1
|
Hu Y, Jiang W. Mannose and glycine: Metabolites with potentially causal implications in chronic kidney disease pathogenesis. PLoS One 2024; 19:e0298729. [PMID: 38354117 PMCID: PMC10866514 DOI: 10.1371/journal.pone.0298729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) represents a global health challenge, with its etiology and underlying mechanisms yet to be fully elucidated. Integrating genomics with metabolomics can offer insights into the putatively causal relationships between serum metabolites and CKD. METHODS Utilizing bidirectional Mendelian Randomization (MR), we assessed the putatively causal associations between 486 serum metabolites and CKD. Genetic data for these metabolites were sourced from comprehensive genome-wide association studies, and CKD data were obtained from the CKDGen Consortium. RESULTS Our analysis identified four metabolites with a robust association with CKD risk, of which mannose and glycine showed the most reliable causal relationships. Pathway analysis spotlighted five significant metabolic pathways, notably including "Methionine Metabolism" and "Arginine and Proline Metabolism", as key contributors to CKD pathogenesis. CONCLUSION This study underscores the potential of certain serum metabolites as biomarkers for CKD and illuminates pivotal metabolic pathways in CKD's pathogenesis. Our findings lay the groundwork for potential therapeutic interventions and warrant further research for validation.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Betaine chemistry, roles, and potential use in liver disease. Biochim Biophys Acta Gen Subj 2016; 1860:1098-106. [PMID: 26850693 DOI: 10.1016/j.bbagen.2016.02.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Betaine is the trimethyl derivative of glycine and is normally present in human plasma due to dietary intake and endogenous synthesis in liver and kidney. Betaine is utilized in the kidney primarily as an osmoprotectant, whereas in the liver its primary role is in metabolism as a methyl group donor. In both organs, a specific betaine transporter mediates cellular uptake of betaine from plasma. The abundance of both betaine and the betaine transporter in liver greatly exceeds that of other organs. SCOPE OF REVIEW The remarkable contributions of betaine to normal human and animal health are summarized together with a discussion of the mechanisms and potential beneficial effects of dietary betaine supplements on liver disease. MAJOR CONCLUSIONS A significant amount of data from animal models of liver disease indicates that administration of betaine can halt and even reverse progression of the disruption of liver function. Betaine is well-tolerated, inexpensive, effective over a wide range of doses, and is already used in livestock feeding practices. GENERAL SIGNIFICANCE The accumulated data indicate that carefully controlled additional investigations in humans are merited. The focus should be on the long-term use of betaine in large patient populations with liver diseases characterized by development of fatty liver, especially non-alcoholic fatty liver disease and alcoholic liver disease.
Collapse
|
3
|
Tan Y, Ko J, Liu X, Lu C, Li J, Xiao C, Li L, Niu X, Jiang M, He X, Zhao H, Zhang Z, Bian Z, Yang Z, Zhang G, Zhang W, Lu A. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx. MOLECULAR BIOSYSTEMS 2015; 10:2305-16. [PMID: 24949573 DOI: 10.1039/c4mb00072b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We recently reported that processed Aconitum carmichaelii Debx (Bai-Fu-Pian in Chinese, BFP) elicits differential toxic responses in rats under various health conditions. The present study aimed to determine the graded toxicity of BFP so as to derive a safe therapeutic rationale in clinical practice. Sensitive and reliable biomarkers of toxicity were also identified, with the corresponding metabolic pathways being unveiled. Thirty male Sprague-Dawley rats were divided into five groups (n = 6) and received oral administration of BFP extract (0.32, 0.64, 1.28 or 2.56 g kg(-1) per day) or an equal volume of drinking water (control) for 15 days. The metabolomic profiles of rat serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS). Linear regression analysis and Ingenuity Pathway Analysis (IPA) were used to elucidate the differentiated altered metabolites and associated network relationships. Results from biochemical and histopathological examinations revealed that BFP could induce prominent toxicity in the heart, liver and kidneys at a dose of 2.56 g kg(-1) per day. Betaine up-regulation and phosphatidylcholine down-regulation were detected in the serum samples of drug-treated groups in a dose-dependent manner. In summary, betaine and phosphatidylcholine could be regarded as sensitive biomarkers for the toxic responses of BFP. Perturbations of RhoA signaling, choline metabolism and free radical scavenging were found to be partly responsible for the toxic effects of the herbal drug. Based on the metabolomics findings, we could establish a safe therapeutic range in the clinical use of BFP, with promising predictions of possible drug toxicity.
