Sean Janzer
- Department of Cardiology, Einstein Medical Center, Philadelphia, PA 19141 USA
| |
Collapse
|
18
|
Kario K, Kim BK, Aoki J, Wong AYT, Lee YH, Wongpraparut N, Nguyen QN, Ahmad WAW, Lim ST, Ong TK, Wang TD. Renal Denervation in Asia: Consensus Statement of the Asia Renal Denervation Consortium. Hypertension 2020; 75:590-602. [PMID: 32008432 PMCID: PMC8032219 DOI: 10.1161/hypertensionaha.119.13671] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Asia Renal Denervation Consortium consensus conference of Asian physicians actively performing renal denervation (RDN) was recently convened to share up-to-date information and regional perspectives, with the goal of consensus on RDN in Asia. First- and second-generation trials of RDN have demonstrated the efficacy and safety of this treatment modality for lowering blood pressure in patients with resistant hypertension. Considering the ethnic differences of the hypertension profile and demographics of cardiovascular disease demonstrated in the SYMPLICITY HTN (Renal Denervation in Patients With Uncontrolled Hypertension)-Japan study and Global SYMPLICITY registry data from Korea and Taiwan, RDN might be an effective hypertension management strategy in Asia. Patient preference for device-based therapy should be considered as part of a shared patient-physician decision process. A practical population for RDN treatment could consist of Asian patients with uncontrolled essential hypertension, including resistant hypertension. Opportunities to refine the procedure, expand the therapy to other sympathetically mediated diseases, and explore the specific effects on nocturnal and morning hypertension offer a promising future for RDN. Based on available evidence, RDN should not be considered a therapy of last resort but as an initial therapy option that may be applied alone or as a complementary therapy to antihypertensive medication.
Collapse
Affiliation(s)
- Kazuomi Kario
- From the Department of Cardiovascular Medicine, Jichi Medical University School of Medicine, Tokyo, Japan (K.K.)
| | - Byeong-Keuk Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (B.-K.K.)
| | - Jiro Aoki
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan (J.A.)
| | - Anthony Yiu-tung Wong
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, HKSAR (A.Y.-T.W.)
| | - Ying-Hsiang Lee
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan (Y.-H.L.)
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan (Y.-H.L.)
| | - Nattawut Wongpraparut
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (N.W.)
| | - Quang Ngoc Nguyen
- Department of Cardiology, Hanoi Medical University, Vietnam (Q.N.N.)
| | - Wan Azman Wan Ahmad
- Division of Cardiology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia (W.A.W.A)
| | - Soo Teik Lim
- Department of Cardiology, National Heart Center, Singapore (S.T.L.)
| | - Tiong Kiam Ong
- Department of Cardiology, Sarawak Heart Centre, Malaysia (T.K.O.)
| | - Tzung-Dau Wang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (T.-D.W.)
| |
Collapse
|
19
|
Gupta A, Prince M, Bob-Manuel T, Jenkins JS. Renal denervation: Alternative treatment options for hypertension? Prog Cardiovasc Dis 2019; 63:51-57. [PMID: 31884099 DOI: 10.1016/j.pcad.2019.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Hypertension affects millions of Americans and has adverse long-term consequences increasing morbidity and mortality. Resistant hypertension (RH) continues to be difficult to treat with medications alone which may be associated with significant side effects. Alternate therapies have been evaluated for treating RH and renal denervation has been investigated extensively. We review the data from renal denervation trials and other novel technologies which are not FDA approved to date.
Collapse
Affiliation(s)
- Aashish Gupta
- Department of Cardiology at Ochsner Clinic Foundation, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, United States of America.
| | - Marloe Prince
- Department of Cardiology at Ochsner Clinic Foundation, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, United States of America
| | - Tamunoinemi Bob-Manuel
- Department of Cardiology at Ochsner Clinic Foundation, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, United States of America
| | - J Stephen Jenkins
- Department of Cardiology at Ochsner Clinic Foundation, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, United States of America
| |
Collapse
|
20
|
Selective renal denervation guided by renal nerve stimulation: mapping renal nerves for unmet clinical needs. J Hum Hypertens 2019; 33:716-724. [DOI: 10.1038/s41371-019-0244-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023]
|
21
|
Liu H, Chen W, Lai Y, Du H, Wang Z, Xu Y, Ling Z, Fan J, Xiao P, Zhang B, Wang J, Gyawali L, Zrenner B, Woo K, Yin Y. Selective Renal Denervation Guided by Renal Nerve Stimulation in Canine. Hypertension 2019; 74:536-545. [DOI: 10.1161/hypertensionaha.119.12680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Renal nerve stimulation (RNS) can result in substantial blood pressure (BP) elevation, and the change was significantly blunted when repeated stimulation after ablation. However, whether RNS could provide a meaningful renal nerve mapping for identification of optimal ablation targets in renal denervation (RDN) is not fully clear. Here, we compared the antihypertensive effects of selective RDN guided by two different BP responses to RNS and explored the nerve innervations at these sites in Kunming dogs. Our data indicated that ablation at strong-response sites showed a more systolic BP-lowering effect than at weak-response sites (
P
=0.002), as well as lower levels of tyrosine hydroxylase and norepinephrine in kidney and a greater reduction in plasma norepinephrine (
P
=0.004 for tyrosine hydroxylase,
P
=0.002 for both renal and plasma norepinephrine). Strong-response sites showed a greater total area and mean number of renal nerves than weak-response sites (
P
=0.012 for total area and
P
<0.001 for mean number). Systolic BP-elevation response to RNS before RDN and blunted systolic BP-elevation to RNS after RDN were correlated with systolic BP changes at 4 weeks follow-up (
R
=0.649;
P
=0.012 and
R
=0.643;
P
=0.013). Changes of plasma norepinephrine and renal norepinephrine levels at 4 weeks were also correlated with systolic BP changes at 4 weeks (
R
=0.837,
P
<0.001 and
R
=0.927,
P
<0.001). These data suggest that selective RDN at sites with strong BP-elevation response to RNS could lead to a more efficient RDN. RNS is an effective method to identify the nerve-enriched area during RDN procedure and improve the efficacy of RDN.
