1
|
Faway E, Poirier W, Maréchal F, Poumay Y, Mignon B. Expression of fungal and host markers in models of dermatophytosis on mice and human epidermis. J Invest Dermatol 2024:S0022-202X(24)02073-6. [PMID: 39218143 DOI: 10.1016/j.jid.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Increasing resistance of dermatophytes against antifungals creates global public health problems, rendering essential a better understanding of virulence mechanisms and factors determining host-specificity of dermatophytes. Since dermatophytes switch from a saprophytic to a parasitic lifestyle by reprogramming gene expression, reliable experimental models are needed to investigate the pathogenesis of dermatophytosis. Here, a relevant mouse model of Trichophyton benhamiae dermatophytosis was assessed, together with a model based on reconstructed human epidermis (RHE), allowing their respective validation regarding fungal gene expressed during infection. The use of a standardized inoculum induced a natural-like superficial infection in mice. The severity and persistence of lesions enabled the assessment of infection markers, including mouse-specific pro-inflammatory molecules and fungal genes previously reported as potential virulence factors. Upregulated expression of fungal genes, including those encoding subtilisins, in infected RHE revealed that dermatophytes deploy similar processes as those observed during in vivo infection. The RHE model was then used to compare infections by anthropophilic Trichophyton rubrum and zoophilic T. benhamiae. Therefore, these two models represent complementary analytical tools to study the pathogenesis of acute dermatophytoses. In addition, we have identified certain fungal markers of infection and highlighted the existence of different mechanisms deployed by zoophilic versus anthropophilic dermatophytes.
Collapse
Affiliation(s)
- Emilie Faway
- Molecular Physiology Research Unit, NAmur Research Institute for Life Sciences (URPHYM-NARILIS), Faculty of Medicine, University of Namur, 5000 Namur, Belgium.
| | - Wilfried Poirier
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Françoise Maréchal
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Yves Poumay
- Molecular Physiology Research Unit, NAmur Research Institute for Life Sciences (URPHYM-NARILIS), Faculty of Medicine, University of Namur, 5000 Namur, Belgium
| | - Bernard Mignon
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Zhang Y, Li J, Zhao Z, Yang X, You D, Li X, Fan Z, Fu A. Discovery of the Effects of the Hemiprotonic Phenanthroline-Phenanthroline + against Trichophyton rubrum by Inducing Fungal Apoptosis. J Invest Dermatol 2023; 143:1799-1808.e3. [PMID: 36921683 DOI: 10.1016/j.jid.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023]
Abstract
Trichophyton rubrum (T. rubrum) is the most common causative agent of dermatophytosis worldwide. The development of antifungal drugs will contribute to treating the disease. In this study, we suggest that a hemiprotonic compound phenanthroline-phenanthroline+ (ph-ph+) is active in inhibiting the growth and reproduction of T. rubrum, and the minimum inhibitory concentration and minimum fungicidal concentration values were 2 μg/ml and 8 μg/ml, respectively. In an in vitro onychomycosis model, ph-ph+ killed T. rubrum by inducing apoptosis, which was evaluated by transmission electron microscopy and Annexin V-FITC/propidium iodide staining. Transcriptomic analysis and biochemical assay showed that ph-ph+ elevated iron ion content in T. rubrum cells and reduced glutathione antioxidant system level, leading to an increase in the contents of ROS and malondialdehyde. Therefore, the antifungal mechanism of ph-ph+ would be associated with iron ion-induced cell apoptosis, which is different from other known antifungal drugs. Furthermore, ph-ph+ was prepared into gel for application in guinea pigs with dermatophytosis caused by T. rubrum. The results showed that the ph-ph+ gel eliminated the fungus in the animals without causing skin irritation or other adverse reactions. The study would not only provide a potential compound to treat dermatophytosis, but also suggest that iron ion-induced cell apoptosis might be a new approach to killing fungi.