Collapse
Affiliation(s)
- Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tan Y, Li J, Liu X, Ko J, He X, Lu C, Liu Z, Zhao H, Xiao C, Niu X, Zha Q, Yu Z, Zhang W, Lu A. Deciphering the differential toxic responses of Radix aconiti lateralis praeparata in healthy and hydrocortisone-pretreated rats based on serum metabolic profiles. J Proteome Res 2012. [PMID: 23205644 DOI: 10.1021/pr300965d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Radix aconiti lateralis praeparata (Baifupian) has received great attention because of its excellent therapeutic effects as well as the associated adverse drug reactions. According to the traditional Chinese medicine (TCM) principle, Baifupian should only be used in patients with TCM "kidney-yang" deficiency pattern, a clinical state that can be mimicked by hydrocortisone induction in rats. This study aimed to decipher the differential toxic responses of Baifupian in healthy and hydrocortisone-pretreated rats based on serum metabolic profiles. Drug-treated rats received Baifupian intragastrically at the dose of 1.28 g/kg/day for 15 days. Serum metabolic profiles were obtained by using the LC-Q-TOF-MS technique. Our results show that Baifupian could induce severe toxicity in the heart, liver, and kidneys of healthy rats. These drug-induced toxic reactions were largely alleviated in hydrocortisone-pretreated animals. Changes of metabolic profiles in drug-treated healthy and hydrocortisone-pretreated rats were demonstrated, involving oxidative phosphorylation, amino acid and lipid metabolism as characterized by altered phosphate, betaine, and phosphatidyl choline. These metabolic alterations could be responsible at least in part for the differential toxic responses of Baifupian under various health conditions. This study provides a new paradigm for better understanding of the risks and limitations when using potentially toxic herbs in clinical applications.
Collapse
Affiliation(s)
- Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Riveros-Rosas H, González-Segura L, Julián-Sánchez A, Díaz-Sánchez AG, Muñoz-Clares RA. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem Biol Interact 2012; 202:51-61. [PMID: 23219887 DOI: 10.1016/j.cbi.2012.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/28/2022]
Abstract
Within the aldehyde dehydrogenase (ALDH) superfamily, proteins belonging to the ALDH9, ALDH10, ALDH25, ALDH26 and ALDH27 families display activity as ω-aminoaldehyde dehydrogenases (AMADHs). These enzymes participate in polyamine, choline and arginine catabolism, as well as in synthesis of several osmoprotectants and carnitine. Active site aromatic and acidic residues are involved in binding the ω-aminoaldehydes in plant ALDH10 enzymes. In order to ascertain the degree of conservation of these residues among AMADHs and to evaluate their possible relevance in determining the aminoaldehyde specificity, we compared the known amino acid sequences of every ALDH family that have at least one member with known crystal structure, as well as the electrostatic potential surface of the aldehyde binding sites of these structures. Our analyses showed that four or three aromatic residues form a similar "aromatic box" in the active site of the AMADH enzymes, being the equivalents to Phe170 and Trp177 (human ALDH2 numbering) strictly conserved in all of them, which supports their relevance in binding the aminoaldehyde by cation-π interactions. In addition, all AMADHs exhibit a negative electrostatic potential surface in the aldehyde-entrance tunnel, due to side-chain carboxyl and hydroxyl groups or main-chain carbonyl groups. In contrast, ALDHs that have non-polar or negatively charged substrates exhibit neutral or positive electrostatic potential surfaces, respectively. Finally, our comparative sequence analyses revealed that the residues equivalent to Asp121 and Phe170 are highly conserved in many ALDH families irrespective of their substrate specificity-suggesting that they perform a role in catalysis additional or different to binding of the substrate-and that the positions Met124, Cys301, and Cys303 are hot spots changed during evolution to confer aldehyde specificity to several ALDH families.
