1
|
Cortesi V, Manzoni F, Raffaeli G, Cavallaro G, Fattizzo B, Amelio GS, Gulden S, Amodeo I, Giannotta JA, Mosca F, Ghirardello S. Severe Presentation of Congenital Hemolytic Anemias in the Neonatal Age: Diagnostic and Therapeutic Issues. Diagnostics (Basel) 2021; 11:diagnostics11091549. [PMID: 34573891 PMCID: PMC8467765 DOI: 10.3390/diagnostics11091549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Congenital hemolytic anemias (CHAs) are a group of diseases characterized by premature destruction of erythrocytes as a consequence of intrinsic red blood cells abnormalities. Suggestive features of CHAs are anemia and hemolysis, with high reticulocyte count, unconjugated hyperbilirubinemia, increased lactate dehydrogenase (LDH), and reduced haptoglobin. The peripheral blood smear can help the differential diagnosis. In this review, we discuss the clinical management of severe CHAs presenting early on in the neonatal period. Appropriate knowledge and a high index of suspicion are crucial for a timely differential diagnosis and management. Here, we provide an overview of the most common conditions, such as glucose-6-phosphate dehydrogenase deficiency, pyruvate kinase deficiency, and hereditary spherocytosis. Although rare, congenital dyserythropoietic anemias are included as they may be suspected in early life, while hemoglobinopathies will not be discussed, as they usually manifest at a later age, when fetal hemoglobin (HbF) is replaced by the adult form (HbA).
Collapse
Affiliation(s)
- Valeria Cortesi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Francesca Manzoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Genny Raffaeli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
- Correspondence: ; Tel.: +39-(25)-5032234; Fax: +39-(25)-503221
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Bruno Fattizzo
- UO Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.F.); (J.A.G.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giacomo Simeone Amelio
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Silvia Gulden
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Juri Alessandro Giannotta
- UO Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.F.); (J.A.G.)
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Stefano Ghirardello
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
2
|
DelFavero JJ, Jnah AJ, Newberry D. Glucose-6-Phosphate Dehydrogenase Deficiency and the Benefits of Early Screening. Neonatal Netw 2021; 39:270-282. [PMID: 32879043 DOI: 10.1891/0730-0832.39.5.270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 11/25/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy worldwide, is an insufficient amount of the G6PD enzyme, which is vital to the protection of the erythrocyte. Deficient enzyme levels lead to oxidative damage, hemolysis, and resultant severe hyperbilirubinemia. If not promptly recognized and treated, G6PD deficiency can potentially lead to bilirubin-induced neurologic dysfunction, acute bilirubin encephalopathy, and kernicterus. Glucose-6-phosphate dehydrogenase deficiency is one of the three most common causes for pathologic hyperbilirubinemia. A change in migration patterns and intercultural marriages have created an increased incidence of G6PD deficiency in the United States. Currently, there is no universally mandated metabolic screening or clinical risk assessment tool for G6PD deficiency in the United States. Mandatory universal screening for G6PD deficiency, which includes surveillance and hospital-based risk assessment tools, can identify the at-risk infant and foster early identification, diagnosis, and treatment to eliminate neurotoxicity.
Collapse
|
3
|
Point-of-Care Testing for G6PD Deficiency: Opportunities for Screening. Int J Neonatal Screen 2018; 4:34. [PMID: 31709308 PMCID: PMC6832607 DOI: 10.3390/ijns4040034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked genetic disorder, is associated with increased risk of jaundice and kernicterus at birth. G6PD deficiency can manifest later in life as severe hemolysis, when the individual is exposed to oxidative agents that range from foods such as fava beans, to diseases such as typhoid, to medications such as dapsone, to the curative drugs for Plasmodium (P.) vivax malaria, primaquine and tafenoquine. While routine testing at birth for G6PD deficiency is recommended by the World Health Organization for populations with greater than 5% prevalence of G6PD deficiency and to inform P. vivax case management using primaquine, testing coverage is extremely low. Test coverage is low due to the need to prioritize newborn interventions and the complexity of currently available G6PD tests, especially those used to inform malaria case management. More affordable, accurate, point-of-care (POC) tests for G6PD deficiency are emerging that create an opportunity to extend testing to populations that do not have access to high throughput screening services. Some of these tests are quantitative, which provides an opportunity to address the gender disparity created by the currently available POC qualitative tests that misclassify females with intermediate G6PD activity as normal. In populations where the epidemiology for G6PD deficiency and P. vivax overlap, screening for G6PD deficiency at birth to inform care of the newborn can also be used to inform malaria case management over their lifetime.
Collapse
|
4
|
Sirdah MM, Al-Kahlout MS, Reading NS. National G6PD neonatal screening program in Gaza Strip of Palestine: rationale, challenges and recommendations. Clin Genet 2016; 90:191-8. [PMID: 27064064 DOI: 10.1111/cge.12786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
Abstract
Congenital genetic disorders affecting neonates or young children can have serious clinical consequences if undiagnosed and left untreated. Early detection and an accurate diagnosis are, therefore, of major importance for preventing negative patient outcomes. Even though the occurrence of each specific metabolic disorder may be rare, their collective impact of preventable complications may be of considerable importance to the public health. Our previous studies showed that glucose-6-phosphate dehydrogenase (G6PD) deficiency is a problem of public health importance that has been shown to be a predominant cause of acute hemolytic anemia requiring hospitalization in Palestinian young children in Gaza Strip. Intriguingly, the majority of these children had one of the three variants, Mediterranean(c.) (563T) , African G6PD A-(c.) (202A) (/c.) (376G) and heretofore unrecognized as a common G6PD-deficient variant G6PD Cairo(c.) (404C) . The high prevalence of G6PD deficiency, as well as dietary factors in the region that precipitate anemia, argues for a need to protect the Palestinian children from a treatable and manageable genetic and metabolic disorder. This work reviews and discusses rationales and challenges of G6PD screening program in Gaza Strip. We advocate adopting a national neonatal G6PD screening program in Gaza Strip to identify children at risk and promote wellness and health for Palestine.
Collapse
Affiliation(s)
- M M Sirdah
- Biology Department, Al Azhar University-Gaza, Gaza, Palestine.,Division of Hematology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - M S Al-Kahlout
- Al Nasser Pediatric Hospital, Palestinian Ministry of Health, Gaza, Palestine
| | - N S Reading
- Division of Hematology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA.,Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA.,Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|