1
|
Guo E, Yuan H, Li R, Yang J, Liu S, Liu A, Jiang X. Calcitriol ameliorates the progression of hepatic fibrosis through autophagy-related gene 16-like 1-mediated autophagy. Am J Med Sci 2024; 367:382-396. [PMID: 38431191 DOI: 10.1016/j.amjms.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/23/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Calcitriol has the potential to counteract fibrotic diseases beyond its classical action of maintaining calcium and bone metabolism; however, its functional mechanism remains unknown. Autophagy-related gene 16-like 1 (Atg16l1) is one of the genes related to autophagy and is involved in protecting against fibrotic diseases. The present study aimed to explore the contribution of autophagy to the inhibition of calcitriol-induced hepatic fibrosis, as well as its potential molecular mechanism. METHODS Carbon tetrachloride (Ccl4)-treated mice were established as hepatic fibrosis models and received calcitriol treatment for 6 weeks. Quantification of Sirius red staining and measurement of key fibrotic markers (collagen-1 and α-SMA) was performed to detect hepatic fibrosis. Chloroquine (CQ) treatment was used to observe autophagic flux, and 3-methyladenine (3-MA) was used to inhibit autophagy. Furthermore, the effects of calcitriol on transforming growth factor β1 (TGFβ1)-stimulated primary hepatic stellate cells (HSCs) were detected. Downregulation of Atg16l1 or vitamin D receptor (VDR) in LX-2 cells was used to explore the mechanism of action of calcitriol in fibrosis and autophagy. Additionally, the electrophoretic mobility shift assay (EMSA) was used to investigate the interactions between VDR and ATG16L1. RESULTS Calcitriol increased the expression of VDR and ATG16L1, enhanced autophagy and attenuated hepatic fibrosis. 3-MA treatment and VDR silencing abolished the protective effects of calcitriol against fibrosis. Calcitriol-induced anti-fibrosis effects were blocked by ATG16L1 suppression. Furthermore, VDR bound to the ATG16L1 promoter and downregulation of VDR decreased the expression of ATG16L1 in LX-2 cells. CONCLUSION Calcitriol mitigates hepatic fibrosis partly through ATG16L1-mediated autophagy.
Collapse
Affiliation(s)
- Enshuang Guo
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huixing Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Renlong Li
- Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Southern Medical University, Guangzhou 510515, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenpei Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiaojing Jiang
- Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Liang N, Zhang K. The link between autophagy and psoriasis. Acta Histochem 2024; 126:152166. [PMID: 38688157 DOI: 10.1016/j.acthis.2024.152166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Autophagy is a lysosome-dependent, self-renewal mechanism that degrades and recycles cellular components in eukaryotic cells to maintain the homeostasis of the intracellular environment. Psoriasis is featured by increased inflammatory response, epidermal hyperproliferation and abnormal differentiation, infiltration of immune cells and increased expression levels of both endothelial adhesion molecules and angiogenic mediators. Evidence indicates that autophagy has important roles in many different types of cells, such as lymphocytes, keratinocytes, monocytes and mesenchymal stem cells (MSCs). This paper will review the role of autophagy in the pathogenesis of psoriasis and strategies for therapeutic modulation. Key Message Autophagy regulates the functions of cutaneous cells (MSCs, KCs, T cells and endothelial cells). Since reduced autophagy contributes in part to the pathogenesis of psoriasis, enhancement of autophagy can be an alternative approach to mitigate psoriasis.
Collapse
Affiliation(s)
- Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Tobiasz A, Nowicka D, Szepietowski JC. Acne Vulgaris-Novel Treatment Options and Factors Affecting Therapy Adherence: A Narrative Review. J Clin Med 2022; 11:jcm11247535. [PMID: 36556150 PMCID: PMC9788443 DOI: 10.3390/jcm11247535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Acne vulgaris is an extremely common skin condition, affecting a large population of adolescents, but at the same time, remaining a quite common issue in the group of adult patients. Its complex pathogenesis includes increased sebum secretion, impaired follicular keratinization, colonization of sebaceous glands with Cutibacterium acne bacteria, and the development of inflammation in pilosebaceous units. Although there are many methods of treatment available targeting the mechanisms mentioned above, a large percentage of patients remain undertreated or non-compliant with treatment. Ineffective treatment results in the formation of acne scars, which has a major impact on the well-being and quality of life of the patients. The aim of this publication was a review of available evidence on widely used and novel methods of topical and systemic treatment of acne, additionally including current literature-based analysis of factors affecting patients' compliance. The strengths and limitations of novel substances for treating acne were discussed. We conclude that an effective acne treatment remains a challenge. A better understanding of current treatment options and factors affecting patients' compliance could be a helpful tool in choosing a proper treatment option.
Collapse
|
4
|
Fliri AF, Kajiji S. Functional characterization of nutraceuticals using spectral clustering: Centrality of caveolae-mediated endocytosis for management of nitric oxide and vitamin D deficiencies and atherosclerosis. Front Nutr 2022; 9:885364. [PMID: 36046126 PMCID: PMC9421303 DOI: 10.3389/fnut.2022.885364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
It is well recognized that redox imbalance, nitric oxide (NO), and vitamin D deficiencies increase risk of cardiovascular, metabolic, and infectious diseases. However, clinical studies assessing efficacy of NO and vitamin D supplementation have failed to produce unambiguous efficacy outcomes suggesting that the understanding of the pharmacologies involved is incomplete. This raises the need for using systems pharmacology tools to better understand cause-effect relationships at biological systems levels. We describe the use of spectral clustering methodology to analyze protein network interactions affected by a complex nutraceutical, Cardio Miracle (CM), that contains arginine, citrulline, vitamin D, and antioxidants. This examination revealed that interactions between protein networks affected by these substances modulate functions of a network of protein complexes regulating caveolae-mediated endocytosis (CME), TGF beta activity, vitamin D efficacy and host defense systems. Identification of this regulatory scheme and the working of embedded reciprocal feedback loops has significant implications for treatment of vitamin D deficiencies, atherosclerosis, metabolic and infectious diseases such as COVID-19.