Collapse
Affiliation(s)
- Yuping Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jingli Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaoxi Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Dongmei You
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaorong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhigang Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Comprehensive Assessment of the Virulence Factors sub 3, sub 6 and mcpA in the Zoonotic Dermatophyte Trichophyton benhamiae Using FISH and qPCR. J Fungi (Basel) 2021; 8:jof8010024. [PMID: 35049964 PMCID: PMC8778074 DOI: 10.3390/jof8010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Skin infections by keratinophilic fungi are commonly referred to as dermatophytosis and represent a major health burden worldwide. Although patient numbers are on the rise, data on virulence factors, their function and kinetics are scarce. We employed an ex vivo infection model based on guinea pig skin explants (GPSE) for the zoonotic dermatophyte Trichophyton (T.) benhamiae to investigate kinetics of the virulence factors subtilisin (sub) 3, sub 6, metallocarboxypeptidase A (mcpA) and isocitrate lyase (isol) at gene level for ten days. Fluorescence in situ hybridization (FISH) and quantitative polymerase chain reaction (qPCR) were used to detect and quantify the transcripts, respectively. Kingdom-spanning, species-specific and virulence factor-specific probes were successfully applied to isolated fungal elements showing inhomogeneous fluorescence signals along hyphae. Staining results for inoculated GPSE remained inconsistent despite thorough optimization. qPCR revealed a significant increase of sub 3- and mcpA-transcripts toward the end of culture, sub 6 and isol remained at a low level throughout the entire culture period. Sub 3 is tightly connected to the de novo formation of conidia during culture. Since sub 6 is considered an in vivo disease marker. However, the presented findings urgently call for further research on the role of certain virulence factors during infection and disease.
Collapse
|
4
|
Abstract
The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.
Collapse
|
5
|
Whole genome sequences of two Trichophyton indotineae clinical isolates from India emerging as threats during therapeutic treatment of dermatophytosis. 3 Biotech 2021; 11:402. [PMID: 34458064 DOI: 10.1007/s13205-021-02950-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
In the current study, we report the genome sequence of two different clinical isolates from India, Trichophyton indotineae UCMS-IGIB-CI12 and Trichophyton indotineae UCMS-IGIB-CI14. The resulting genome assembly achieved a 143-fold coverage in 824 contigs for T. indotineae UCMS-IGIB-CI12 and a 136-fold coverage in 904 contigs for T. indotineae UCMS-IGIB-CI14. Both the clinical isolates contain a c.1342G>A mutation corresponding to Ala448Thr amino acid substitution in erg1 and exhibit an intermittent drug response to terbinafine. Comparative genomics analysis with available genomes of Trichophyton interdigitale/Trichophyton mentagrophytes species complex revealed a similar genome architecture and identified large number of genes associated with virulence and pathogenicity, namely, lipases, proteases, LysM domain-containing factors, carbon metabolism enzymes and cytochrome P450 enzymes, in all the genomes. An analysis of single amino acid polymorphisms (SAPs) in the protein sequences of subtilisin and lipase enzyme families identified a higher frequency of SAPs in functionally important proteins, Sub3 and Sub6 and their possible use in multilocus phylogenetic analysis of T. interdigitale/T. mentagrophytes species complex. The whole genome sequences of T. indotineae clinical isolates provided in this report will, hence, serve as a key reference point for investigation of clinical strains and emerging drug resistance among dermatophytes originating from different parts of the world.