Collapse
Affiliation(s)
- Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | | | | | | | | |
Collapse
|
6
|
Alnouti Y, Klaassen CD. Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol Sci 2007; 101:51-64. [PMID: 17998271 DOI: 10.1093/toxsci/kfm280] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases (Aldhs) are a group of nicotinamide adenine dinucleotide phosphate-dependent enzymes that catalyze the oxidation of a wide spectrum of aldehydes to carboxylic acids. Tissue distribution and developmental changes in the expression of the messenger RNA (mRNA) of 15 Aldh enzymes were quantified in male and female mice tissues using the branched DNA signal amplification assay. Furthermore, the regulation of the mRNA expression of Aldhs by 15 typical microsomal enzyme inducers (MEIs) was studied. Aldh1a1 mRNA expression was highest in ovary; 1a2 in testis; 1a3 in placenta; 1a7 in lung; 1b1 in small intestine; 2 in liver; 3a1 in stomach; 3a2 and 3b1 expression was ubiquitous; 4a1, 6a1, 7a1, and 8a1 in liver and kidney; 9a1 in liver, kidney, and small intestine; and 18a1 in ovary and small intestine. mRNAs of different Aldh enzymes were detected at lower levels in fetuses than adult mice and gradually increased after birth to reach adult levels between 15 and 45 days of age, when the gender difference began to appear. Aromatic hydrocarbon receptor (AhR) ligands induced the liver mRNA expression of Aldh1a7, 1b1, and 3a1, constitutive androstane receptor (CAR) activators induced Aldh1a1 and 1a7, whereas pregnane X receptor (PXR) ligands and NF-E2 related factor 2 (Nrf2) activators induced Aldh1a1, 1a7, and 1b1. Peroxisome proliferator activator receptor alpha (PPAR alpha) ligands induced the mRNA expression in liver of almost all Aldhs. The Aldh organ-specific distribution may be important in elucidating their role in metabolism, elimination, and organ-specific toxicity of xenobiotics. Finally, in contrast to other phase-I metabolic enzymes such as CYP450 enzymes, Aldh mRNA expression seems to be generally insensitive to typical microsomal inducers except PPAR alpha ligands.
Collapse
Affiliation(s)
- Yazen Alnouti
- Kansas Life Sciences Innovation Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
7
|
Complex, unusual conformational changes in kidney betaine aldehyde dehydrogenase suggested by chemical modification with disulfiram. Arch Biochem Biophys 2007; 468:167-73. [PMID: 17977510 DOI: 10.1016/j.abb.2007.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/07/2007] [Accepted: 09/28/2007] [Indexed: 11/23/2022]
Abstract
The NAD+-dependent animal betaine aldehyde dehydrogenases participate in the biosynthesis of glycine betaine and carnitine, as well as in polyamines catabolism. We studied the kinetics of inactivation of the porcine kidney enzyme (pkBADH) by the drug disulfiram, a thiol-reagent, with the double aim of exploring the enzyme dynamics and investigating whether it could be an in vivo target of disulfiram. Both inactivation by disulfiram and reactivation by reductants were biphasic processes with equal limiting amplitudes. Under certain conditions half of the enzyme activity became resistant to disulfiram inactivation. NAD+ protected almost 100% at 10 microM but only 50% at 5mM, and vice versa if the enzyme was pre-incubated with NAD+ before the chemical modification. NADH, betaine aldehyde, and glycine betaine also afforded greater protection after pre-incubation with the enzyme than without pre-incubation. Together, these findings suggest two kinds of active sites in this seemingly homotetrameric enzyme, and complex, unusual ligand-induced conformational changes. In addition, they indicate that, in vivo, pkBADH is most likely protected against disulfiram inactivation.