Collapse
|
5
|
Lee S, Jo M, Lee HE, Jeon YM, Kim S, Kwon Y, Woo J, Han S, Mun JY, Kim HJ. HEXA-018, a Novel Inducer of Autophagy, Rescues TDP-43 Toxicity in Neuronal Cells. Front Pharmacol 2021; 12:747975. [PMID: 34925009 PMCID: PMC8675103 DOI: 10.3389/fphar.2021.747975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The autophagy-lysosomal pathway is an essential cellular mechanism that degrades aggregated proteins and damaged cellular components to maintain cellular homeostasis. Here, we identified HEXA-018, a novel compound containing a catechol derivative structure, as a novel inducer of autophagy. HEXA-018 increased the LC3-I/II ratio, which indicates activation of autophagy. Consistent with this result, HEXA-018 effectively increased the numbers of autophagosomes and autolysosomes in neuronal cells. We also found that the activation of autophagy by HEXA-018 is mediated by the AMPK-ULK1 pathway in an mTOR-independent manner. We further showed that ubiquitin proteasome system impairment- or oxidative stress-induced neurotoxicity was significantly reduced by HEXA-018 treatment. Moreover, oxidative stress-induced mitochondrial dysfunction was strongly ameliorated by HEXA-018 treatment. In addition, we investigated the efficacy of HEXA-018 in models of TDP-43 proteinopathy. HEXA-018 treatment mitigated TDP-43 toxicity in cultured neuronal cell lines and Drosophila. Our data indicate that HEXA-018 could be a new drug candidate for TDP-43-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hye Eun Lee
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Junghwa Woo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Shin Han
- Hexa Pharmatec, Ansan-si, South Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| |
Collapse
|
6
|
Liu C, Gu L, Ding J, Meng Q, Li N, Dai G, Li Q, Wu X. Autophagy in skin barrier and immune-related skin diseases. J Dermatol 2021; 48:1827-1837. [PMID: 34655245 DOI: 10.1111/1346-8138.16185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is a process which is highly conserved in eukaryotes to degrade or recycle cytoplasmic components through lysosomes to maintain cellular homeostasis. Recent studies have shown that autophagy also plays critical roles in cell apoptosis, inflammation, pathogen clearance, and so on under stressed conditions and thereby has been linked to a variety of human disorders. The skin is the largest organ of the body and serves as the first line of defense against environmental insult. Skin as a nutrient-poor environment requires recycling of limited resources via the autophagy machinery to maintain homeostasis. Therefore, dysregulation of autophagy has been linked to skin diseases. In this review, we describe the molecular machinery and regulation of autophagy, discuss its role in keratinocytes and skin barrier, skin immune cells, and immune-related skin diseases including autoimmune skin disorders, allergic skin diseases, infectious skin disorders, and antitumor immunity against skin tumor. Finally, we highlight the potential of autophagy as a therapeutic target for immune-related skin diseases, and delivery of autophagy-related molecules (such as inducers, inhibitors, or nucleic acid molecules) by virtue of physical materials (such as nanoparticles) or biological materials (such as peptides) to skin topically may obtain clinical benefits in immune-related skin diseases. Moreover, developing autophagy-related gene product-based biomarkers may be promising to diagnose immune-related skin diseases.
Collapse
Affiliation(s)
- Chi Liu
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.,Department of Cardiology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Lei Gu
- Department of Internal Medicine, Shanghai Shende Hospital, Shanghai, China
| | - Jie Ding
- Department of Gerontology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qianchao Meng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan Li
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Guifeng Dai
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qinying Li
- Department of Rehabilitation Medicine, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Xueyong Wu
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Ren J, Zhu Q, Wang S, Li X, Sun Z, Li N, Feng J, Ding H, Dong S, Wang H. Clinical efficacy and safety of using calcipotriol-betamethasone compounding agent for psoriasis treatment: a systematic review and meta-analysis. Arch Dermatol Res 2021; 314:633-641. [PMID: 34417633 DOI: 10.1007/s00403-021-02272-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022]
Abstract
The main objective is to evaluate clinical efficacy and safety of using calcipotriol-betamethasone compounding agent for psoriasis treatment through a systematic review and meta-analysis. We searched MEDLINE, Embase, The Cochrane Library, China National Knowledge Infrastructure (CNKI), China Biomedical Literature Database (CBM), and WanFang Data from inception till July 31, 2020. Efficacy was evaluated based on primary outcome indicators including skin lesion improvement and overall adverse reaction rate. Secondary outcome indicators included degree of life quality improvement, clinical effectiveness rate, and specific adverse reaction rates. RevMan5.3 was used to perform the meta-analysis. 22 studies finally met our inclusion criteria for the meta-analysis. The results indicated that for short-term treatment, a sequential therapy that uses calcipotriol betamethasone compounding agent and calcipotriol improves PASI score (MD = -0.94, 95% CI - 1.38 ~ - 0.49, P < 0.0001, I2 = 49%), comparing with using only calcipotriol. From a drug safety perspective, the difference in overall adverse reaction rate is not significant between the calcipotriol group and the sequential treatment group (RR = 0.50, 95% CI 0.22 ~ 1.14, P = 0.10, I2 = 33%). Calcipotriol betamethasone compounding agent may be more effective in plaque psoriasis treatment compared to use only calcipotriol, with no significant difference in adverse reaction rate between the two groups. Although the data were collected from 13 comparison groups, each group may not have sufficient data for a thorough and comprehensive analysis. Further research may be necessary for a more detailed evaluation of effectiveness of using calcipotriol betamethasone compounding agent for plaque psoriasis treatment.
