1
|
Phelps KR, Gemoets DE, May PM. Chemical evidence for the tradeoff-in-the-nephron hypothesis to explain secondary hyperparathyroidism. PLoS One 2022; 17:e0272380. [PMID: 35913960 PMCID: PMC9342777 DOI: 10.1371/journal.pone.0272380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Background Secondary hyperparathyroidism (SHPT) complicates advanced chronic kidney disease (CKD) and causes skeletal and other morbidity. In animal models of CKD, SHPT was prevented and reversed by reduction of dietary phosphate in proportion to GFR, but the phenomena underlying these observations are not understood. The tradeoff-in-the-nephron hypothesis states that as GFR falls, the phosphate concentration in the distal convoluted tubule ([P]DCT]) rises, reduces the ionized calcium concentration in that segment ([Ca++]DCT), and thereby induces increased secretion of parathyroid hormone (PTH) to maintain normal calcium reabsorption. In patients with CKD, we previously documented correlations between [PTH] and phosphate excreted per volume of filtrate (EP/Ccr), a surrogate for [P]DCT. In the present investigation, we estimated [P]DCT from physiologic considerations and measurements of phosphaturia, and sought evidence for a specific chemical phenomenon by which increased [P]DCT could lower [Ca++]DCT and raise [PTH]. Methods and findings We studied 28 patients (“CKD”) with eGFR of 14–49 mL/min/1.73m2 (mean 29.9 ± 9.5) and 27 controls (“CTRL”) with eGFR > 60 mL/min/1.73m2 (mean 86.2 ± 10.2). In each subject, total [Ca]DCT and [P]DCT were deduced from relevant laboratory data. The Joint Expert Speciation System (JESS) was used to calculate [Ca++]DCT and concentrations of related chemical species under the assumption that a solid phase of amorphous calcium phosphate (Ca3(PO4)2 (am., s.)) could precipitate. Regressions of [PTH] on eGFR, [P]DCT, and [Ca++]DCT were then examined. At filtrate pH of 6.8 and 7.0, [P]DCT was found to be the sole determinant of [Ca++]DCT, and precipitation of Ca3(PO4)2 (am., s.) appeared to mediate this result. At pH 6.6, total [Ca]DCT was the principal determinant of [Ca++]DCT, [P]DCT was a minor determinant, and precipitation of Ca3(PO4)2 (am., s.) was predicted in no CKD and five CTRL. In CKD, at all three pH values, [PTH] varied directly with [P]DCT and inversely with [Ca++]DCT, and a reduced [Ca++]DCT was identified at which [PTH] rose unequivocally. Relationships of [PTH] to [Ca++]DCT and to eGFR resembled each other closely. Conclusions As [P]DCT increases, chemical speciation calculations predict reduction of [Ca++]DCT through precipitation of Ca3(PO4)2 (am., s.). [PTH] appears to rise unequivocally if [Ca++]DCT falls sufficiently. These results support the tradeoff-in-the-nephron hypothesis, and they explain why proportional phosphate restriction prevented and reversed SHPT in experimental CKD. Whether equally stringent treatment can be as efficacious in humans warrants investigation.
Collapse
Affiliation(s)
- Kenneth R. Phelps
- Research Service, Stratton Veterans’ Affairs Medical Center, Albany, NY, Uniyed States of America
- Department of Medicine, Albany Medical College, Albany, NY, Uniyed States of America
- * E-mail:
| | - Darren E. Gemoets
- Research Service, Stratton Veterans’ Affairs Medical Center, Albany, NY, Uniyed States of America
| | - Peter M. May
- Department of Chemistry, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
2
|
Halfen DP, Caragelasco DS, Nogueira JPDS, Jeremias JT, Pedrinelli V, Oba PM, Ruberti B, Pontieri CFF, Kogika MM, Brunetto MA. Evaluation of Electrolyte Concentration and Pro-Inflammatory and Oxidative Status in Dogs with Advanced Chronic Kidney Disease under Dietary Treatment. Toxins (Basel) 2019; 12:toxins12010003. [PMID: 31861622 PMCID: PMC7020431 DOI: 10.3390/toxins12010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
An integrated study on the effect of renal diet on mineral metabolism, fibroblast growth factor 23 (FGF-23), total antioxidant capacity, and inflammatory markers has not been performed previously. In this study, we evaluated the effects of renal diet on mineral metabolism, oxidative stress and inflammation in dogs with stage 3 or 4 of chronic kidney disease (CKD). Body condition score (BCS), muscle condition score (MCS), serum biochemical profile, ionized calcium (i-Ca), total calcium (t-Ca), phosphorus (P), urea, creatinine, parathyroid hormone (PTH), FGF-23, interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor alpha (TNF-α) and total antioxidant capacity (TAC) were measured at baseline (T0) and after 6 months of dietary treatment (T6). Serum urea, P, t-Ca, i-Ca, PTH, FGF-23, IL-6, IL-10, TNF-α and TAC measurements did not differ between T0 and T6. Serum creatinine (SCr) was increased at T6 and serum PTH concentrations were positively correlated with serum SCr and urea. i-Ca was negatively correlated with urea and serum phosphorus was positively correlated with FGF-23. Urea and creatinine were positively correlated. The combination of renal diet and support treatment over 6 months in dogs with CKD stage 3 or 4 was effective in controlling uremia, acid–base balance, blood pressure, total antioxidant capacity, and inflammatory cytokine levels and in maintaining BCS and MCS.