Collapse
|
8
|
Treberg JR, Speers-Roesch B, Piermarini PM, Ip YK, Ballantyne JS, Driedzic WR. The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species. J Exp Biol 2006; 209:860-70. [PMID: 16481575 DOI: 10.1242/jeb.02055] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe compared levels of the major organic osmolytes in the muscle of elasmobranchs, including the methylamines trimethylamine oxide (TMAO), betaine and sarcosine as well as the β-amino acids taurine and β-alanine,and the activities of enzymes of methylamine synthesis (betaine and TMAO) in species with a wide range of urea contents. Four marine, a euryhaline in freshwater (Dasyatis sabina), and two freshwater species, one that accumulates urea (Himantura signifer) and one that does not(Potamotrygon motoro), were analyzed. Urea contents in muscle ranged from 229–352 μmol g–1 in marine species to 2.0μmol g–1 in P. motoro. Marine elasmobranchs preferentially accumulate methylamines, possibly to counteract urea effects on macromolecules, whereas the freshwater species with lower urea levels accumulate the β-amino acid taurine as the major non-urea osmolyte. A strong correlation (r2=0.84, P<0.001) with a slope of 0.40 was found between muscle urea content and the combined total methylamines plus total β-amino acids, supporting the hypothesis that`non-urea' osmolytes are specifically maintained at an approximately 2:1 ratio with urea in the muscle of elasmobranchs. All species examined had measurable synthetic capacity for betaine in the liver but only one species had detectable TMAO synthetic capacity. We propose a phylogenetic explanation for the distribution of TMAO synthesis in elasmobranchs and suggest that activation of liver betaine aldehyde dehydrogenase, relative to choline dehydrogenase, coincides with betaine accumulation in elasmobranchs. The latter relationship may be important in maintaining methylamine levels during periods of low dietary TMAO intake for species lacking TMAO synthesis.
Collapse
Affiliation(s)
- Jason R Treberg
- Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada A1C 5S7.
| | | | | | | | | | | |
Collapse
|
9
|
Valenzuela-Soto EM, Velasco-García R, Mújica-Jiménez C, Gaviria-González LL, Muñoz-Clares RA. Monovalent cations requirements for the stability of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa, porcine kidney and amaranth leaves. Chem Biol Interact 2003; 143-144:139-48. [PMID: 12604198 DOI: 10.1016/s0009-2797(02)00198-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Betaine aldehyde dehydrogenase from the human pathogen Pseudomonas aeruginosa requires K(+) ions for maintenance of its active conformation. In order to explore if this property is shared by other BADHs of different origins and to further understand the mechanism underlying the effects of these ions, we carried out a comparative study on the stability and quaternary structure of P. aeruginosa, porcine kidney and amaranth leaves BADHs in the absence of K(+) ions. At low enzyme concentrations, the bacterial and porcine enzymes were totally inactivated upon removal of K(+) following biphasic and monophasic kinetics, respectively, whereas the amaranth enzyme retained its activity. Inactivation of P. aeruginosa BADH was much faster than that of the porcine enzyme. The oxidized coenzyme protected both enzymes against inactivation by the absence of K(+), whereas betaine aldehyde afforded partial protection to the bacterial BADH and increased the inactivation rate of the porcine. Reactivation of the inactive enzymes, by adding back to the incubation medium K(+) ions, was dependent on enzyme concentration, suggesting that enzyme dissociation takes place in the absence of K(+). In the bacterial enzyme, NH(4)(+) but not Na(+) ions could mimic the effects of K(+), whereas the three cations tested reactivated porcine BADH, indicating a requirement of this enzyme for high ionic strength rather than for a specific monovalent cation. Size exclusion chromatography of the inactivated enzymes confirmed that K(+) ions or other monovalent cations are required for the maintenance of the quaternary structure of these two BADHs. At pH 7.0, in the absence of K(+) in a buffer of low ionic strength, the active tetrameric form of P. aeruginosa BADH dissociated into inactive monomers and that of porcine kidney BADH into inactive dimers. Once reactivated, both enzymes reassociated into active tetramers.