Collapse
Affiliation(s)
- Hang Liu
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Weijie Chen
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Yinchuan Lai
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Huaan Du
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Zihao Wang
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Yanping Xu
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Zhiyu Ling
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Jinqi Fan
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Peilin Xiao
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Bo Zhang
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Jie Wang
- Department of Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY (J.W.)
| | - Laxman Gyawali
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Bernhard Zrenner
- Medizinische Klinik I, Krankenhaus Landshut/Achdorf, Germany (B.Z.)
| | - Kamsang Woo
- Institute of Future Cities, the Chinese University of Hong Kong, China (K.W.)
| | - Yuehui Yin
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| |
Collapse
|
22
|
Waldron NH, Fudim M, Mathew JP, Piccini JP. Neuromodulation for the Treatment of Heart Rhythm Disorders. JACC Basic Transl Sci 2019; 4:546-562. [PMID: 31468010 PMCID: PMC6712352 DOI: 10.1016/j.jacbts.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Derangement of autonomic nervous signaling is an important contributor to cardiac arrhythmogenesis. Modulation of autonomic nervous signaling holds significant promise for the prevention and treatment of cardiac arrhythmias. Further clinical investigation is necessary to establish the efficacy and safety of autonomic modulatory therapies in reducing cardiac arrhythmias.
There is an increasing recognition of the importance of interactions between the heart and the autonomic nervous system in the pathophysiology of arrhythmias. These interactions play a role in both the initiation and maintenance of arrhythmias and are important in both atrial and ventricular arrhythmia. Given the importance of the autonomic nervous system in the pathophysiology of arrhythmias, there has been notable effort in the field to improve existing therapies and pioneer additional interventions directed at cardiac-autonomic targets. The interventions are targeted to multiple and different anatomic targets across the neurocardiac axis. The purpose of this review is to provide an overview of the rationale for neuromodulation in the treatment of arrhythmias and to review the specific treatments under evaluation and development for the treatment of both atrial fibrillation and ventricular arrhythmias.
Collapse
Key Words
- AERP, atrial effective refractory period
- AF, atrial fibrillation
- AGP, autonomic ganglionic plexus
- ANS, autonomic nervous system
- CABG, coronary artery bypass grafting
- HRV, heart rate variability
- ICD, implantable cardioverter-defibrillator
- LLVNS, low-level vagal nerve stimulation
- OSA, obstructive sleep apnea
- POAF, post-operative atrial fibrillation
- PVI, pulmonary vein isolation
- RDN, renal denervation
- SCS, spinal cord stimulation
- SGB, stellate ganglion blockade
- SNS, sympathetic nervous system
- VF, ventricular fibrillation
- VNS, vagal nerve stimulation
- VT, ventricular tachycardia
- arrhythmia
- atrial fibrillation
- autonomic nervous system
- ganglionated plexi
- neuromodulation
- ventricular arrhythmias
Collapse
Affiliation(s)
- Nathan H Waldron
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Jonathan P Piccini
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
23
|
Electrical stimulation-based renal nerve mapping exacerbates ventricular arrhythmias during acute myocardial ischaemia. J Hypertens 2019; 36:1342-1350. [PMID: 29621066 DOI: 10.1097/hjh.0000000000001712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Blood pressure elevation in response to transient renal nerve stimulation (RNS) has been used to determine the ablation target and endpoint of renal denervation. This study aimed to evaluate the safety of transient RNS in canines with normal or ischaemic hearts. METHODS In ten normal (Group 1) and six healed myocardial infarction (HMI) (Group 2) canines, a large-tip catheter was inserted into the left or right renal artery to perform transient RNS. The left stellate ganglion neural activity (LSGNA) and ventricular electrophysiological parameters were measured at baseline and during transient RNS. In another 20 acute myocardial infarction (AMI) canines, RNS (Group 3, n = 10) or sham RNS (Group 4, n = 10) was intermittently (1 min ON and 4 min OFF) performed for 1 h following AMI induction. The LSGNA and AMI-induced ventricular arrhythmias were analysed. RESULTS In normal and HMI canines, although transient RNS significantly increased the LSGNA and facilitated the action potential duration (APD) alternans, it did not induce any ventricular arrhythmias and did not change the ventricular effective refractory period, APD or maximum slope of the APD restitution curve. In AMI canines, transient RNS significantly exacerbated LSG activation and promoted the incidence of ventricular arrhythmias. CONCLUSION Transient RNS did not increase the risk of ventricular arrhythmias in normal or HMI hearts, but it significantly promoted the occurrence of ventricular arrhythmias in AMI hearts. Therefore, electrical stimulation-based renal nerve mapping may be unsafe in AMI patients and in patients with a high risk for malignant ventricular arrhythmias.