Collapse
|
6
|
Łagowski D, Gnat S, Nowakiewicz A, Osińska M. Assessment of the subtilisin gene profile in Trichophyton verrucosum isolated from human and animal dermatophytoses in two-stage multiplex PCR. J Appl Microbiol 2020; 131:300-306. [PMID: 33245823 DOI: 10.1111/jam.14942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 11/22/2020] [Indexed: 11/28/2022]
Abstract
AIMS Keratin is a fibrous and recalcitrant structural protein and the third most abundant polymer in nature after cellulose and chitin. Subtilisin-like proteases (SUB) are a group of serine endoproteases, coded by seven genes (SUB1-7), which decompose keratin structures and have been isolated from dermatophytes. Herein, we identified the SUB genes in 30 clinical isolates of Trichophyton verrucosum obtained from human and animal dermatophytosis as well as asymptomatic animal carriers. METHODS AND RESULTS We designed and proposed a two-stage multiplex PCR technique to detect all seven genes encoding serine proteases in dermatophytes. The analysis revealed the presence SUB1 and SUB2 amplicons in all strains regardless of the host. In the group of isolates obtained from humans, all seven subtilisin genes were shown in 40% of the strains. In T. verrucosum from asymptomatic animals, none of the isolates showed the presence of all seven subtilisin genes, and only 30% had six genes. In turn, 10% of the isolates from symptomatic animals demonstrated all seven subtilisins amplicons. CONCLUSIONS In conclusion, the severity of infection and ability of T. verrucosum to cause dermatophytosis in humans may not be related to specific genes but their accumulation and synergistic effects of their products. SIGNIFICANCE AND IMPACT OF THE STUDY Dermatophytes are pathogenic filamentous fungi with capacity to attack keratinized structures such as skin, hair and nails, causing cutaneous superficial infections. Indeed, a biological characteristic of dermatophytes is their ability to invade keratin-rich tissues by producing enzymes. Various degrees of inflammatory responses can be induced exactly by the enzymes. Subtilisin-like proteases are endoproteases, which decompose keratin structures. Our study identifies SUB genes in clinical isolates of T. verrucosum obtained from human and animal dermatophytosis as well as asymptomatic animal carriers.
Collapse
Affiliation(s)
- D Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - S Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - A Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - M Osińska
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| |
Collapse
|
7
|
Lang EAS, Bitencourt TA, Peres NTA, Lopes L, Silva LG, Cazzaniga RA, Rossi A, Martinez-Rossi NM. The stuA gene controls development, adaptation, stress tolerance, and virulence of the dermatophyte Trichophyton rubrum. Microbiol Res 2020; 241:126592. [PMID: 33002720 DOI: 10.1016/j.micres.2020.126592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
The APSES family, comprising of the transcriptional regulators Asm1p, Phd1p, Sok2p, Efg1p, and StuA, is found exclusively in fungi and has been reported to control several cellular processes in these organisms. However, its function in dermatophytes has not yet been completely understood. Here, we generated two null mutant strains by deleting the stuA gene in the dermatophyte Trichophyton rubrum, the most common clinical isolate obtained from human skin and nail mycoses. The functional characterization of the knocked-out strains revealed the involvement of stuA in germination, morphogenesis of conidia and hyphae, pigmentation, stress responses, and virulence. Although the mutant strains could grow under several nutritional conditions, growth on the keratin medium, human nails, and skin was impaired. The co-culture of stuA mutants with human keratinocytes revealed enhanced development. Moreover, a stuA mutant grown on the keratin substrate showed a marked decrease in the transcript numbers of the hydrophobin encoding gene (hypA), suggesting the involvement of stuA in the molecular mechanisms underlying mechanosensing during the fungi-host interaction. In addition, bioinformatics analyses revealed the potential involvement of StuA in different biological processes such as oxidation-reduction, phosphorylation, proteolysis, transcription/translation regulation, and carbohydrate metabolism. Cumulatively, the present study suggested that StuA is a crosstalk mediator of many pathways and is an integral component of the infection process, implying that it could be a potential target for antifungal therapy.