Collapse
Affiliation(s)
- Junrong Ren
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Qi Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyao Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolong Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Feng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haining Ding
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sitong Dong
- Systematic Review Solutions Ltd, The Ingenuity Centre, Triumph Road, Nottingham, NG7 2TU, UK
| | - Hongmei Wang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
8
|
Bhutia SK. Vitamin D in autophagy signaling for health and diseases: Insights on potential mechanisms and future perspectives. J Nutr Biochem 2021; 99:108841. [PMID: 34403722 DOI: 10.1016/j.jnutbio.2021.108841] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Vitamin D regulates the pleiotropic effect to maintain cellular homeostasis and epidemiological evidence establishes an association between vitamin D deficiency and various human diseases. Here, the role of autophagy, the cellular self-degradation process, in vitamin D-dependent function is documented in different cellular settings and discussed the molecular aspects for treating chronic inflammatory, infectious diseases, and cancer. Vitamin D activates autophagy through a genomic and non-genomic signaling pathway to influence a wide variety of physiological functions of different body organs along with bone health and calcium metabolism. Moreover, it induces autophagy as a protective mechanism to inhibit oxidative stress and apoptosis to regulate cell proliferation, differentiation, and immune modulation. Furthermore, vitamin D and its receptor regulate autophagy signaling to control inflammation and host immunity by activating antimicrobial defense mechanisms. Vitamin D has been revealed as a potent anticancer agent and induces autophagy to increase the response to radiation and chemotherapeutic drugs for potential cancer therapy. Increasing vitamin D levels in the human body through timely exposure to sunlight or vitamin D supplements could activate autophagy as part of the homeostasis mechanism to prevent multiple human diseases and aging-associated dysfunctions.
Collapse
Affiliation(s)
- Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India.
| |
Collapse
|
9
|
Bittencourt TL, da Silva Prata RB, de Andrade Silva BJ, de Mattos Barbosa MG, Dalcolmo MP, Pinheiro RO. Autophagy as a Target for Drug Development Of Skin Infection Caused by Mycobacteria. Front Immunol 2021; 12:674241. [PMID: 34113346 PMCID: PMC8185338 DOI: 10.3389/fimmu.2021.674241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic mycobacteria species may subvert the innate immune mechanisms and can modulate the activation of cells that cause disease in the skin. Cutaneous mycobacterial infection may present different clinical presentations and it is associated with stigma, deformity, and disability. The understanding of the immunopathogenic mechanisms related to mycobacterial infection in human skin is of pivotal importance to identify targets for new therapeutic strategies. The occurrence of reactional episodes and relapse in leprosy patients, the emergence of resistant mycobacteria strains, and the absence of effective drugs to treat mycobacterial cutaneous infection increased the interest in the development of therapies based on repurposed drugs against mycobacteria. The mechanism of action of many of these therapies evaluated is linked to the activation of autophagy. Autophagy is an evolutionary conserved lysosomal degradation pathway that has been associated with the control of the mycobacterial bacillary load. Here, we review the role of autophagy in the pathogenesis of cutaneous mycobacterial infection and discuss the perspectives of autophagy as a target for drug development and repurposing against cutaneous mycobacterial infection.
Collapse
Affiliation(s)
| | | | | | | | - Margareth Pretti Dalcolmo
- Helio Fraga Reference Center, Sergio Arouca National School of Public Health, Fiocruz, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Lu Y, Qi Y, Yan Y, Yao D, Deng H, Deng J, Ye S, Chen H, Chen Q, Gao H, Han L, Lu C. Analysis of microRNA expression in peripheral blood monocytes of three Traditional Chinese Medicine (TCM) syndrome types in psoriasis patients. Chin Med 2020; 15:39. [PMID: 32377228 PMCID: PMC7193417 DOI: 10.1186/s13020-020-00308-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background To analyze the expression of miRNA (microRNA) in peripheral blood mononuclear cells in patients with Psoriasis vulgaris with different TCM syndromes by miRNA chip. It further revealed the micromaterial basis of different syndrome types of psoriasis at the miRNA level. Methods Peripheral blood monocytes were collected and prepared from 30 patients with Psoriasis vulgaris (including 9 patients of blood heat syndrome, 8 patients of blood stasis syndrome, and 13 patients of blood dry syndrome) and 9 healthy controls. The miRNA expression profile of peripheral blood monocytes was detected by Agilent Hum miRNA chip. Results Compared to the healthy control group, 156 upregulated and 242 downregulated miRNAs were detected in all psoriasis patients. Compared to the healthy control group, 40 miRNAs were upregulated and 44 were downregulated in the blood heat syndrome group. Furthermore, there were 49 upregulated miRNAs and 44 downregulated miRNAs in the dry syndrome group as compared to the healthy control group. Also, 67 miRNAs were upregulated and 154 miRNAs were downregulated in the blood stasis syndrome group as compared to the healthy control group. Conclusions There are common different miRNAs and pathways, as well as specific miRNAs between the psoriasis and the healthy control groups. Trial registration ChiCTR-TRC-14005185 registered on August 8, 2014.