Collapse
|
24
|
Qian PC, Barry MA, Lu J, Pouliopoulos J, Mina A, Bandodkar S, Alvarez S, James V, Ronquillo J, Varikatt W, Thiagalingam A, Thomas SP. Transvascular Pacing of Aorticorenal Ganglia Provides a Testable Procedural Endpoint for Renal Artery Denervation. JACC Cardiovasc Interv 2019; 12:1109-1120. [DOI: 10.1016/j.jcin.2019.04.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
|
25
|
Hoogerwaard AF, Elvan A. Is renal denervation still a treatment option in cardiovascular disease? Trends Cardiovasc Med 2019; 30:189-195. [PMID: 31147257 DOI: 10.1016/j.tcm.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/19/2022]
Abstract
The role of renal sympathetic denervation (RDN) has been the topic of ongoing debate ever since the impressive initial results. The rationale of RDN is strong and supported by non-clinical studies, which lies in uncoupling the autonomic nervous crosstalk between the kidneys and the central nervous system. Since we know that cardiovascular diseases, such as hypertension, atrial, ventricular arrhythmias and heart failure (HF) are related to sympathetic (over)activity, modulation of the renal nerve activity appears to be a reasonable and attractive therapeutic target in these patients. This review will focus on the existing evidence and potential future perspectives for RDN as treatment option in cardiovascular disease.
Collapse
Affiliation(s)
- Annemiek F Hoogerwaard
- Department of Cardiology, Isala Heart Centre, Isala Hospital, Dr. Van Heesweg 2, 8025 AB Zwolle, The Netherlands
| | - Arif Elvan
- Department of Cardiology, Isala Heart Centre, Isala Hospital, Dr. Van Heesweg 2, 8025 AB Zwolle, The Netherlands.
| |
Collapse
|
26
|
Blood pressure response to renal denervation is correlated with baseline blood pressure variability: a patient-level meta-analysis. J Hypertens 2019; 36:221-229. [PMID: 29045339 DOI: 10.1097/hjh.0000000000001582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sympathetic tone is one of the main determinants of blood pressure (BP) variability and treatment-resistant hypertension. The aim of our study was to assess changes in BP variability after renal denervation (RDN). In addition, on an exploratory basis, we investigated whether baseline BP variability predicted the BP changes after RDN. METHODS We analyzed 24-h BP recordings obtained at baseline and 6 months after RDN in 167 treatment-resistant hypertension patients (40% women; age, 56.7 years; mean 24-h BP, 152/90 mmHg) recruited at 11 expert centers. BP variability was assessed by weighted SD [SD over time weighted for the time interval between consecutive readings (SDiw)], average real variability (ARV), coefficient of variation, and variability independent of the mean (VIM). RESULTS Mean office and 24-h BP fell by 15.4/6.6 and 5.5/3.7 mmHg, respectively (P < 0.001). In multivariable-adjusted analyses, systolic/diastolic SDiw and VIM for 24-h SBP/DBP decreased by 1.18/0.63 mmHg (P ≤ 0.01) and 0.86/0.42 mmHg (P ≤ 0.05), respectively, whereas no significant changes in ARV or coefficient of variation occurred. Furthermore, baseline SDiw (P = 0.0006), ARV (P = 0.01), and VIM (P = 0.04) predicted the decrease in 24-h DBP but not 24-h SBP after RDN. CONCLUSION RDN was associated with a decrease in BP variability independent of the BP level, suggesting that responders may derive benefits from the reduction in BP variability as well. Furthermore, baseline DBP variability estimates significantly correlated with mean DBP decrease after RDN. If confirmed in younger patients with less arterial damage, in the absence of the confounding effect of drugs and drug adherence, baseline BP variability may prove a good predictor of BP response to RDN.
Collapse
|
27
|
Affiliation(s)
- Reetu R Singh
- From the Department of Physiology, Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kate M Denton
- From the Department of Physiology, Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
28
|
Tsioufis KP, Feyz L, Dimitriadis K, Konstantinidis D, Tousoulis D, Voskuil M, Mahfoud F, Daemen J. Safety and performance of diagnostic electrical mapping of renal nerves in hypertensive patients. EUROINTERVENTION 2018; 14:e1334-e1342. [DOI: 10.4244/eij-d-18-00536] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Renal sympathetic denervation induces changes in heart rate variability and is associated with a lower sympathetic tone. Clin Res Cardiol 2018; 108:22-30. [DOI: 10.1007/s00392-018-1307-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
|
30
|
Jiman AA, Chhabra KH, Lewis AG, Cederna PS, Seeley RJ, Low MJ, Bruns TM. Electrical stimulation of renal nerves for modulating urine glucose excretion in rats. Bioelectron Med 2018; 4:7. [PMID: 32232083 PMCID: PMC7098252 DOI: 10.1186/s42234-018-0008-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of the kidney in glucose homeostasis has gained global interest. Kidneys are innervated by renal nerves, and renal denervation animal models have shown improved glucose regulation. We hypothesized that stimulation of renal nerves at kilohertz frequencies, which can block propagation of action potentials, would increase urine glucose excretion. Conversely, we hypothesized that low frequency stimulation, which has been shown to increase renal nerve activity, would decrease urine glucose excretion. METHODS We performed non-survival experiments on male rats under thiobutabarbital anesthesia. A cuff electrode was placed around the left renal artery, encircling the renal nerves. Ureters were cannulated bilaterally to obtain urine samples from each kidney independently for comparison. Renal nerves were stimulated at kilohertz frequencies (1-50 kHz) or low frequencies (2-5 Hz), with intravenous administration of a glucose bolus shortly into the 25-40-min stimulation period. Urine samples were collected at 5-10-min intervals, and colorimetric assays were used to quantify glucose excretion and concentration between stimulated and non-stimulated kidneys. A Kruskal-Wallis test was performed across all stimulation frequencies (α = 0.05), followed by a post-hoc Wilcoxon rank sum test with Bonferroni correction (α = 0.005). RESULTS For kilohertz frequency trials, the stimulated kidney yielded a higher average total urine glucose excretion at 33 kHz (+ 24.5%; n = 9) than 1 kHz (- 5.9%; n = 6) and 50 kHz (+ 2.3%; n = 14). In low frequency stimulation trials, 5 Hz stimulation led to a lower average total urine glucose excretion (- 40.4%; n = 6) than 2 Hz (- 27.2%; n = 5). The average total urine glucose excretion between 33 kHz and 5 Hz was statistically significant (p < 0.005). Similar outcomes were observed for urine flow rate, which may suggest an associated response. No trends or statistical significance were observed for urine glucose concentrations. CONCLUSION To our knowledge, this is the first study to investigate electrical stimulation of renal nerves to modulate urine glucose excretion. Our experimental results show that stimulation of renal nerves may modulate urine glucose excretion, however, this response may be associated with urine flow rate. Future work is needed to examine the underlying mechanisms and identify approaches for enhancing regulation of glucose excretion.