Collapse
Affiliation(s)
- Elza A S Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamires A Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nalu T A Peres
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucia Lopes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Larissa G Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo A Cazzaniga
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Mercer DK, Stewart CS. Keratin hydrolysis by dermatophytes. Med Mycol 2019; 57:13-22. [PMID: 29361043 DOI: 10.1093/mmy/myx160] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
Dermatophytes are the most common cause of superficial fungal infections (tinea infections) and are a specialized group of filamentous fungi capable of infecting and degrading keratinised tissues, including skin, hair, and nail. Essential to their pathogenicity and virulence is the production of a broad spectrum of proteolytic enzymes and other key proteins involved in keratin biodegradation and utilization of its breakdown products. The initial stage of biodegradation of native keratin is considered to be sulfitolysis, in which the extensive disulfide bridges present in keratin are hydrolyzed, although some secreted subtilisins can degrade dye-impregnated keratin azure without prior reduction (Sub3 and Sub4). Sulfitolysis facilitates the extracellular biodegradation of keratin by the dermatophytes' extensive array of endo- and exoproteases. The importance of dermatophyte proteases in infection is widely recognized, and these enzymes have also been identified as important virulence determinants and allergens. Finally, the short peptide and amino acid breakdown products are taken up by the dermatophytes, using as yet poorly characterised transporters, and utilized for metabolism. In this review, we describe the process of keratin biodegradation by dermatophytes, with an especial focus on recent developments in cutting edge molecular biology and '-omic' studies that are helping to dissect the complex process of keratin breakdown and utilization.
Collapse
Affiliation(s)
- Derry K Mercer
- NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, United Kingdom
| | | |
Collapse
|
9
|
Faway E, Cambier L, De Vuyst E, Evrard C, Thiry M, Lambert de Rouvroit C, Mignon B, Poumay Y. Responses of Reconstructed Human Epidermis to Trichophyton rubrum Infection and Impairment of Infection by the Inhibitor PD169316. J Invest Dermatol 2019; 139:2080-2089.e6. [PMID: 30986374 DOI: 10.1016/j.jid.2019.03.1147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Despite the threatening incidence of dermatophytosis, information is still lacking about the consequences of infection on epidermal barrier functions and about the keratinocyte responses that alert immune components. To identify the mechanisms involved, arthroconidia of the anthropophilic dermatophyte Trichophyton rubrum were prepared to infect reconstructed human epidermis (RHE) in vitro. Integrity of the barrier was monitored during infection by measurements of transepithelial electrical resistance and dye-permeation through the RHE. Expression and release of pro-inflammatory cytokines and antimicrobial peptides by keratinocytes inserted into the RHE were assessed, respectively, by quantitative reverse transcriptase-PCR (to analyze mRNA content in tissue extracts) and by ELISA (to detect proteins in culture media). Results reveal that infection by T. rubrum is responsible for disruption of the epidermal barrier, including loss of functional tight junctions. It additionally causes simultaneous expression and release of cytokines and antimicrobial peptides by keratinocytes. Potential involvement of the p38 mitogen-activated protein kinase signaling pathway was evaluated during infection by targeted inhibition of its activity. Intriguingly, among several p38 mitogen-activated protein kinase inhibitors, PD169316 alone was able to inhibit growth of T. rubrum on Sabouraud agar and to suppress the process of infection on RHE. This suggests that PD169316 acts on a specific target in dermatophytes themselves.
Collapse
Affiliation(s)
- Emilie Faway
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Ludivine Cambier
- FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | - Marc Thiry
- Cell and Tissue Biology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | | | - Bernard Mignon
- FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yves Poumay
- URPHYM-NARILIS, University of Namur, Namur, Belgium.
| |
Collapse
|
10
|
Recent Findings in Onychomycosis and Their Application for Appropriate Treatment. J Fungi (Basel) 2019; 5:jof5010020. [PMID: 30813287 PMCID: PMC6463057 DOI: 10.3390/jof5010020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
Onychomycosis is mainly caused by two dermatophyte species, Trichophyton rubrum and Trichophyton interdigitale. A study of nail invasion mechanisms revealed that the secreted subtilisin Sub6, which has never been detected under in vitro growth conditions, was the main protease secreted by T. rubrum and T. interdigitale during infection. In contrast, most of the proteases secreted during the digestion of keratin in vitro were not detected in infected nails. The hypothesis that proteases isolated from dermatophytes grown in a keratin medium are virulence factors is no longer supported. Non-dermatophyte fungi can also be infectious agents in nails. It is necessary to identify the infectious fungus in onychomycosis to prescribe adequate treatment, as moulds such as Fusarium spp. and Aspergillus spp. are insensitive to standard treatments with terbinafine or itraconazole, which are usually applied for dermatophytes. In these refractory cases, topical amphotericin B treatment has shown to be effective. Terbinafine treatment failure against dermatophytes is also possible, and is usually due to resistance caused by a missense mutation in the squalene epoxidase enzyme targeted by the drug. Trichophyton resistance to terbinafine treatment is an emerging problem, and a switch to azole-based treatment may be necessary to cure such cases of onychomycosis.
