1
|
Pinna R, Cocco F, Campus G, Conti G, Milia E, Sardella A, Cagetti MG. Genetic and developmental disorders of the oral mucosa: Epidemiology; molecular mechanisms; diagnostic criteria; management. Periodontol 2000 2019; 80:12-27. [PMID: 31090139 DOI: 10.1111/prd.12261] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A large number of disorders may affect the oral cavity, including genetic diseases, infections, cancers, blood diseases, skin diseases, endocrine and metabolic disorders, autoimmune and rheumatologic diseases, local lesions, to name a few. Oral mucosa shows a considerable variation in its normal structure and a wide range of conditions may affect it. Such conditions are often harmless or minor and could be primary or secondary to systemic disease. Several of them are quite rare and, hence, the diagnosis is not easy. Clinically, lesions may appear as ulcers, discoloration of the oral mucosa and alterations in size and configuration of oral anatomy. Genetic disorders have specific manifestations and can be caused by a derangement of one or more components of the tissue. Many of them follow the skin or systemic signs of the underlying genetic disease, but in a few cases oral signs could be the first manifestation of the disorder. Among them genodermatoses are prominent. They are inherited disorders characterized by a multisystem involvement. This review describes chondro-ectodermal dysplasia, dyskeratosis congenita, Ehlers-Danlos syndrome, hereditary benign intraepithelial dyskeratosis, keratosis follicularis, lipoid proteinosis, multiple hamartoma syndrome, pachyonychia congenita, Peutz-Jeghers syndrome, tuberous sclerosis and white sponge nevus. Other genetic disorders not included in the genodermatosis group and reported in the present review are: acanthosis nigricans, angio-osteo-hypertrophic syndrome, encephalotrigeminal angiomatosis, familial adenomatous polyposis, focal dermal hypoplasia, focal palmoplantar and oral mucosa hyperkeratosis syndrome, gingival fibromatosis, Maffucci's syndrome, neurofibromatosis (type 1) and oro-facial-digital syndrome (type 1). Disorders during embryonic development might lead to a wide range of abnormalities in the oral cavity; some of them are quite common but of negligible concern, whereas others are rare but serious, affecting not only the oral mucosa, but also other structures of the oral cavity (ie palate, tongue and gingiva). Fordyce's granules, leukoedema, cysts of the oral mucosa in newborns, retrocuspid papilla, geographic tongue, fissured tongue, median rhomboid glossitis, hairy tongue, lingual varices and lingual thyroid nodule are described. This review may help dentists, dental hygienists, but also general internists and pediatricians to diagnose different disorders of the oral mucosa, to understand the pathogenesis and to schedule a treatment plan.
Collapse
Affiliation(s)
- Roberto Pinna
- Department of Surgery, Medicine and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Fabio Cocco
- Department of Surgery, Medicine and Experimental Sciences, University of Sassari, Sassari, Italy.,WHO Collaboration Centre for Epidemiology and Community Dentistry, University of Milan, Milan, Italy
| | - Guglielmo Campus
- Department of Surgery, Medicine and Experimental Sciences, University of Sassari, Sassari, Italy.,WHO Collaboration Centre for Epidemiology and Community Dentistry, University of Milan, Milan, Italy.,Klinik für Zahnerhaltung, Präventiv-und Kinderzahnmedizin Zahnmedizinische Kliniken (ZMK), University of Bern, Switzerland
| | - Giulio Conti
- IRCCS "Ca Granda-Ospedale Maggiore", University of Milan, Milan, Italy
| | - Egle Milia
- Department of Surgery, Medicine and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Andrea Sardella
- IRCCS "Ca Granda-Ospedale Maggiore", University of Milan, Milan, Italy.,Department of Biomedical, Surgical and Dental Science, University of Milan, Milan, Italy
| | - Maria Grazia Cagetti
- WHO Collaboration Centre for Epidemiology and Community Dentistry, University of Milan, Milan, Italy.,Department of Biomedical, Surgical and Dental Science, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Porter RM, Bravo AA, Smith FJ. Management of Plantar Keratodermas Lessons from Pachyonychia Congenita. J Am Podiatr Med Assoc 2017; 107:428-435. [PMID: 29077501 DOI: 10.7547/16-043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plantar keratodermas can arise due to a variety of genetically inherited mutations. The need to distinguish between different plantar keratoderma disorders is becoming increasingly apparent because there is evidence that they do not respond identically to treatment. Diagnosis can be aided by observation of other clinical manifestations, such as palmar keratoderma, more widespread hyperkeratosis of the epidermis, hair and nail dystrophies, or erythroderma. However, there are frequent cases of plantar keratoderma that occur in isolation. This review focuses on the rare autosomal dominant keratin disorder pachyonychia congenita, which presents with particularly painful plantar keratoderma for which there is no specific treatment. Typically, patients regularly trim/pare/file/grind their calluses and file/grind/clip their nails. Topical agents, including keratolytics (eg, salicylic acid, urea) and moisturizers, can provide limited benefit by softening the skin. For some patients, retinoids help to thin calluses but may lead to increased pain. This finding has stimulated a drive for alternative treatment options, from gene therapy to alternative nongenetic methods that focus on novel findings regarding the pathogenesis of pachyonychia congenita and the function of the underlying genes.
Collapse
Affiliation(s)
| | | | - Frances J.D. Smith
- Pachyonychia Congenita Project, School of Life Sciences, University of Dundee, Dundee Scotland
| |
Collapse
|