Collapse
Affiliation(s)
- Ahmad A. Jiman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI USA
| | - Kavaljit H. Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Alfor G. Lewis
- Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Surgery, Plastic Surgery Section, Michigan Medicine, Ann Arbor, MI USA
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Tim M. Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
31
|
Hoogerwaard AF, Adiyaman A, de Jong MR, Smit JJJ, Delnoy PPHM, Heeg JE, van Hasselt BAAM, Ramdat Misier AR, Rienstra M, Elvan A. Changes in arterial pressure hemodynamics in response to renal nerve stimulation both before and after renal denervation. Clin Res Cardiol 2018; 107:1131-1138. [DOI: 10.1007/s00392-018-1287-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022]
|
32
|
Tsioufis C, Dimitriadis K, Tsioufis P, Patras R, Papadoliopoulou M, Petropoulou Z, Konstantinidis D, Tousoulis D. ConfidenHT™ System for Diagnostic Mapping of Renal Nerves. Curr Hypertens Rep 2018; 20:49. [DOI: 10.1007/s11906-018-0847-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Fudim M, Sobotka AA, Yin YH, Wang JW, Levin H, Esler M, Wang J, Sobotka PA. Selective vs. Global Renal Denervation: a Case for Less Is More. Curr Hypertens Rep 2018; 20:37. [PMID: 29717380 DOI: 10.1007/s11906-018-0838-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Review the renal nerve anatomy and physiology basics and explore the concept of global vs. selective renal denervation (RDN) to uncover some of the fundamental limitations of non-targeted renal nerve ablation and the potential superiority of selective RDN. RECENT FINDINGS Recent trials testing the efficacy of RDN showed mixed results. Initial investigations targeted global RDN as a therapeutic goal. The repeat observation of heterogeneous response to RDN including non-responders with lack of a BP reduction, or even more unsettling, BP elevations after RDN has raised concern for the detrimental effects of unselective global RDN. Subsequent studies have suggested the presence of a heterogeneous fiber population and the potential utility of renal nerve stimulation to identify sympatho-stimulatory fibers or "hot spots." The recognition that RDN can produce heterogeneous afferent sympathetic effects both change therapeutic goals and revitalize the potential of therapeutic RDN to provide significant clinical benefits. Renal nerve stimulation has emerged as potential tool to identify sympatho-stimulatory fibers, avoid sympatho-inhibitory fibers, and thus guide selective RDN.
Collapse
Affiliation(s)
- Marat Fudim
- Duke University Medical Center, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | | | - Yue-Hui Yin
- The 2nd Affiliated Hospital of Chongqing Medical University, Chongqin, China
| | | | | | - Murray Esler
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jie Wang
- Columbia University, New York, NY, USA.,SyMap Medical Ltd., Suzhou, China
| | | |
Collapse
|
34
|
de Jong MR, Hoogerwaard AF, Adiyaman A, Smit JJJ, Heeg JE, van Hasselt BAAM, Misier ARR, Elvan A. Renal nerve stimulation identifies aorticorenal innervation and prevents inadvertent ablation of vagal nerves during renal denervation. Blood Press 2018; 27:271-279. [DOI: 10.1080/08037051.2018.1463817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mark R. de Jong
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | | | - Ahmet Adiyaman
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | - Jaap Jan J. Smit
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | - Jan-Evert Heeg
- Department of Internal Medicine, Isala Hospital, Zwolle, The Netherlands
| | | | | | - Arif Elvan
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| |
Collapse
|
35
|
Hoogerwaard AF, de Jong MR, Elvan A. Renal Nerve Stimulation as Procedural End Point for Renal Sympathetic Denervation. Curr Hypertens Rep 2018; 20:24. [PMID: 29556850 DOI: 10.1007/s11906-018-0821-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Renal sympathetic denervation (RDN) as treatment option for hypertension has a strong rationale; however, variable effects on blood pressure (BP) have been reported ranging from non-response to marked reductions in BP. The absence of a procedural end point for RDN is one of the potential factors associated with the variable response. Studies have suggested the use of renal nerve stimulation (RNS) to adequately address this issue. This review aims to provide an overview of the clinical and experimental data available regarding the effects of RNS in the setting of RDN. RECENT FINDINGS Animal studies have shown that high-frequency electrical stimulation of the sympathetic nerves in the adventitia of the renal arteries elicits an increase in BP and leads to an increased norepinephrine spillover as a marker of increased sympathetic activity and these effects of stimulation were attenuated or blunted after RDN. In a human feasibility study using RNS both before and after RDN, similar BP responses were observed. Moreover, in patients with resistant hypertension, RNS-induced changes in BP appeared to be correlated with 24-h BP response after RDN. These data suggest that RNS is a useful tool to identify renal sympathetic nerve fibers in patients with treatment-resistant hypertension undergoing RDN, and to predict the likely effectiveness of RDN treatments. In acute procedural settings both in animal and human models, RNS elicits increase in BP and HR before RDN and these effects are blunted after RDN. Up to now, there is preliminary evidence that the RNS-induced BP changes predict 24-h ABPM outcome at follow-up in patients with resistant hypertension. Of note, studies are small sized and results of large trials comparing conventional RDN to RNS-guided RDN are warranted.