Collapse
Affiliation(s)
- Yue Lu
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China
| | - Yao Qi
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, 201203 China.,Shanghai National Engineering Research Center of Biochip, Shanghai, 201203 China
| | - Yuhong Yan
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China
| | - Danni Yao
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China
| | - Hao Deng
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China
| | - Jingwen Deng
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China
| | - Shuyan Ye
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China
| | - Haiming Chen
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China
| | - Qubo Chen
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China
| | - Hengjun Gao
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, 201203 China.,Shanghai National Engineering Research Center of Biochip, Shanghai, 201203 China
| | - Ling Han
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,4Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510006 Guangdong People's Republic of China
| | - Chuanjian Lu
- 1Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,3The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People's Republic of China.,4Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510006 Guangdong People's Republic of China
| |
Collapse
|
11
|
Novel Derivatives of Deoxycholic Acid Bearing Linear Aliphatic Diamine and Aminoalcohol Moieties and their Cyclic Analogs at the C3 Position: Synthesis and Evaluation of Their In Vitro Antitumor Potential. Molecules 2019; 24:molecules24142644. [PMID: 31330911 PMCID: PMC6681416 DOI: 10.3390/molecules24142644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
A series of novel deoxycholic acid (DCA) derivatives containing aliphatic diamine and aminoalcohol or morpholine moieties at the C3 position were synthesized by 3,26-epoxide ring-opening reactions. These compounds were investigated for their cytotoxicity in four human tumor cell lines and murine macrophages and for inhibitory activity against macrophage-mediated NO synthesis in vitro. Obtained data revealed that: (i) all amine-containing substituents significantly increased the cytotoxicity of the novel compounds (IC502–10 = 1.0–36.0 μM) in comparison with DCA (IC50DCA ≥ 82.9 μM); (ii) aminoalcohol moieties were more preferable than diamine moieties due to the fact they imparted better selectivity for tumor cells of the novel derivatives; (iii) the susceptibility of tested cell lines to derivatives diminished in the following order: HuTu-80 (duodenal carcinoma) ≈ HepG2 (hepatocarcinoma) > KB-3-1 (cervical carcinoma) > RAW264.7 (macrophages) > A549 (lung carcinoma); (iv) compounds 8 and 9, bearing aminoethanol and aminopropanol moieties, respectively, exhibited high cytotoxic selectivity indexes (SIHuTu-80 = 7.9 and 8.3, respectively) and good drug-likeness parameters; (v) the novel compounds do not display anti-NO activity. Mechanistic study revealed that compound 9 induces ROS-dependent cell death by activation of intrinsic caspase-dependent apoptosis and cytodestructive autophagy in HuTu-80 cells and vitamin D receptor can be considered as its primary target.
Collapse
|
12
|
Xu S, Sui S, Zhang X, Pang B, Wan L, Pang D. Modulation of autophagy in human diseases strategies to foster strengths and circumvent weaknesses. Med Res Rev 2019; 39:1953-1999. [PMID: 30820989 DOI: 10.1002/med.21571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Autophagy is central to the maintenance of intracellular homeostasis across species. Accordingly, autophagy disorders are linked to a variety of diseases from the embryonic stage until death, and the role of autophagy as a therapeutic target has been widely recognized. However, autophagy-associated therapy for human diseases is still in its infancy and is supported by limited evidence. In this review, we summarize the landscape of autophagy-associated diseases and current autophagy modulators. Furthermore, we investigate the existing autophagy-associated clinical trials, analyze the obstacles that limit their progress, offer tactics that may allow barriers to be overcome along the way and then discuss the therapeutic potential of autophagy modulators in clinical applications.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjcontrary, induction of autophagy elongiang, China
| |
Collapse
|
13
|
Kwon SH, Lim CJ, Jung J, Kim HJ, Park K, Shin JW, Huh CH, Park KC, Na JI. The effect of autophagy-enhancing peptide in moisturizer on atopic dermatitis: a randomized controlled trial. J DERMATOL TREAT 2018; 30:558-564. [PMID: 30427231 DOI: 10.1080/09546634.2018.1544407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Pentasodium tetracarboxymethyl palmitoyl dipeptide-12 (PTPD-12), a newly-synthesized peptide, enhances the autophagy activity, ultimately managing inflammation. Objective: To determine the effect of a new moisturizer containing PTPD-12 as the treatment of mild-to-moderate atopic dermatitis (AD). Methods: In this double-blind, randomized, placebo-controlled trial, 43 patients with mild-to-moderate AD were randomly assigned to either the PTPD-12 or control groups. Evaluations were performed at baseline, week 2, and week 4, including SCORing Atopic Dermatitis (SCORAD) index score, corneometry, trans-epidermal water loss (TEWL), visual analog scale (VAS) for pruritus, 7-point investigator's global assessment (IGA), and collection of adverse events. Results: The PTPD-12 group showed significant improvement with respect to SCORAD score, skin hydration, TEWL, and pruritus at weeks 2 and 4 when compared with baseline. Although the control group showed significant improvement regarding the SCORAD score and skin hydration, no significant change in TEWL or pruritus was demonstrated throughout the study. The mean changes in the SCORAD index score, skin hydration, TEWL, pruritus, and number of patients with improvement in IGA were not statistically different between the two groups. Conclusion: The moisturizer with autophagy-stimulating property provides a good therapeutic option to mild-to-moderate atopic dermatitis by contributing to skin barrier restoration and control of inflammation.