Collapse
|
11
|
Seyedmousavi S, Bosco SDMG, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE, Martel A, Mignon B, Pasmans F, Piecková E, Rodrigues AM, Singh K, Vicente VA, Wibbelt G, Wiederhold NP, Guillot J. Fungal infections in animals: a patchwork of different situations. Med Mycol 2018. [PMID: 29538732 DOI: 10.1093/mmy/myx104] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The importance of fungal infections in both human and animals has increased over the last decades. This article represents an overview of the different categories of fungal infections that can be encountered in animals originating from environmental sources without transmission to humans. In addition, the endemic infections with indirect transmission from the environment, the zoophilic fungal pathogens with near-direct transmission, the zoonotic fungi that can be directly transmitted from animals to humans, mycotoxicoses and antifungal resistance in animals will also be discussed. Opportunistic mycoses are responsible for a wide range of diseases from localized infections to fatal disseminated diseases, such as aspergillosis, mucormycosis, candidiasis, cryptococcosis and infections caused by melanized fungi. The amphibian fungal disease chytridiomycosis and the Bat White-nose syndrome are due to obligatory fungal pathogens. Zoonotic agents are naturally transmitted from vertebrate animals to humans and vice versa. The list of zoonotic fungal agents is limited but some species, like Microsporum canis and Sporothrix brasiliensis from cats, have a strong public health impact. Mycotoxins are defined as the chemicals of fungal origin being toxic for warm-blooded vertebrates. Intoxications by aflatoxins and ochratoxins represent a threat for both human and animal health. Resistance to antifungals can occur in different animal species that receive these drugs, although the true epidemiology of resistance in animals is unknown, and options to treat infections caused by resistant infections are limited.
Collapse
Affiliation(s)
- Seyedmojtaba Seyedmousavi
- Molecular Microbiology Section, Laboratory of Clinical Microbiology and Immunology (LCMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sandra de M G Bosco
- Department of Microbiology and Immunology, Institute of Biosciences-UNESP Univ Estadual Paulista Botucatu, São Paulo, Brazil
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, and Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Frank Ebel
- Institut für Infektionsmedizin und Zoonosen, Munich, Germany
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, Kimron Veterinary Institute, Veterinary Services, Ministry of Agriculture, Beit Dagan, Israel
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Graduate Programme, Curitiba Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
| | | | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases. Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bernard Mignon
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH (Fundamental and Applied Research for Animals & Health), University of Liège, Liège, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases. Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Elena Piecková
- Faculty of Medicine, Slovak Medical University, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Karuna Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Vania A Vicente
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jacques Guillot
- Department of Parasitology, Mycology and Dermatology, EA Dynamyc UPEC, EnvA, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
12
|
Gräser Y, Monod M, Bouchara JP, Dukik K, Nenoff P, Kargl A, Kupsch C, Zhan P, Packeu A, Chaturvedi V, de Hoog S. New insights in dermatophyte research. Med Mycol 2018. [PMID: 29538740 DOI: 10.1093/mmy/myx141] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dermatophyte research has renewed interest because of changing human floras with changing socioeconomic conditions, and because of severe chronic infections in patients with congenital immune disorders. Main taxonomic traits at the generic level have changed considerably, and now fine-tuning at the species level with state-of-the-art technology has become urgent. Research on virulence factors focuses on secreted proteases now has support in genome data. It is speculated that most protease families are used for degrading hard keratin during nitrogen recycling in the environment, while others, such as Sub6 may have emerged as a result of ancestral gene duplication, and are likely to have specific roles during infection. Virulence may differ between mating partners of the same species and concepts of zoo- and anthropophily may require revision in some recently redefined species. Many of these questions benefit from international cooperation and exchange of materials. The aim of the ISHAM Working Group Dermatophytes aims to stimulate and coordinate international networking on these fungi.