Collapse
Affiliation(s)
- Annemiek F Hoogerwaard
- Department of Cardiology, Isala Hospital, Dr. Van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - Mark R de Jong
- Department of Cardiology, Isala Hospital, Dr. Van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - Arif Elvan
- Department of Cardiology, Isala Hospital, Dr. Van Heesweg 2, 8025 AB, Zwolle, The Netherlands.
| |
Collapse
|
36
|
de Jong MR, Hoogerwaard AF, Adiyaman A, Smit JJJ, Ramdat Misier AR, Heeg JE, van Hasselt BAAM, Van Gelder IC, Crijns HJGM, Lozano IF, Toquero Ramos JE, Javier Alzueta F, Ibañez B, Rubio JM, Arribas F, Porres Aracama JM, Brugada J, Mont L, Elvan A. Treatment of atrial fibrillation in patients with enhanced sympathetic tone by pulmonary vein isolation or pulmonary vein isolation and renal artery denervation: clinical background and study design : The ASAF trial: ablation of sympathetic atrial fibrillation. Clin Res Cardiol 2018; 107:539-547. [PMID: 29487995 DOI: 10.1007/s00392-018-1214-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypertension is an important, modifiable risk factor for the development of atrial fibrillation (AF). Even after pulmonary vein isolation (PVI), 20-40% experience recurrent AF. Animal studies have shown that renal denervation (RDN) reduces AF inducibility. One clinical study with important limitations suggested that RDN additional to PVI could reduce recurrent AF. OBJECTIVE The goal of this multicenter randomized controlled study is to investigate whether RDN added to PVI reduces AF recurrence. METHODS The main end point is the time until first AF recurrence according to EHRA guidelines after a blanking period of 3 months. Assuming a 12-month accrual period and 12 months of follow-up, a power of 0.80, a two-sided alpha of 0.05 and an expected drop-out of 10% per group, 69 patients per group are required. We plan to randomize a total of 138 hypertensive patients with AF and signs of sympathetic overdrive in a 1:1 fashion. Patients should use at least two antihypertensive drugs. Sympathetic overdrive includes obesity, exercise-induced excessive blood pressure (BP) increase, significant white coat hypertension, hospital admission or fever induced AF, tachycardia induced AF and diabetes mellitus. The interventional group will undergo PVI + RDN and the control group will undergo PVI. RESULTS Patients will have follow-up for 1 year, and continuous loop monitoring is advocated. CONCLUSION This randomized, controlled study will elucidate if RDN on top of PVI reduces AF recurrence.
Collapse
Affiliation(s)
- Mark R de Jong
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | | | - Ahmet Adiyaman
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | - Jaap Jan J Smit
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | | | - Jan-Evert Heeg
- Department of Internal Medicine, Isala Hospital, Zwolle, The Netherlands
| | | | | | - Harry J G M Crijns
- Department of Cardiology, Maastricht Universitair Medisch Centrum, Maastricht, The Netherlands
| | - Ignacio Fernández Lozano
- Department of Arrhythmia Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Jorge E Toquero Ramos
- Department of Arrhythmia Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - F Javier Alzueta
- Department of Arrhythmia Unit, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Borja Ibañez
- Department of Cardiology, Hospital Fundación Jimenez Díaz, Madrid, Spain
| | - José M Rubio
- Department of Cardiology, Hospital Fundación Jimenez Díaz, Madrid, Spain
| | - Fernando Arribas
- Department of Cardiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Josep Brugada
- Arrhythmia Unit, Cardiovascular Institute, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Lluís Mont
- Arrhythmia Unit, Cardiovascular Institute, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Arif Elvan
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands.
| |
Collapse
|
37
|
Padmanabhan D, Isath A, Gersh B. Renal Denervation: Paradise Lost? Paradise Regained? US CARDIOLOGY REVIEW 2018. [DOI: 10.15420/usc.2018.1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Renal denervation is a relatively recent concept whose initial promising results suffered a setback following the SYMPLICITY 3 trial, which did not show a significant blood pressure-lowering effect in comparison to sham. In this review article, we begin with the history including the physiological basis behind the concept of renal denervation. Furthermore, we review the literature in support of renal denervation, including the recently published SPYRAL HTN-OFF MED, which demonstrated significant blood pressure reduction in the absence of antihypertensive medication. We further touch upon the potential pitfalls and possible future directions of renal denervation.