Collapse
Affiliation(s)
- Soon Hyo Kwon
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| | | | | | | | | | - Jung Won Shin
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| | - Chang Hun Huh
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| | - Kyoung Chan Park
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| | - Jung Im Na
- a Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Gyeonggi , Korea
| |
Collapse
|
14
|
Chiang WC, Wei Y, Kuo YC, Wei S, Zhou A, Zou Z, Yehl J, Ranaghan MJ, Skepner A, Bittker JA, Perez JR, Posner BA, Levine B. High-Throughput Screens To Identify Autophagy Inducers That Function by Disrupting Beclin 1/Bcl-2 Binding. ACS Chem Biol 2018; 13:2247-2260. [PMID: 29878747 DOI: 10.1021/acschembio.8b00421] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy, a lysosomal degradation pathway, plays a crucial role in cellular homeostasis, development, immunity, tumor suppression, metabolism, prevention of neurodegeneration, and lifespan extension. Thus, pharmacological stimulation of autophagy may be an effective approach for preventing or treating certain human diseases and/or aging. We sought to establish a method for developing new chemical compounds that specifically induce autophagy. To do this, we developed two assays to identify compounds that target a key regulatory node of autophagy induction-specifically, the binding of Bcl-2 (a negative regulator of autophagy) to Beclin 1 (an allosteric modulator of the Beclin 1/VPS34 lipid kinase complex that functions in autophagy initiation). These assays use either a split-luciferase assay to measure Beclin 1/Bcl-2 binding in cells or an AlphaLISA assay to directly measure direct Beclin 1/Bcl-2 binding in vitro. We screened two different chemical compound libraries, comprising ∼300 K compounds, to identify small molecules that disrupt Beclin 1/Bcl-2 binding and induce autophagy. Three novel compounds were identified that directly inhibit Beclin 1/Bcl-2 interaction with an IC50 in the micromolar range and increase autophagic flux. These compounds do not demonstrate significant cytotoxicity, and they exert selectivity for disruption of Bcl-2 binding to the BH3 domain of Beclin 1 compared with the BH3 domain of the pro-apoptotic Bcl-2 family members, Bax and Bim. Thus, we have identified candidate molecules that serve as lead templates for developing potent and selective Beclin 1/Bcl-2 inhibitors that may be clinically useful as autophagy-inducing agents.
Collapse
Affiliation(s)
- Wei-Chung Chiang
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yongjie Wei
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Howard Hughes Medical Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yi-Chun Kuo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Shuguang Wei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Anwu Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Howard Hughes Medical Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jenna Yehl
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Matthew J. Ranaghan
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Adam Skepner
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Joshua A. Bittker
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jose R. Perez
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Howard Hughes Medical Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
15
|
Yin H, Wu H, Chen Y, Zhang J, Zheng M, Chen G, Li L, Lu Q. The Therapeutic and Pathogenic Role of Autophagy in Autoimmune Diseases. Front Immunol 2018; 9:1512. [PMID: 30108582 PMCID: PMC6080611 DOI: 10.3389/fimmu.2018.01512] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a complicated cellular mechanism that maintains cellular and tissue homeostasis and integrity via degradation of senescent, defective subcellular organelles, infectious agents, and misfolded proteins. Accumulating evidence has shown that autophagy is involved in numerous immune processes, such as removal of intracellular bacteria, cytokine production, autoantigen presentation, and survival of lymphocytes, indicating an apparent and important role in innate and adaptive immune responses. Indeed, in genome-wide association studies, autophagy-related gene polymorphisms have been suggested to be associated with the pathogenesis of several autoimmune and inflammatory disorders, such as systemic lupus erythematosus, psoriasis, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition, conditional knockdown of autophagy-related genes in mice displayed therapeutic effects on several autoimmune disease models by reducing levels of inflammatory cytokines and autoreactive immune cells. However, the inhibition of autophagy accelerates the progress of some inflammatory and autoimmune diseases via promotion of inflammatory cytokine production. Therefore, this review will summarize the current knowledge of autophagy in immune regulation and discuss the therapeutic and pathogenic role of autophagy in autoimmune diseases to broaden our understanding of the etiopathogenesis of autoimmune diseases and shed light on autophagy-mediated therapies.
Collapse
Affiliation(s)
- Heng Yin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Genhui Chen
- Beijing Wenfeng Tianji Pharmaceuticals Ltd., Beijing, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Wang S, Kobeissi A, Dong Y, Kaplan N, Yang W, He C, Zeng K, Peng H. MicroRNAs-103/107 Regulate Autophagy in the Epidermis. J Invest Dermatol 2018; 138:1481-1490. [PMID: 29452119 DOI: 10.1016/j.jid.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
We have shown that microRNAs-103 and -107 (miRs-103/107) positively regulate end-stage autophagy by ensuring dynamin activity in cultured keratinocytes. Most work in end-stage autophagy has been conducted using in vitro model systems. In vivo regulation of end-stage autophagy in epidermis remains unknown. Here, we used antagomirs to subcutaneously knock down miR-107 in the skin; conversely, we delivered miR-107 mimic subcutaneously via in vivo transfection to increase this miR. We found that antagomir-107 treatment in epidermis: (i) depleted endogenous miR-107; (ii) increased GFP-LC3 puncta in epidermal basal layers of GFP-LC3 transgenic mice, indicative of an accumulation of autophagosomes; (iii) inhibited LC3 turnover and increased p62, suggesting an inhibition of autophagy flux; and (iv) increased phosphorylated dynamin (p-dynamin, an inactive form), a key enzyme in end-stage autophagy. Conversely, miR-107 mimic treatment in mouse epidermis: decreased GFP-LC3 puncta in basal layer, as well as p62 protein levels; and diminished p-dynamin, indicative of activation of this enzyme. In human epidermal keratinocytes, antagos-103/107 cause the formation of large vacuoles and an increase in p-dynamin, which can be rescued by inhibition of protein kinase C pathway. Collectively, these results suggest that the miR-103/107 family has a critical role in regulating end-stage autophagy in mouse epidermis via PLD1/2-protein kinase C-dynamin pathway.