Collapse
Affiliation(s)
- Doris Pereira Halfen
- School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 05508-270, Brazil; (D.P.H.); (D.S.C.); (V.P.); (B.R.); (M.A.B.)
| | - Douglas Segalla Caragelasco
- School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 05508-270, Brazil; (D.P.H.); (D.S.C.); (V.P.); (B.R.); (M.A.B.)
| | - Juliana Paschoalin de Souza Nogueira
- Animal Sciences Department, College of Agricultural, Consumer & Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 217-333-3131, USA; (J.P.d.S.N.); (P.M.O.)
| | - Juliana Toloi Jeremias
- Nutrition Development Center, Grand Food Industria e Comercio Ltda (Premier Pet), Dourado, SP 13590-000, Brazil; (J.T.J.); (C.F.F.P.)
| | - Vivian Pedrinelli
- School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 05508-270, Brazil; (D.P.H.); (D.S.C.); (V.P.); (B.R.); (M.A.B.)
| | - Patrícia Massae Oba
- Animal Sciences Department, College of Agricultural, Consumer & Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 217-333-3131, USA; (J.P.d.S.N.); (P.M.O.)
| | - Bruna Ruberti
- School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 05508-270, Brazil; (D.P.H.); (D.S.C.); (V.P.); (B.R.); (M.A.B.)
| | | | - Marcia Mery Kogika
- School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 05508-270, Brazil; (D.P.H.); (D.S.C.); (V.P.); (B.R.); (M.A.B.)
- Correspondence:
| | - Marcio Antonio Brunetto
- School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 05508-270, Brazil; (D.P.H.); (D.S.C.); (V.P.); (B.R.); (M.A.B.)
| |
Collapse
|
3
|
Kovesdy CP. Metabolic acidosis and kidney disease: does bicarbonate therapy slow the progression of CKD? Nephrol Dial Transplant 2012; 27:3056-62. [DOI: 10.1093/ndt/gfs291] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
4
|
Bertuccio CA, Arrizurieta EE, Ibarra FR, Martín RS. Mechanisms of PKC-Dependent Na+K+ATPase Phosphorylation in the Rat Kidney with Chronic Renal Failure. Ren Fail 2009; 29:13-22. [PMID: 17365905 DOI: 10.1080/08860220601038496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The present work was designed to study Na+ K+ ATPase alpha1-subunit phosphorylation in rats with chronic renal failure (CRF) in comparison with normal rats. Na+ K+ ATPase alpha1-subunit phosphorylation degree was measured by binding the McK-1 antibody to dephosphorylated Ser-23 in microdissected medullary thick ascending limb of Henle (mTAL) segments. In addition, the total Na+ K+ ATPase alpha1-subunit expression and activity were also measured in the outer renal medulla homogenates and membranes. CRF rats showed a higher Na+ K+ ATPase activity, as compared with control rats (18.95 +/- 2.4 vs. 11.21 +/- 1.5 micromol Pi/mg prot/h, p < 0.05), accompanied by a higher total Na+ K+ ATPase expression (0.54 +/- 0.04 vs. 0.27 +/- 0.02 normalized arbitrary units (NU), p < 0.05). When McK-1 antibody was used, a higher immunosignal in mTAL of CRF rats was observed, as compared with controls (6.3 +/- 0.35 vs. 4.1 +/- 0.33 NU, p < 0.05). The ratio Na+ K+ ATPase alpha1-subunit phosphorylation/total Na+ K+ ATPase alpha1-subunit expression per microg protein showed a non-significant difference between CRF and control rats in microdissected mTAL segments (2.11 +/- 0.12 vs. 2.26 +/- 0.18 NU, p = NS). The PKC inhibitor RO-318220 10(-6) M increased immunosignal (lower phosphorylation degree) in mTAL of CRF rats to 128.43 +/- 7.08% (p < 0.05) but did not alter McK1 binding in control rats. Both phorbol 12-myristate 13-acetate (PMA) 10(-6) M and dopamine 10(-6) M decreased immunosignal in CRF rats, corresponding to a higher Na+ K+ ATPase alpha1-subunit phosphorylation degree at Ser-23 (55.26 +/- 11.17% and 53.27 +/- 7.12% compared with basal, p < 0.05). In mTAL of CRF rats, the calcineurin inhibitor FK-506 10(-6) M did not modify phosphorylation degree at Ser-23 of Na+ K+ ATPase alpha1-subunit (100.21 +/- 3.00% compared with basal CRF). In control rats, FK 506 10(-6) M decreased the immunosignal, which corresponds to a higher Na+ K+ ATPase alpha1-subunit phosphorylation degree at Ser-23. The data suggest that the regulation of basal Na+ K+ ATPase alpha1-subunit phosphorylation degree at Ser-23 in mTAL segments of CRF rats was primarily dependent on PKC activation rather than calcineurin dependent mechanisms.