Collapse
|
38
|
Luo Q, Jin Q, Zhang N, Huang S, Han Y, Lin C, Ling T, Chen K, Pan W, Wu L. Antifibrillatory effects of renal denervation on ventricular fibrillation in a canine model of pacing-induced heart failure. Exp Physiol 2017; 103:19-30. [PMID: 29094471 DOI: 10.1113/ep086472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Qingzhi Luo
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qi Jin
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Ning Zhang
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Shangwei Huang
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yanxin Han
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Changjian Lin
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Tianyou Ling
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Kang Chen
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wenqi Pan
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Liqun Wu
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
39
|
Barber-Chamoux N, Esler MD. Predictive factors for successful renal denervation: should we use them in clinical trials? Eur J Clin Invest 2017; 47:860-867. [PMID: 28771706 DOI: 10.1111/eci.12792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 07/29/2017] [Indexed: 01/01/2023]
Abstract
Renal denervation (RDN) is facing various challenges to its initial claimed value in hypertension treatment. Major concerns are the choice of the patients and the technical efficacy of the RDN. Different factors have been described as predicting the capacity of RDN to decrease blood pressure. These factors are related to the patients, the procedure and the tools to confirm successful neural ablation. Their use in future trials should help to improve RDN trials understanding and outcomes. This review summarizes the different predictive factors available and their potential benefits in patient selection and in procedure guidance.
Collapse
Affiliation(s)
- Nicolas Barber-Chamoux
- Cardiology Department, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.,Human Neurotransmitters Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Murray D Esler
- Human Neurotransmitters Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Vic., Australia.,Heart Centre, Alfred Hospital, Melbourne, Vic., Australia
| |
Collapse
|
40
|
Changes in renal artery dimensions are associated with clinical response to radiofrequency renal denervation: a series of studies using quantitative angiography and intravascular ultrasound. J Hypertens 2017; 35:2069-2076. [PMID: 28505064 DOI: 10.1097/hjh.0000000000001409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Renal denervation (RDN) can cause focal (notches) and global (spasms) changes in renal artery dimensions. We quantified these changes and related them to renal norepinephrin tissue content in animals and to blood pressure (BP) changes in patients. METHODS We measured renal artery dimensions pre-RDN and post-RDN, utilizing quantitative renal angiography (QRA) in a porcine model and in a retrospective patient cohort, and intravascular ultrasound (IVUS) in a prospective patient cohort. Focal and global measurements were minimum and mean diameter/area/volume with QRA, minimum lumen/vessel/wall area and volume with IVUS. BP was assessed with 24-h ambulatory monitoring, norepinephrin content with liquid chromatography. RESULTS In 36 pigs treated unilaterally with RDN, norepinephrin content of the treated right kidney was 48.2% of the untreated left kidney. QRA measurements following RDN were associated with norepinephrin content only of the (treated) right kidney. In the human QRA study (n = 43 patients), mean 24-h BP fell by 8/4 and 12/6 mmHg at 1 and 12 months, respectively. More pronounced changes in QRA measurements were associated with a more pronounced BP drop. In multiple regression models, the change in minimum diameter was independently associated with BP changes at 12 months. In the prospective IVUS study (n = 17 patients), a larger decrease in minimum lumen/vessel area and larger increase of wall area/volume were associated with a larger BP drop. CONCLUSION Focal and global changes in renal arteries following RDN can be quantified, using QRA or IVUS, and may serve as markers of a successful procedure.
Collapse
|
41
|
Jacobs L, Persu A, Huang QF, Lengelé JP, Thijs L, Hammer F, Yang WY, Zhang ZY, Renkin J, Sinnaeve P, Wei FF, Pasquet A, Fadl Elmula FEM, Carlier M, Elvan A, Wunder C, Kjeldsen SE, Toennes SW, Janssens S, Verhamme P, Staessen JA. Results of a randomized controlled pilot trial of intravascular renal denervation for management of treatment-resistant hypertension. Blood Press 2017; 26:321-331. [DOI: 10.1080/08037051.2017.1320939] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lotte Jacobs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Alexandre Persu
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Qi-Fang Huang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jean-Philippe Lengelé
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
- Department of Nephrology, Grand Hôpital de Charleroi, Gilly, Belgium
| | - Lutgarde Thijs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Frank Hammer
- Division of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wen-Yi Yang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jean Renkin
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Peter Sinnaeve
- Division of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Fang-Fei Wei
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Agnès Pasquet
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | - Marc Carlier
- Department of Cardiology, Grand Hôpital de Charleroi, Gilly, Belgium
| | - Arif Elvan
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | - Cora Wunder
- Department of Forensic Toxicology, Institute of Legal Medicine, University of Frankfurt, Frankfurt, Germany
| | - Sverre E. Kjeldsen
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Stefan W. Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, University of Frankfurt, Frankfurt, Germany
| | - Stefan Janssens
- Division of Cardiology, Department Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Peter Verhamme
- Division of Cardiology, Department Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jan A. Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- R&D Group VitaK, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
42
|
The future of renal denervation. Auton Neurosci 2017; 204:131-138. [DOI: 10.1016/j.autneu.2016.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/21/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
|
43
|
Renal denervation and hypertension - The need to investigate unintended effects and neural control of the human kidney. Auton Neurosci 2017; 204:119-125. [DOI: 10.1016/j.autneu.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023]
|
44
|