Collapse
Affiliation(s)
- Sijia Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Aya Kobeissi
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Ying Dong
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA; Department of Ophthalmology, the First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Congcong He
- Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
17
|
Li L, Chen X, Gu H. The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget 2018; 7:50682-50697. [PMID: 27191982 PMCID: PMC5226613 DOI: 10.18632/oncotarget.9330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Autophagy is responsible for the lysosomal degradation of proteins, organelles, microorganisms and exogenous particles. Epidermis primarily consists of keratinocytes which functions as an extremely important barrier. Investigation on autophagy in keratinocytes has been continuously renewing, but is not so systematic due to the complexity of the autophagy machinery. Here we reviewed recent studies on the autophagy in keratinocyte with a focus on interplay between autophagy machinery and keratinocytes biology, and novel autophagy regulators identified in keratinocytes. In this review, we discussed the roles of autophagy in apoptosis, differentiation, immune response, survival and melanin metabolism, trying to reveal the possible involvement of autophagy in skin aging, skin disorders and skin color formation. Since autophagy routinely plays a double-edged sword role in various conditions, its functions in skin homeostasis and potential application as a therapeutic target for skin diseases remains to be clarified. Furthermore, more investigations are needed on optimizing designed strategies to inhibit or enhance autophagy for clinical efficacy.
Collapse
Affiliation(s)
- Li Li
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
18
|
Lee JH, Moon JH, Nazim UM, Lee YJ, Seol JW, Eo SK, Lee JH, Park SY. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway. Oncotarget 2017; 7:12075-88. [PMID: 26918354 PMCID: PMC4914270 DOI: 10.18632/oncotarget.7679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/13/2016] [Indexed: 12/29/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Uddin Md Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Seong-Kug Eo
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - John-Hwa Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | | |
Collapse
|
19
|
Vitamin D as a Novel Regulator of Tumor Metabolism: Insights on Potential Mechanisms and Implications for Anti-Cancer Therapy. Int J Mol Sci 2017; 18:ijms18102184. [PMID: 29048387 PMCID: PMC5666865 DOI: 10.3390/ijms18102184] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023] Open
Abstract
1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], the bioactive form of vitamin D, has been shown to possess significant anti-tumor potential. While most studies so far have focused on the ability of this molecule to influence the proliferation and apoptosis of cancer cells, more recent data indicate that 1,25(OH)₂D₃ also impacts energy utilization in tumor cells. In this article, we summarize and review the evidence that demonstrates the targeting of metabolic aberrations in cancers by 1,25(OH)₂D₃, and highlight potential mechanisms through which these effects may be executed. We shed light on the ability of this molecule to regulate metabolism-related tumor suppressors and oncogenes, energy- and nutrient-sensing pathways, as well as cell death and survival mechanisms such as autophagy.
Collapse
|
20
|
Abstract
Keratin 24 (K24) is a new kind of keratin genes, which encodes a novel keratin protein, K24 that bears high similarity to the type I keratins and displays a unique expression profile. However, the role of K24 is incompletely understood. In our study, we investigated the localization of K24 within the epidermis and possible functions. Keratin 24 was found to be modestly overexpressed in senescent keratinocytes and was mainly restricted to the upper stratum spinosum of epidermis. The protein was required for terminal differentiation upon CaCl2-induced differentiation. In vitro results showed that increased K24 in keratinocytes dramatically changed the differentiation of primary keratinocytes. It also inhibited cell survival by G1/S phase cell cycle arrest and induced senescence, autophagy and apoptosis of keratinocytes. In addition, K24 activated PKCδ signal pathway involving in cellular survival. In summary, K24 may be suggested as a potential differentiation marker and anti-proliferative factor in the epidermis.
Collapse
|
21
|
Akinduro O, Sully K, Patel A, Robinson DJ, Chikh A, McPhail G, Braun KM, Philpott MP, Harwood CA, Byrne C, O'Shaughnessy RFL, Bergamaschi D. Constitutive Autophagy and Nucleophagy during Epidermal Differentiation. J Invest Dermatol 2016; 136:1460-1470. [PMID: 27021405 DOI: 10.1016/j.jid.2016.03.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 12/19/2022]
Abstract
Epidermal keratinocytes migrate through the epidermis up to the granular layer where, on terminal differentiation, they progressively lose organelles and convert into anucleate cells or corneocytes. Our report explores the role of autophagy in ensuring epidermal function providing the first comprehensive profile of autophagy marker expression in developing epidermis. We show that autophagy is constitutively active in the epidermal granular layer where by electron microscopy we identified double-membrane autophagosomes. We demonstrate that differentiating keratinocytes undergo a selective form of nucleophagy characterized by accumulation of microtubule-associated protein light chain 3/lysosomal-associated membrane protein 2/p62 positive autolysosomes. These perinuclear vesicles displayed positivity for histone interacting protein, heterochromatin protein 1α, and localize in proximity with Lamin A and B1 accumulation, whereas in newborn mice and adult human skin, we report LC3 puncta coincident with misshaped nuclei within the granular layer. This process relies on autophagy integrity as confirmed by lack of nucleophagy in differentiating keratinocytes depleted from WD repeat domain phosphoinositide interacting 1 or Unc-51 like autophagy activating kinase 1. Final validation into a skin disease model showed that impaired autophagy contributes to the pathogenesis of psoriasis. Lack of LC3 expression in psoriatic skin lesions correlates with parakeratosis and deregulated expression or location of most of the autophagic markers. Our findings may have implications and improve treatment options for patients with epidermal barrier defects.
