1
|
Philpott MP. Culture of the human pilosebaceous unit, hair follicle and sebaceous gland. Exp Dermatol 2019; 27:571-577. [PMID: 29693730 DOI: 10.1111/exd.13669] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/25/2022]
Abstract
Terence Kealey first pioneered the isolation and organ maintenance of human eccrine and sebaceous glands in the early to mid-1980. This led to subsequent methods describing the isolation and culture of human hair follicles, the human pilosebaceous unit as well as the sebaceous duct. The importance of these models in the study of the biology of human skin glands and appendages has been demonstrated in numerous publications and their importance as models for animal replacement, refinement and reduction (3Rs) is increasingly important. In particular, in vitro (ex vivo) hair follicle culture has played a significant part in helping elucidate the role of signalling molecules in regulating hair growth and hair fibre formation and has been especially useful in understanding metabolic aspects of hair growth. However, obtaining sufficient numbers of hair follicles is becoming increasingly difficult as plastic surgery becomes less invasive and smaller skin samples provided. There is therefore an urgent requirement for the next generation of in vitro models using cell lines and tissue engineering, and this has led to the development of immortalised cell lines as well as attempts to model hair follicle embryogenesis in vitro and development of skin on a chip.
Collapse
Affiliation(s)
- Michael P Philpott
- Centre for Cell Biology and Cutaneous Research Blizard Institute, Queen Mary University London, London, UK
| |
Collapse
|
2
|
Langan EA, Philpott MP, Kloepper JE, Paus R. Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 2015; 24:903-11. [DOI: 10.1111/exd.12836] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ewan A. Langan
- Department of Dermatology; University of Luebeck; Luebeck Germany
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | - Michael P. Philpott
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | | | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Department of Dermatology; University of Muenster; Muenster Germany
| |
Collapse
|
4
|
Warshauer E, Samuelov L, Sarig O, Vodo D, Bindereif A, Kanaan M, Gat U, Fuchs-Telem D, Shomron N, Farberov L, Pasmanik-Chor M, Nardini G, Winkler E, Meilik B, Petit I, Aberdam D, Paus R, Sprecher E, Nousbeck J. RBM28, a protein deficient in ANE syndrome, regulates hair follicle growth via miR-203 and p63. Exp Dermatol 2015; 24:618-22. [PMID: 25939713 DOI: 10.1111/exd.12737] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 12/20/2022]
Abstract
Alopecia-neurological defects-endocrinopathy (ANE) syndrome is a rare inherited hair disorder, which was shown to result from decreased expression of the RNA-binding motif protein 28 (RBM28). In this study, we attempted to delineate the role of RBM28 in hair biology. First, we sought to obtain evidence for the direct involvement of RBM28 in hair growth. When RBM28 was downregulated in human hair follicle (HF) organ cultures, we observed catagen induction and HF growth arrest, indicating that RBM28 is necessary for normal hair growth. We also aimed at identifying molecular targets of RBM28. Given that an RBM28 homologue was recently found to regulate miRNA biogenesis in C. elegans and given the known pivotal importance of miRNAs for proper hair follicle development, we studied global miRNA expression profile in cells knocked down for RBM28. This analysis revealed that RBM28 controls the expression of miR-203. miR-203 was found to regulate in turn TP63, encoding the transcription factor p63, which is critical for hair morphogenesis. In conclusion, RBM28 contributes to HF growth regulation through modulation of miR-203 and p63 activity.
Collapse
Affiliation(s)
- Emily Warshauer
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Samuelov
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dan Vodo
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Moien Kanaan
- Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Uri Gat
- Department of Cell and Developmental Biology, The Hebrew University, Jerusalem, Israel
| | - Dana Fuchs-Telem
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Luba Farberov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- The Bioinformatics Unit, The Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Nardini
- Department of Plastic and Reconstructive Surgery, The Chaim Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - Eyal Winkler
- Department of Plastic and Reconstructive Surgery, The Chaim Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - Benjamin Meilik
- Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Isabelle Petit
- INSERM UMR-S976, Hôpital Saint-Louis, Paris, France.,Université Paris-Diderot, Paris, France
| | - Daniel Aberdam
- INSERM UMR-S976, Hôpital Saint-Louis, Paris, France.,Université Paris-Diderot, Paris, France
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Janna Nousbeck
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
5
|
Al-Nuaimi Y, Hardman JA, Bíró T, Haslam IS, Philpott MP, Tóth BI, Farjo N, Farjo B, Baier G, Watson REB, Grimaldi B, Kloepper JE, Paus R. A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock. J Invest Dermatol 2014; 134:610-619. [PMID: 24005054 DOI: 10.1038/jid.2013.366] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/01/2013] [Accepted: 08/18/2013] [Indexed: 12/28/2022]
Abstract
The hair follicle (HF) is a continuously remodeled mini organ that cycles between growth (anagen), regression (catagen), and relative quiescence (telogen). As the anagen-to-catagen transformation of microdissected human scalp HFs can be observed in organ culture, it permits the study of the unknown controls of autonomous, rhythmic tissue remodeling of the HF, which intersects developmental, chronobiological, and growth-regulatory mechanisms. The hypothesis that the peripheral clock system is involved in hair cycle control, i.e., the anagen-to-catagen transformation, was tested. Here we show that in the absence of central clock influences, isolated, organ-cultured human HFs show circadian changes in the gene and protein expression of core clock genes (CLOCK, BMAL1, and Period1) and clock-controlled genes (c-Myc, NR1D1, and CDKN1A), with Period1 expression being hair cycle dependent. Knockdown of either BMAL1 or Period1 in human anagen HFs significantly prolonged anagen. This provides evidence that peripheral core clock genes modulate human HF cycling and are an integral component of the human hair cycle clock. Specifically, our study identifies BMAL1 and Period1 as potential therapeutic targets for modulating human hair growth.
Collapse
Affiliation(s)
- Yusur Al-Nuaimi
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jonathan A Hardman
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Doctoral Training Centre in Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tamás Bíró
- DE-MTA ''Lendulet'' Cell Physiology Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Iain S Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael P Philpott
- Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Balázs I Tóth
- DE-MTA ''Lendulet'' Cell Physiology Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | | | | | - Gerold Baier
- Faculty of Life Sciences, Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, UK
| | - Rachel E B Watson
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | | | - Ralf Paus
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Department of Dermatology, University of Luebeck, Luebeck, Germany.
| |
Collapse
|