Procedural Reassessment of Radiofrequency Renal Denervation in Resistant Hypertensive Patients. High Blood Press Cardiovasc Prev 2017; 24:187-192. [PMID: 28374154 DOI: 10.1007/s40292-017-0197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Recent anatomical and clinical studies have led to the hypothesis that in several cases of failure of response to renal denervation (RDN), the procedure has not been technically correct. AIM To perform procedural reassessment in patients with true resistant hypertension who underwent RDN. METHODS We retrospectively reassessed the procedural technique of RDN in 10 true resistant hypertensive patients, comparing the sites of renal ablations with the knowledge of animal and human post mortem evidences. Procedural ablation technique was assessed in terms of number of ablations for each renal artery and site of ablation (quadrant and distance from renal ostium) by using the radiologic images of each RDN and the number of radiofrequency ablation attempts documented in the reports of each denervation session. RESULTS 10 patients were studied, 9 denervated with Simplicity monoelectrode catheter, 1 with multielectrode balloon technique. Responders to the procedure underwent more ablations and particularly at least a quadrant ablation in one of the kidney arteries, >2 ablations in Dorsal plus Ventral quadrants and in 67% of then >10 ablations were done in superior inferior and ventral quadrants. CONCLUSION This study confirms the importance of a well knowledge of renal artery anatomy and underlines the relevance of the choice of ablation sites in order to obtain a successful RDN procedure.
Collapse
|
45
|
Hoogerwaard AF, de Jong MR, Adiyaman A, Smit JJJ, Delnoy PP, Heeg JE, van Hasselt BA, Ramdat Misier AR, Elvan A. Renal vascular calcification and response to renal nerve denervation in resistant hypertension. Medicine (Baltimore) 2017; 96:e6611. [PMID: 28445258 PMCID: PMC5413223 DOI: 10.1097/md.0000000000006611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Renal sympathetic nerve denervation (RDN) is accepted as a treatment option for patients with resistant hypertension. However, results on decline in ambulatory blood pressure (BP) measurement (ABPM) are conflicting. The high rate of nonresponders may be related to increased systemic vascular stiffness rather than sympathetic overdrive. A single center, prospective registry including 26 patients with treatment resistant hypertension who underwent RDN at the Isala Hospital in the Netherlands. Renal perivascular calcium scores were obtained from noncontrast computed tomography scans. Patients were divided into 3 groups based on their calcium scores (group I: low 0-50, group II: intermediate 50-1000, and group III: high >1000). The primary end point was change in 24-hour ABPM at 6 months follow-up post-RDN compared to baseline. Seven patients had low calcium scores (group I), 13 patients intermediate (group II), and 6 patients had high calcium scores (group III). The groups differed significantly at baseline in age and baseline diastolic 24-hour ABPM. At 6-month follow-up, no difference in 24-hour systolic ABPM response was observed between the 3 groups; a systolic ABPM decline of respectively -9 ± 12, -6 ± 12, -12 ± 10 mm Hg was found. Also the decline in diastolic ambulatory and office systolic and diastolic BP was not significantly different between the 3 groups at follow-up. Our preliminary data showed that the extent of renal perivascular calcification is not associated with the ABPM response to RDN in patients with resistant hypertension.
Collapse
|
46
|
Beeftink MMA, Spiering W, De Jong MR, Doevendans PA, Blankestijn PJ, Elvan A, Heeg JE, Bots ML, Voskuil M. Renal denervation beyond the bifurcation: The effect of distal ablation placement on safety and blood pressure. J Clin Hypertens (Greenwich) 2017; 19:371-378. [DOI: 10.1111/jch.12989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/13/2016] [Accepted: 11/19/2016] [Indexed: 01/09/2023]
Affiliation(s)
| | - Wilko Spiering
- Department of Vascular Medicine; University Medical Center Utrecht; Utrecht the Netherlands
| | - Mark R. De Jong
- Department of Cardiology; Isala Hospital; Zwolle the Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology; University Medical Center Utrecht; Utrecht the Netherlands
| | - Peter J. Blankestijn
- Department of Nephrology; University Medical Center Utrecht; Utrecht the Netherlands
| | - Arif Elvan
- Department of Cardiology; Isala Hospital; Zwolle the Netherlands
| | - Jan-Evert Heeg
- Department of Internal Medicine; Isala Hospital; Zwolle the Netherlands
| | - Michiel L. Bots
- Julius Center for Health Sciences and Primary Care; University Medical Center Utrecht; Utrecht the Netherlands
| | - Michiel Voskuil
- Department of Cardiology; University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|
47
|
de Jong MR, Adiyaman A, Gal P, Smit JJJ, Delnoy PPH, Heeg JE, van Hasselt BA, Lau EO, Persu A, Staessen JA, Ramdat Misier AR, Steinberg JS, Elvan A. Renal Nerve Stimulation–Induced Blood Pressure Changes Predict Ambulatory Blood Pressure Response After Renal Denervation. Hypertension 2016; 68:707-14. [DOI: 10.1161/hypertensionaha.116.07492] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/19/2016] [Indexed: 11/16/2022]
Abstract
Blood pressure (BP) response to renal denervation (RDN) is highly variable and its effectiveness debated. A procedural end point for RDN may improve consistency of response. The objective of the current analysis was to look for the association between renal nerve stimulation (RNS)–induced BP increase before and after RDN and changes in ambulatory BP monitoring (ABPM) after RDN. Fourteen patients with drug-resistant hypertension referred for RDN were included. RNS was performed under general anesthesia at 4 sites in the right and left renal arteries, both before and immediately after RDN. RNS-induced BP changes were monitored and correlated to changes in ambulatory BP at a follow-up of 3 to 6 months after RDN. RNS resulted in a systolic BP increase of 50±27 mm Hg before RDN and systolic BP increase of 13±16 mm Hg after RDN (
P
<0.001). Average systolic ABPM was 153±11 mm Hg before RDN and decreased to 137±10 mm Hg at 3- to 6-month follow-up (
P
=0.003). Changes in RNS-induced BP increase before versus immediately after RDN and changes in ABPM before versus 3 to 6 months after RDN were correlated, both for systolic BP (
R
=0.77,
P
=0.001) and diastolic BP (
R
=0.79,
P
=0.001). RNS-induced maximum BP increase before RDN had a correlation of
R
=0.61 (
P
=0.020) for systolic and
R
=0.71 (
P
=0.004) for diastolic ABPM changes. RNS-induced BP changes before versus after RDN were correlated with changes in 24-hour ABPM 3 to 6 months after RDN. RNS should be tested as an acute end point to assess the efficacy of RDN and predict BP response to RDN.