Collapse
Affiliation(s)
- Claudia A Bertuccio
- Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
5
|
Swenson ER. Respiratory and renal roles of carbonic anhydrase in gas exchange and acid-base regulation. EXS 2001:281-341. [PMID: 11268521 DOI: 10.1007/978-3-0348-8446-4_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- E R Swenson
- VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA
| |
Collapse
|
6
|
Kwon TH, Frøkiaer J, Fernández-Llama P, Maunsbach AB, Knepper MA, Nielsen S. Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F257-70. [PMID: 10444581 DOI: 10.1152/ajprenal.1999.277.2.f257] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In chronic renal failure (CRF), reduction in renal mass leads to an increase in the filtration rates of the remaining nephrons and increased excretion of sodium per nephron. To address the mechanisms involved in the increased sodium excretion, we determined the total kidney levels and the densities per nephron of the major renal NaCl transporters in rats with experimental CRF. Two weeks after 5/6 nephrectomy (reducing the total number of nephrons to approximately 24 +/- 8%), the rats were azotemic and displayed increased Na excretion. Semiquantitative immunoblotting revealed significant reduction in the total kidney levels of the proximal tubule Na transporters NHE-3 (48% of control), NaPi-II (13%), and Na-K-ATPase (30%). However, the densities per nephron of NHE-3, NaPi-II, and Na-K-ATPase were not significantly altered in remnant kidneys, despite the extensive hypertrophy of remaining nephrons. Immunocytochemistry confirmed the reduction in NHE-3 and Na-K-ATPase labeling densities in the proximal tubule. In contrast, there was no significant reduction in the total kidney levels of the thick ascending limb and distal convoluted tubule NaCl transporters BSC-1 and TSC, respectively. This corresponded to a 3.6 and 2.5-fold increase in densities per nephron, respectively (confirmed by immunocytochemistry). In conclusion, in this rat CRF model: 1) increased fractional sodium excretion is associated with altered expression of proximal tubule Na transporter expression (NHE-3, NaPi-II, and Na-K-ATPase), consistent with glomerulotubular imbalance in the face of increased single-nephron glomerular filtration rate; and 2) compensatory increases in BSC-1 and TSC expression per nephron occur in distal segments.
Collapse
Affiliation(s)
- T H Kwon
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
7
|
Kwon TH, Frøkiaer J, Knepper MA, Nielsen S. Reduced AQP1, -2, and -3 levels in kidneys of rats with CRF induced by surgical reduction in renal mass. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F724-41. [PMID: 9815130 DOI: 10.1152/ajprenal.1998.275.5.f724] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Urinary concentration characteristically decreases in response to a reduction in renal mass in chronic renal failure (CRF). In the present study, we examined whether there are changes in the expression of aquaporins in rats where CRF was induced by 5/6 nephrectomy. Plasma creatinine levels were significantly elevated consistent with significant CRF: 135.7 +/- 15.1 (n = 17, CRF) vs. 33. 9 +/- 1.1 micromol/l (n = 11, sham), P < 0.05. Two weeks after 5/6 nephrectomy, the remnant kidneys were hypertrophied, and total renal mass increased to 65 +/- 3% of sham levels (P < 0.05). Urine production increased markedly from 40 +/- 2 to 111 +/- 3 microliter. min-1. kg-1 in CRF rats (P < 0.05), whereas urine osmolality and solute-free water reabsorption decreased significantly. Quantitative immunoblotting of total kidney membrane fractions revealed a significant decrease in total kidney AQP2 expression in CRF rats to 43 +/- 12% of sham levels (P < 0.05). A similar reduction was observed for AQP1 and AQP3. Furthermore, the increased urine output and decreased urine osmolality persisted in CRF rats despite 7 days treatment with 1-desamino-[8-D-arginine]vasopressin (DDAVP, 0.1 microgram/h sc) compared with untreated sham-operated controls. Also, there was no change in AQP2 expression (which remained at 38 +/- 3% of sham levels, P < 0.05), urine output, or urine osmolality between CRF rats with or without DDAVP treatment. Immunocytochemistry confirmed the decreased AQP2 expression in collecting duct principal cells in CRF rats, with a predominant apical labeling. In conclusion, the results demonstrated that there was a significant vasopressin-resistant downregulation of AQP2 and AQP3 as well as downregulation of AQP1 associated with the polyuria in CRF rats.
