1
|
Reese B, Silwal A, Daugherity E, Daugherity M, Arabi M, Daly P, Paterson Y, Woolford L, Christie A, Elias R, Brugarolas J, Wang T, Karbowniczek M, Markiewski MM. Complement as Prognostic Biomarker and Potential Therapeutic Target in Renal Cell Carcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 205:3218-3229. [PMID: 33158953 DOI: 10.4049/jimmunol.2000511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Preclinical studies demonstrated that complement promotes tumor growth. Therefore, we sought to determine the best target for complement-based therapy among common human malignancies. High expression of 11 complement genes was linked to unfavorable prognosis in renal cell carcinoma. Complement protein expression or deposition was observed mainly in stroma, leukocytes, and tumor vasculature, corresponding to a role of complement in regulating the tumor microenvironment. Complement abundance in tumors correlated with a high nuclear grade. Complement genes clustered within an aggressive inflammatory subtype of renal cancer characterized by poor prognosis, markers of T cell dysfunction, and alternatively activated macrophages. Plasma levels of complement proteins correlated with response to immune checkpoint inhibitors. Corroborating human data, complement deficiencies and blockade reduced tumor growth by enhancing antitumor immunity and seemingly reducing angiogenesis in a mouse model of kidney cancer resistant to PD-1 blockade. Overall, this study implicates complement in the immune landscape of renal cell carcinoma, and notwithstanding cohort size and preclinical model limitations, the data suggest that tumors resistant to immune checkpoint inhibitors might be suitable targets for complement-based therapy.
Collapse
Affiliation(s)
- Britney Reese
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Ashok Silwal
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Elizabeth Daugherity
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Michael Daugherity
- Department of Engineering and Physics, Abilene Christian University, Abilene, TX 79601
| | - Mahshid Arabi
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Pierce Daly
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Yvonne Paterson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Layton Woolford
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Alana Christie
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Roy Elias
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - James Brugarolas
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and.,The Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601;
| |
Collapse
|
2
|
Abstract
The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.
Collapse
|
3
|
Leonel C, Sena IFG, Silva WN, Prazeres PHDM, Fernandes GR, Mancha Agresti P, Martins Drumond M, Mintz A, Azevedo VAC, Birbrair A. Staphylococcus epidermidis role in the skin microenvironment. J Cell Mol Med 2019; 23:5949-5955. [PMID: 31278859 PMCID: PMC6714221 DOI: 10.1111/jcmm.14415] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex dynamic physiological process in response to cutaneous destructive stimuli that aims to restore the cutaneous' barrier role. Deciphering the underlying mechanistic details that contribute to wound healing will create novel therapeutic strategies for skin repair. Recently, by using state-of-the-art technologies, it was revealed that the cutaneous microbiota interact with skin immune cells. Strikingly, commensal Staphylococcus epidermidis-induced CD8+ T cells induce re-epithelization of the skin after injury, accelerating wound closure. From a drug development perspective, the microbiota may provide new therapeutic candidate molecules to accelerate skin healing. Here, we summarize and evaluate recent advances in the understanding of the microbiota in the skin microenvironment.
Collapse
Affiliation(s)
- Caroline Leonel
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Isadora F. G. Sena
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Walison N. Silva
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | | | | | - Pamela Mancha Agresti
- Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | | | - Akiva Mintz
- Department of RadiologyColumbia University Medical CenterNew YorkNew York
| | - Vasco A. C. Azevedo
- Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Alexander Birbrair
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
- Department of RadiologyColumbia University Medical CenterNew YorkNew York
| |
Collapse
|
4
|
Nazemalhosseini-Mojarad E, Mohammadpour S, Torshizi Esafahani A, Gharib E, Larki P, Moradi A, Amin Porhoseingholi M, Asadzade Aghdaei H, Kuppen PJK, Zali MR. Intratumoral infiltrating lymphocytes correlate with improved survival in colorectal cancer patients: Independent of oncogenetic features. J Cell Physiol 2018; 234:4768-4777. [PMID: 30370522 DOI: 10.1002/jcp.27273] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND The clinical relevance and prognostic value of tumor-infiltrating lymphocytes (TILs) as an interplay between malignant cells and immune function has been known for decades. On contrary, this potential may be different by T lymphocytes subsets endowed with a different function. Colorectal cancer (CRC) is a heterogeneous disease with different suggested prognostic biomarkers. So, this study was conducted to examine the prognostic value of CD8+ TILs on the survival rate of CRC as an independent factor of oncogenetic tumor features. METHODS With respect to this, 281 formalin-fixed, paraffin-embedded tissue samples of Iranian CRC patients were evaluated for clinical features including tumor location, tumor stage, differentiation grade, and mucinous characteristics. Then, using the standard immunohistochemical technique, tumor sections were examined, and CD8+ TILs were counted and identified in two regions of the tumor, including intratumoral (ITCIL TILs) and stromal (S TILs). The prognostic value of CD8+ TILs was determined by comparing with parameters, such as diagnostic age, tumor stage, adjuvant therapy, microsatellite instability (MSI) status, KRAS and BRAF mutations, family history, and survival. RESULTS The presence of intratumoral tumor cell-infiltrating lymphocytes (ITCIL) CD8+ lymphocytes are significantly associated with differentiation (p = 0.004), tumor, node, and metastases (TNM) stage (p = 0.001), and MSI (p = 0.001). Meanwhile, based on the level of stromal infiltrating lymphocytes (SIL) infiltration, analysis of CRC patients was statistically associated with a location (p = 0.002), TNM stage (p < 0.001), metastasis (p < 0.001), and KRAS mutation (p = 0.031). Also, tumors with severe ITCIL CD8+ lymphocytes have a good prognosis compared with tumors with poor or moderate ITCIL CD8+ lymphocytes. CONCLUSIONS These results suggest that intratumor cell-infiltrating CD8- T lymphocytes as an independent prognostic factor that have an antitumor activity as judged by their favorable effect on patients' survival and could potentially be exploited in the treatment of CRC.