Collapse
Affiliation(s)
- Mark R. de Jong
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Ahmet Adiyaman
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Pim Gal
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Jaap Jan J. Smit
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Peter Paul H.M. Delnoy
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Jan-Evert Heeg
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Boudewijn A.A.M. van Hasselt
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Elizabeth O.Y. Lau
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Alexandre Persu
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Jan A. Staessen
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Anand R. Ramdat Misier
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Jonathan S. Steinberg
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| | - Arif Elvan
- From the Departments of Cardiology, Internal Medicine, and Radiology, Isala Hospital, Zwolle, The Netherlands (M.R.d.J., A.A., P.G., J.J.J.S., P.P.H.M.D., J.-E.H., B.A.A.M.v.H., A.R.R.M., A.E.); Center for Innovation and Strategic Collaboration, St Jude Medical, Inc, Irvine, CA (E.O.Y.L.); Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P.); Division of Cardiology, Cliniques Universitaires Saint-Luc, Université
| |
Collapse
|
48
|
Chinushi M, Suzuki K, Saitoh O, Furushima H, Iijima K, Izumi D, Sato A, Sugai M, Iwafuchi M. Electrical stimulation–based evaluation for functional modification of renal autonomic nerve activities induced by catheter ablation. Heart Rhythm 2016; 13:1707-15. [DOI: 10.1016/j.hrthm.2016.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 11/15/2022]
|
49
|
Silva JD, Costa M, Gersh BJ, Gonçalves L. Renal denervation in the era of HTN-3. Comprehensive review and glimpse into the future. ACTA ACUST UNITED AC 2016; 10:656-70. [PMID: 27319336 DOI: 10.1016/j.jash.2016.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022]
Abstract
The pathophysiological role of sympathetic overactivity in conditions such as hypertension has been well documented. Catheter-based renal denervation (RDN) is a minimally invasive percutaneous procedure which aims to disrupt sympathetic nerve afferent and efferent activity through the application of radiofrequency energy directly within the renal artery wall. This technique has emerged as a very promising treatment with dramatic effects on refractory hypertension but also in other conditions in which a sympathetic influence is present. Several studies have evaluated the safety and efficacy of this procedure, presently surrounded by controversy since the recent outcome of Symplicity HTN-3, the first randomized, sham-control trial, which failed to confirm RDN previous reported benefits on BP and cardiovascular risk lowering. Consequently, although some centers halted their RDN programs, research continues and both the concept of denervation and treatment strategies are being redefined to identify patients who can drive the most benefit from this technology. In the United States, the Food and Drug Administration (FDA) has appropriately mandated that RDN remains an investigative procedure and a new generation of sham-controlled trials are ongoing and aimed to assess not only its efficacy against pharmacotherapy but also trials in drug free patients with the objective of demonstrating once and for all whether the procedure actually does lower BP in comparison to a placebo arm. In this article, we present an overview of the sympathetic nervous system and its role in hypertension, examine the current data on RDN, and share some insights and future expectations.
Collapse
Affiliation(s)
- Joana Delgado Silva
- Faculty of Medicine, University of Coimbra, Portugal; Department of Cardiology, Coimbra's Hospital and University Centre, General Hospital, Coimbra, Portugal.
| | - Marco Costa
- Department of Cardiology, Coimbra's Hospital and University Centre, General Hospital, Coimbra, Portugal
| | - Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Lino Gonçalves
- Faculty of Medicine, University of Coimbra, Portugal; Department of Cardiology, Coimbra's Hospital and University Centre, General Hospital, Coimbra, Portugal
| |
Collapse
|
50
|
Rothstein M. Commentary: Renal Nerve Denervation: Is Renervation an Issue? JACC Basic Transl Sci 2016; 1:296-297. [PMID: 30167518 PMCID: PMC6113336 DOI: 10.1016/j.jacbts.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022]
Affiliation(s)
- Marcos Rothstein
- Forest Park Kidney Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|