Collapse
Affiliation(s)
- Olufolake Akinduro
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katherine Sully
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ankit Patel
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Deborah J Robinson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anissa Chikh
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Graham McPhail
- EM Service, Blizard Institute Pathology Core Facility, Cellular Pathology Department, Royal London Hospital, London, UK
| | - Kristin M Braun
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael P Philpott
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carolyn Byrne
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Livingstone Skin Research Centre for Children, UCL Institute of Child Health, London, UK; Department of Immunobiology, UCL Institute of Child Health, London, UK
| | - Daniele Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
22
|
Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway. Sci Rep 2016; 6:28423. [PMID: 27328819 PMCID: PMC4916512 DOI: 10.1038/srep28423] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/06/2016] [Indexed: 01/27/2023] Open
Abstract
Trehalose is a natural disaccharide that is found in a diverse range of organisms but not in mammals. Autophagy is a process which mediates the sequestration, lysosomal delivery and degradation of proteins and organelles. Studies have shown that trehalose exerts beneficial effects through inducing autophagy in mammalian cells. However, whether trehalose or other saccharides can activate autophagy in keratinocytes is unknown. Here, we found that trehalose treatment increased the LC3-I to LC3-II conversion, acridine orange-stained vacuoles and GFP-LC3B (LC3B protein tagged with green fluorescent protein) puncta in the HaCaT human keratinocyte cell line, indicating autophagy induction. Trehalose-induced autophagy was also observed in primary keratinocytes and the A431 epidermal cancer cell line. mTOR signalling was not affected by trehalose treatment, suggesting that trehalose induced autophagy through an mTOR-independent pathway. mTOR-independent autophagy induction was also observed in HaCaT and HeLa cells treated with sucrose or raffinose but not in glucose, maltose or sorbitol treated HaCaT cells, indicating that autophagy induction was not a general property of saccharides. Finally, although trehalose treatment had an inhibitory effect on cell proliferation, it had a cytoprotective effect on cells exposed to UVB radiation. Our study provides new insight into the saccharide-mediated regulation of autophagy in keratinocytes.
Collapse
|
23
|
Zhao H, Li S, Luo F, Tan Q, Li H, Zhou W. Portulaca oleracea L. aids calcipotriol in reversing keratinocyte differentiation and skin barrier dysfunction in psoriasis through inhibition of the nuclear factor κB signaling pathway. Exp Ther Med 2014; 9:303-310. [PMID: 25574190 PMCID: PMC4280941 DOI: 10.3892/etm.2014.2116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/02/2014] [Indexed: 12/22/2022] Open
Abstract
Psoriasis affects 2-4% of the population worldwide and its treatment is currently far from satisfactory. Calcipotriol and Portulaca oleracea have been reported to exhibit the capacity to inhibit inflammation in psoriatic patients and improve their clinical condition. However, the efficacy of a combination regimen of these two components remains unknown. The aim of the present study was to explore the therapeutic efficacy of P. oleracea extract combined with calcipotriol on plaque psoriasis and its potential mechanism. Eleven patients with plaque psoriasis were treated with humectant containing the active ingredients of P. oleracea extract, with or without 0.005% calcipotriol ointment in a right-left bilateral lesion self-control study. Differences were evaluated by investigation of the clinical efficacy, adverse effects, skin barrier function, histological structure, expression and proliferation of keratinocytes, differentiation markers (cytokeratin 10, filaggrin and loricrin), inflammatory factors [tumor necrosis factor (TNF)-α and interleukin (IL)-8], as well as the status of the nuclear factor κB (NF-κB) pathway. The combination of P. oleracea and calcipotriol was revealed to decrease adverse effects, reduce transepidermal water loss, potently reverse keratinocyte differentiation dysfunction, and inhibit the expression of TNF-α and IL-8 and the phosphorylation of the NF-κB inhibitor IκBα. This treatment is therefore anticipated to be suitable for use as a novel adjuvant therapy for psoriatic patients.
Collapse
Affiliation(s)
- Hengguang Zhao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shuang Li
- Department of Dermatology, Chongqing Third People's Hospital, Chongqing 400014, P.R. China
| | - Fuling Luo
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qian Tan
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hui Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weikang Zhou
- Department of Dermatology, Chongqing Third People's Hospital, Chongqing 400014, P.R. China
| |
Collapse
|
24
|
Targeting autophagy in skin diseases. J Mol Med (Berl) 2014; 93:31-8. [PMID: 25404245 DOI: 10.1007/s00109-014-1225-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
Abstract
Autophagy is a major intracellular degradative process by which cytoplasmic materials are sequestered in double-membraned vesicles and degraded upon fusion with lysosomes. Under normal circumstances, basal autophagy is necessary to maintain cellular homeostasis by scavenging dysfunctional or damaged organelles or proteins. In addition to its vital homeostatic role, this degradation pathway has been implicated in many different cellular processes such as cell apoptosis, inflammation, pathogen clearance, and antigen presentation and thereby has been linked to a variety of human disorders, including metabolic conditions, neurodegenerative diseases, cancers, and infectious diseases. The skin, the largest organ of the body, serves as the first line of defense against many different environmental insults; however, only a few studies have examined the effect of autophagy on the pathogenesis of skin diseases. This review provides an overview of the mechanisms of autophagy and highlights recent findings relevant to the role of autophagy in skin diseases and strategies for therapeutic modulation.
Collapse
|
25
|
The significant role of autophagy in the granular layer in normal skin differentiation and hair growth. Arch Dermatol Res 2014; 307:159-69. [DOI: 10.1007/s00403-014-1508-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/24/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022]
|
26
|
Chikh A, Sanzà P, Raimondi C, Akinduro O, Warnes G, Chiorino G, Byrne C, Harwood CA, Bergamaschi D. iASPP is a novel autophagy inhibitor in keratinocytes. J Cell Sci 2014; 127:3079-93. [PMID: 24777476 DOI: 10.1242/jcs.144816] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The protein iASPP (encoded by PPP1R13L) is an evolutionarily conserved p53 inhibitor, the expression of which is often upregulated in human cancers. We have recently shown that iASPP is a crucial regulator of epidermal homeostasis. Here, we report that iASPP also acts as autophagy inhibitor in keratinocytes. Our data show that depletion of iASPP protects keratinocytes from apoptosis by modulating the expression of Noxa (also known as PMAIP1). In our model, iASPP expression can affect the fission-fusion cycle, mass and shape of mitochondria. iASPP-silenced keratinocytes display disorganization of cytosolic compartments and increased metabolic stress caused by deregulation of mTORC1 signaling. Moreover, increased levels of lipidated LC3 protein confirmed the activation of autophagy in iASPP-depleted cells. We have identified a novel mechanism modulating autophagy in keratinocytes that relies upon iASPP expression specifically reducing the interaction of Atg5-Atg12 with Atg16L1, an interaction that is essential for autophagosome formation or maturation. Using organotypic culture, we further explored the link between autophagy and differentiation, and we showed that impairing autophagy affects epidermal terminal differentiation. Our data provide an alternative mechanism to explain how epithelial integrity is maintained against environmental stressors and might also improve the understanding of the etiology of skin diseases that are characterized by defects in differentiation and DNA damage responses.