Collapse
Affiliation(s)
- Yvonne Gräser
- Nationales Konsiliarlabor für Dermatophyten, Institut für Mikrobiologie und Hygiene, Berlin, Germany
| | - Michel Monod
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Karolina Dukik
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Pietro Nenoff
- Labor für Medizinische Mikrobiologie, Mölbis, Germany
| | | | - Christiane Kupsch
- Nationales Konsiliarlabor für Dermatophyten, Institut für Mikrobiologie und Hygiene, Berlin, Germany
| | - Ping Zhan
- Jiangxi Dermatology Hospital and Jiangxi Dermatology Institute, Nanchang, China
| | - Ann Packeu
- Mycologie & Aerobiologie Scientific Institute of Public Health, Brussels, Belgium
| | | | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
13
|
Méhul B, de Coi N, Grundt P, Genette A, Voegel JJ, Monod M. Detection ofTrichophyton rubrumandTrichophyton interdigitale in onychomycosis using monoclonal antibodies against Sub6 (Tri r 2). Mycoses 2018; 62:32-40. [DOI: 10.1111/myc.12843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
| | - Niccolo de Coi
- Department of Dermatology; Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | | | | | | | - Michel Monod
- Department of Dermatology; Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| |
Collapse
|
14
|
Eymann C, Wachlin G, Albrecht D, Tiede S, Krummrei U, Jünger M, Hecker M, Daeschlein G. Exoproteome Analysis of Human Pathogenic Dermatophyte Species and Identification of Immunoreactive Proteins. Proteomics Clin Appl 2018; 12:e1800007. [PMID: 29952123 DOI: 10.1002/prca.201800007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/30/2018] [Indexed: 11/07/2022]
Abstract
PURPOSE Increasing incidence of onychomycosis and tinea pedis in humans of industrialized countries together with deep tissue infections are a therapeutic challenge in clinical mycology. For a better understanding of the pathology and immunology of infection, the authors analyze the exoproteomes of three reference strains of the most common clinical dermatophyte species (Trichophyton rubrum, Trichophyton interdigitale, Arthroderma benhamiae) and of Trichophyton strains isolated from affected patients. EXPERIMENTAL DESIGN Extracellular proteins of those in vitro grown strains are separated via 2D High Performance Electrophoresis and identified by mass spectrometry to find proteins with provoked host immune reactivity. RESULTS More than 80 secreted proteins including virulence factors such as peptidases and other hydrolases are identified. By Western blotting with respective patient sera, up to 31 proteins with significant antigen-antibody reactions are detected in comparison with control sera, for example, peptidases as well as several oxidoreductases. One protein, beta-glucosidase F2SZI9 seems to be a commonly processed antigen in all Trichophyton infections. CONCLUSIONS AND CLINICAL RELEVANCE These first global exoproteome data of three dermatophyte species can be a stepping stone on the way to further study the molecular mechanisms of Trichophyton pathogenicity-associated traits. Possible candidates for potential new diagnostic methods or vaccination have to be validated in further investigations.