Collapse
Affiliation(s)
- T H Kwon
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | |
Collapse
|
8
|
Preisig PA, Alpern RJ. Increased Na/H antiporter and Na/3HCO3 symporter activities in chronic hyperfiltration. A model of cell hypertrophy. J Gen Physiol 1991; 97:195-217. [PMID: 1849958 PMCID: PMC2216475 DOI: 10.1085/jgp.97.2.195] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effect of chronic hyperfiltration, a model of cell hypertrophy, on H/HCO3 transporters was examined in the in vivo microperfused rat proximal tubule. Hyperfiltration was induced by uninephrectomy with subsequent increased dietary protein. After 2 wk the hyperfiltration group had a higher glomerular filtration rate (2.21 +/- 0.13 vs. 1.48 +/- 0.12 ml/min), associated with increased kidney weight (1.71 +/- 0.05 vs. 1.23 +/- 0.04 g). HCO3 absorptive rate measured in tubules perfused with an ultrafiltrate-like solution (25 mM HCO3) was higher in the hyperfiltration group (183 +/- 17 vs. 109 +/- 16 pmol/mm per min). The activities of the apical membrane Na/H antiporter and basolateral membrane Na/3HCO3 symporter were assayed using the measurement of cell pH [(2'7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein] in the doubly microperfused tubule in the absence of contact with native fluids. After 2 wk of hyperfiltration Na/H antiporter activity, assayed as the effect of luminal Na removal on cell pH, was increased 114%. Basolateral membrane Na/3HCO3 symporter activity, assayed as the effect of a decrease in peritubular [HCO3] (25 to 5 mM) or in peritubular [Na] (147 to 25 mM) in the absence of luminal and peritubular chloride, was increased 77 and 113%, respectively, in the hyperfiltration group. Steady-state cell pH, measured with physiologic, ultrafiltrate-like luminal and peritubular perfusates, was significantly higher in the hyperfiltration group (7.27 +/- 0.02 vs. 7.14 +/- 0.03). In similar studies, performed 24 h after uninephrectomy and protein feeding, kidney weight was increased 10%, Na/H antiporter activity 39%, and Na/3HCO3 symporter activity 46%. At this time cell pH was not different between the two groups. The results demonstrate that chronic hyperfiltration is associated with parallel increases in Na/H antiporter and Na/3HCO3 symporter activities. If a decrease in cell pH is the signal that triggers these adaptations, it occurs early, and the adaptations can be maintained in the absence of sustained cell acidification.
Collapse
Affiliation(s)
- P A Preisig
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8856
| | | |
Collapse
|
9
|
Affiliation(s)
- D G Warnock
- San Francisco Veterans Administration Medical Center, California
| |
Collapse
|
10
|
Maddox DA, Horn JF, Famiano FC, Gennari FJ. Load dependence of proximal tubular fluid and bicarbonate reabsorption in the remnant kidney of the Munich-Wistar rat. J Clin Invest 1986; 77:1639-49. [PMID: 3009550 PMCID: PMC424569 DOI: 10.1172/jci112481] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Studies were undertaken to characterize the pattern of proximal tubular fluid (APRH2O) and bicarbonate reabsorption (APRHCO3) in the remnant kidney of euvolemic Munich-Wistar rats. The remnant kidney rats were placed on a diet containing either low or normal protein. Collections were obtained in the early, mid-, and late proximal convoluted tubule. Single nephron glomerular filtration rate (SNGFR) increased from 40.2 nl/min in controls to 58.8 nl/min in low protein remnant kidney and 78.1 nl/min in normal protein remnant kidney rats. The filtered load of bicarbonate was 1,272, 1,641, and 2,013 pmol/min, in the three groups, respectively. APRH2O and APRHCO3 increased nearly in parallel. Most of the increase in reabsorption occurred in the early proximal tubule. Tubular hypertrophy could account for at least 20-40% of the increase in reabsorption, but the majority of the increase appeared to be a delivery-dependent response similar to that observed in normal rats after an acute increase in SNGFR.
Collapse
|
11
|
|