Collapse
Affiliation(s)
- Ehsan Nazemalhosseini-Mojarad
- Gastrointestinal (GI) cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mohammadpour
- Molecular Medicine Department, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esafahani
- Molecular Medicine Department, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Gharib
- Molecular Medicine Department, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Larki
- Molecular Medicine Department, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moradi
- Department of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Porhoseingholi
- Gastrointestinal (GI) cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzade Aghdaei
- Molecular Medicine Department, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohammad Reza Zali
- Gastrointestinal (GI) cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Conley BA, Sorg BS, Tricoli JV. Implications and opportunities of precision medicine in rare malignancies. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1214071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Barbara A. Conley
- Cancer Diagnosis Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD, USA
| | - Brian S. Sorg
- Cancer Diagnosis Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD, USA
| | - James V. Tricoli
- Cancer Diagnosis Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
6
|
Galeano Niño JL, Kwan RYQ, Weninger W, Biro M. Antigen-specific T cells fully conserve antitumour function following cryopreservation. Immunol Cell Biol 2016; 94:411-8. [PMID: 26754453 PMCID: PMC4840239 DOI: 10.1038/icb.2015.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023]
Abstract
Immunotherapies based on the autologous adoptive transfer of ex vivo-manipulated T cells are rapidly evolving for the treatment of both metastatic and primary malignancies. However, extended ex vivo culturing reduces the functionality of isolated T cells. Cryopreservation of rapidly expanded T cells for subsequent use throughout an immunotherapeutic regimen is a highly desirable recourse, thus far encumbered by a lack of studies investigating its effects on effector T-cell functionality. Here we directly compare murine tumour-reactive CD8+ T cells cryopreserved during ex vivo expansion to freshly isolated populations. We show that cryopreservation fully conserves the differentiation potential of effector T cells, secretion of pro-inflammatory cytokines, cytotoxic function and does not impair the three-dimensional scanning motility of T cells or their capacity to infiltrate and reject tumours.
Collapse
Affiliation(s)
- Jorge L Galeano Niño
- Immune Imaging Program, Centenary Institute of Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Rain Y Q Kwan
- Immune Imaging Program, Centenary Institute of Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute of Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Maté Biro
- Immune Imaging Program, Centenary Institute of Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Spinelli FM, Vitale DL, Demarchi G, Cristina C, Alaniz L. The immunological effect of hyaluronan in tumor angiogenesis. Clin Transl Immunology 2015; 4:e52. [PMID: 26719798 PMCID: PMC4685440 DOI: 10.1038/cti.2015.35] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022] Open
Abstract
The relationship between the immune system and angiogenesis has been described in several contexts, both in physiological and pathological conditions, as pregnancy and cancer. In fact, different types of immune cells, such as myeloid, macrophages and denditric cells, are able to modulate tumor neovascularization. On the other hand, tumor microenvironment also includes extracellular matrix components like hyaluronan, which has a deregulated synthesis in different tumors. Hyaluronan is a glycosaminoglycan, normally present in the extracellular matrix of tissues in continuous remodeling (embryogenesis or wound healing processes) and acts as an important modulator of cell behavior by different mechanisms, including angiogenesis. In this review, we discuss hyaluronan as a modulator of tumor angiogenesis, focusing in intracellular signaling mediated by its receptors expressed on different immune cells. Recent observations suggest that the immune system is an important component in tumoural angiogenesis. Therefore, immune modulation could have an impact in anti-angiogenic therapy as a new therapeutic strategy, which in turn might improve effectiveness of treatment in cancer patients.
Collapse
Affiliation(s)
- Fiorella M Spinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Tumour Microenvironment, CIBA, Junín, Pcia. Bs. As., Argentina
| | - Daiana L Vitale
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Tumour Microenvironment, CIBA, Junín, Pcia. Bs. As., Argentina
| | - Gianina Demarchi
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Pituitary Physiopathology, CIBA, Junín, Provincia de Buenos Aires, Argentina
| | - Carolina Cristina
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Pituitary Physiopathology, CIBA, Junín, Provincia de Buenos Aires, Argentina
| | - Laura Alaniz
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Tumour Microenvironment, CIBA, Junín, Pcia. Bs. As., Argentina
| |
Collapse
|
8
|
Robert-Tissot C, Nguyen LT, Ohashi PS, Speiser DE. Mobilizing and evaluating anticancer T cells: pitfalls and solutions. Expert Rev Vaccines 2013; 12:1325-40. [PMID: 24127850 DOI: 10.1586/14760584.2013.843456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunotherapy is a promising means to fight cancer, prompting a steady increase in clinical trials and correlative laboratory studies in this field. As antitumor T cells play central roles in immunity against malignant diseases, most immunotherapeutic protocols aim to induce and/or strengthen their function. Various treatment strategies have elicited encouraging clinical responses; however, major challenges have been uncovered that should be addressed in order to fully exploit the potential of immunotherapy. Here, we outline pitfalls for the mobilization of antitumor T cells and offer solutions to improve their therapeutic efficacy. We provide a critical perspective on the main methodologies used to characterize T-cell responses to cancer therapies, with a focus on discrepancies between T-cell attributes measured in vitro and protective responses in vivo. This review altogether provides recommendations to optimize the design of future clinical trials and highlights important considerations for the proficient analysis of clinical specimens available for research.
Collapse
Affiliation(s)
- Céline Robert-Tissot
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
| | | | | | | |
Collapse
|