Collapse
Affiliation(s)
- Christine Eymann
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, 17489, Greifswald, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Gerhild Wachlin
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, 17489, Greifswald, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, 17489, Greifswald, Germany
| | - Stephan Tiede
- Institute of Experimental Immunology, EUROIMMUN AG, 17475, Lübeck, Germany
| | - Ulrike Krummrei
- EUROIMMUN Medizinische Labordiagnostika AG, 23560, Lübeck, Germany
| | - Michael Jünger
- Klinik und Poliklinik für Hautkrankheiten, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Michael Hecker
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, 17489, Greifswald, Germany
| | - Georg Daeschlein
- Klinik und Poliklinik für Hautkrankheiten, University Medicine Greifswald, 17475, Greifswald, Germany
| |
Collapse
|
15
|
Assessment of the subtilisin genes in Trichophyton rubrum and Microsporum canis from dermatophytosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2745-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Abstract
Humans are exceptional among vertebrates in that their living tissue is directly exposed to the outside world. In the absence of protective scales, feathers, or fur, the skin has to be highly effective in defending the organism against the gamut of opportunistic fungi surrounding us. Most (sub)cutaneous infections enter the body by implantation through the skin barrier. On intact skin, two types of fungal expansion are noted: (A) colonization by commensals, i.e., growth enabled by conditions prevailing on the skin surface without degradation of tissue, and (B) infection by superficial pathogens that assimilate epidermal keratin and interact with the cellular immune system. In a response-damage framework, all fungi are potentially able to cause disease, as a balance between their natural predilection and the immune status of the host. For this reason, we will not attribute a fixed ecological term to each species, but rather describe them as growing in a commensal state (A) or in a pathogenic state (B).
Collapse
|
17
|
RNA Sequencing-Based Genome Reannotation of the Dermatophyte Arthroderma benhamiae and Characterization of Its Secretome and Whole Gene Expression Profile during Infection. mSystems 2016; 1:mSystems00036-16. [PMID: 27822542 PMCID: PMC5069957 DOI: 10.1128/msystems.00036-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/27/2016] [Indexed: 01/08/2023] Open
Abstract
Dermatophytoses (ringworm, jock itch, athlete’s foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae. Comparing gene expression during infection on guinea pigs with keratin degradation in vitro, which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo, encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates. Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae. Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum. IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete’s foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae. Comparing gene expression during infection on guinea pigs with keratin degradation in vitro, which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo, encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates.
Collapse
|
18
|
|
19
|
Bohni N, Hofstetter V, Gindro K, Buyck B, Schumpp O, Bertrand S, Monod M, Wolfender JL. Production of Fusaric Acid by Fusarium spp. in Pure Culture and in Solid Medium Co-Cultures. Molecules 2016; 21:370. [PMID: 26999098 PMCID: PMC6274276 DOI: 10.3390/molecules21030370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/10/2016] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
The ability of fungi isolated from nails of patients suffering from onychomycosis to induce de novo production of bioactive compounds in co-culture was examined. Comparison between the metabolite profiles produced by Sarocladium strictum, by Fusarium oxysporum, and by these two species in co-culture revealed de novo induction of fusaric acid based on HRMS. Structure confirmation of this toxin, using sensitive microflow NMR, required only three 9-cm Petri dishes of fungal culture. A targeted metabolomics study based on UHPLC-HRMS confirmed that the production of fusaric acid was strain-dependent. Furthermore, the detected toxin levels suggested that onychomycosis-associated fungal strains of the F. oxysporum and F. fujikuroi species complexes are much more frequently producing fusaric acid, and in higher amount, than strains of the F. solani species complex. Fusarium strains producing no significant amounts of this compound in pure culture, were shown to de novo produce that compound when grown in co-culture. The role of fusaric acid in fungal virulence and defense is discussed.
Collapse
Affiliation(s)
- Nadine Bohni
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| | - Valérie Hofstetter
- Mycology and Biotechnology Group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P. O. Box 1012, CH-1260 Nyon, Switzerland.
| | - Katia Gindro
- Mycology and Biotechnology Group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P. O. Box 1012, CH-1260 Nyon, Switzerland.
| | - Bart Buyck
- Muséum National d'Histoire Naturelle, Département Systématique et Évolution, CP 39, ISYEB, UMR 7205 CNRS MNHN UPMC EPHE, 12 rue Buffon, F-75005 Paris, France.
| | - Olivier Schumpp
- Mycology and Biotechnology Group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P. O. Box 1012, CH-1260 Nyon, Switzerland.
| | - Samuel Bertrand
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| | - Michel Monod
- Department of Dermatology and Venereology, Laboratory of Mycology, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|