Collapse
Affiliation(s)
- Anissa Chikh
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Paolo Sanzà
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Claudio Raimondi
- Centre for Diabetes, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Olufolake Akinduro
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Gary Warnes
- Flow Cytometry Core Facility, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Giovanna Chiorino
- Cancer Genomic Laboratory, Edo ed Elvo Tempia Foundation, 13900 Biella, Italy
| | - Carolyn Byrne
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Catherine A Harwood
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Daniele Bergamaschi
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
27
|
Uberti F, Lattuada D, Morsanuto V, Nava U, Bolis G, Vacca G, Squarzanti DF, Cisari C, Molinari C. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab 2014; 99:1367-74. [PMID: 24285680 DOI: 10.1210/jc.2013-2103] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Recently, vitamin D (VitD) has been recognized as increasingly importance in many cellular functions of several tissues and organs other than bone. In particular, VitD showed important beneficial effects in the cardiovascular system. Although the relationship among VitD, endothelium, and cardiovascular disease is well established, little is known about the antioxidant effect of VitD. OBJECTIVE Our objective was to study the intracellular pathways activated by VitD in cultured human umbilical vein endothelial cells undergoing oxidative stress. DESIGN Nitric oxide production, cell viability, reactive oxygen species, the mitochondrial permeability transition pore, membrane potential, and caspase-3 activity were measured during oxidative stress induced by administration of 200 μM hydrogen peroxide for 20 minutes. Experiments were repeated in the presence of specific vitamin D receptor ligand ZK191784. RESULTS Pretreatment with VitD alone or in combination with ZK191784 is able to reduce the apoptosis-related gene expression, involving both intrinsic and extrinsic pathways. At the same time, it has been shown the activation of pro-autophagic beclin 1 and the phosphorylation of ERK1/2 and Akt, indicating a modulation between apoptosis and autophagy. Moreover, VitD alone or in combination with ZK191784 is able to prevent the loss of mitochondrial potential and the consequent cytochrome C release and caspase activation. CONCLUSIONS The present study shows that VitD may prevent endothelial cell death through modulation of the interplay between apoptosis and autophagy. This effect is obtained by inhibiting superoxide anion generation, maintaining mitochondria function and cell viability, activating survival kinases, and inducing NO production.
Collapse
Affiliation(s)
- F Uberti
- Department of Obstetrics and Gynecology (F.U., D.L., V.M., U.N.), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità (G.B.), Università degli Studi di Milano, 20122, Milan, Italy Dipartimento di Medicina Traslazionale (V.M., G.V., D.F.S., C.M.), Università degli Studi del Piemonte Orientale A. Avogadro, 28100 Novara, Italy; and Dipartimento di Scienze della Salute (C.C.), Università degli Studi del Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tashiro K, Shishido M, Fujimoto K, Hirota Y, Yo K, Gomi T, Tanaka Y. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components. Biochem Biophys Res Commun 2013; 443:167-72. [PMID: 24287182 DOI: 10.1016/j.bbrc.2013.11.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 01/10/2023]
Abstract
Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5-genes essential for autophagosome formation-was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.
Collapse
Affiliation(s)
- Kanae Tashiro
- Skin Research Department, POLA Chemical Industries, Inc., Yokohama, Japan; Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Shishido
- Skin Research Department, POLA Chemical Industries, Inc., Yokohama, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Organelle Homeostasis Research Center, Kyushu University, Fukuoka, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuyuki Yo
- Skin Research Department, POLA Chemical Industries, Inc., Yokohama, Japan
| | - Takamasa Gomi
- Skin Research Department, POLA Chemical Industries, Inc., Yokohama, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Organelle Homeostasis Research Center, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
29
|
Rossiter H, König U, Barresi C, Buchberger M, Ghannadan M, Zhang CF, Mlitz V, Gmeiner R, Sukseree S, Födinger D, Eckhart L, Tschachler E. Epidermal keratinocytes form a functional skin barrier in the absence of Atg7 dependent autophagy. J Dermatol Sci 2013; 71:67-75. [DOI: 10.1016/j.jdermsci.2013.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/21/2013] [Accepted: 04/04/2013] [Indexed: 12/18/2022]
|
30
|
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11:709-30. [PMID: 22935804 PMCID: PMC3518431 DOI: 10.1038/nrd3802] [Citation(s) in RCA: 1170] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is an essential, conserved lysosomal degradation pathway that controls the quality of the cytoplasm by eliminating protein aggregates and damaged organelles. It begins when double-membraned autophagosomes engulf portions of the cytoplasm, which is followed by fusion of these vesicles with lysosomes and degradation of the autophagic contents. In addition to its vital homeostatic role, this degradation pathway is involved in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. This article provides an overview of the mechanisms and regulation of autophagy, the role of this pathway in disease and strategies for therapeutic modulation.
Collapse
Affiliation(s)
- David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 OXY, UK
| | - Patrice Codogno
- Faculté de Pharmacie, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR984, Université Paris-Sud 11, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Beth Levine
- Departments of Internal Medicine and Microbiology, Center for Autophagy Research, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|