Collapse
Affiliation(s)
- Elisa M Valenzuela-Soto
- Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, 83100, Sonora, Mexico
| | | | | | | | | |
Collapse
|
10
|
Grunewald RW, Oppermann M, Schettler V, Fiedler GM, Jehle PM, Schuettert JB. Polarized function of thick ascending limbs of Henle cells in osmoregulation. Kidney Int 2001; 60:2290-8. [PMID: 11737602 DOI: 10.1046/j.1523-1755.2001.00070.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Organic osmolytes are necessary for osmoregulation in mammalian kidney. Since renal epithelial cells in many cases possess specific mechanisms both for uptake and osmotically regulated release, we investigated their localization in polarized cells. METHODS An immortalized epithelial cell line derived from the thick ascending limb of Henle's loop (TALH) was used to examine the transport characteristics of the apical and basolateral plasma membranes for osmotic regulation of organic osmolytes. Cells were cultured on filters in a two-compartment chamber. RESULTS In culture under hypertonic conditions the TALH cells accumulated in the following balance: sorbitoverline> betaine = myo-inositoverline> glycerophosphoryl choline (GPC). When extracellular osmolarity was decreased, then sorbitol was released on the apical side, whereas betaine and myo-inositol efflux occurred on the basolateral side. GPC release showed no preference of either side. Taurine did not seem to be necessary for osmoregulation under these conditions. Osmotically regulated myo-inositol and betaine uptake was located on the apical side, and choline uptake took place on both sides equally. CONCLUSION These results show that in renal epithelial cells, both osmotically induced release and the uptake of organic osmolytes are divided between the apical and the basolateral sides. This might be important for volume regulation.
Collapse
Affiliation(s)
- R W Grunewald
- Department of Nephrology and Rheumatology, University Hospital Göttingen, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Figueroa-Soto CG, Valenzuela-Soto EM. Kinetic study of porcine kidney betaine aldehyde dehydrogenase. Biochem Biophys Res Commun 2000; 269:596-603. [PMID: 10708600 DOI: 10.1006/bbrc.2000.2337] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Porcine kidney betaine aldehyde dehydrogenase (EC 1.2.1.8) kinetic properties were determined at low substrate concentrations. The double-reciprocal plots of initial velocity versus substrate concentration are linear and intersect at the left of the 1/v axis and showed substrate inhibition with betaine aldehyde. Studies of inhibition by NADH and dead-end analogs showed that NADH is a mixed inhibitor against NAD(+) and betaine aldehyde. AMP is competitive with respect to NAD(+) and mixed with betaine aldehyde. Choline is competitive against betaine aldehyde and uncompetitive with respect to NAD(+). The kinetic behavior is consistent with an Iso-Ordered Bi-Bi Steady-State mechanism.
Collapse
Affiliation(s)
- C G Figueroa-Soto
- Dirección de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, CP 83100, Mexico
| | | |
Collapse
|
12
|
Vaz FM, Fouchier SW, Ofman R, Sommer M, Wanders RJ. Molecular and biochemical characterization of rat gamma-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. J Biol Chem 2000; 275:7390-4. [PMID: 10702312 DOI: 10.1074/jbc.275.10.7390] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The penultimate step in carnitine biosynthesis is mediated by gamma-trimethylaminobutyraldehyde dehydrogenase (EC 1.2.1.47), a cytosolic NAD(+)-dependent aldehyde dehydrogenase that converts gamma-trimethylaminobutyraldehyde into gamma-butyrobetaine. This enzyme was purified from rat liver, and two internal peptide fragments were sequenced by Edman degradation. The peptide sequences were used to search the Expressed Sequence Tag data base, which led to the identification of a rat cDNA containing an open reading frame of 1485 base pairs encoding a polypeptide of 494 amino acids with a calculated molecular mass of 55 kDa. Expression of the coding sequence in Escherichia coli confirmed that the cDNA encodes gamma-trimethylaminobutyraldehyde dehydrogenase. The previously identified human aldehyde dehydrogenase 9 (EC 1.2.1.19) has 92% identity with rat trimethylaminobutyraldehyde dehydrogenase and has been reported to convert substrates that resemble gamma-trimethylaminobutyraldehyde. When aldehyde dehydrogenase 9 was expressed in E. coli, it exhibited high trimethylaminobutyraldehyde dehydrogenase activity. Furthermore, comparison of the enzymatic characteristics of the heterologously expressed human and rat dehydrogenases with those of purified rat liver trimethylaminobutyraldehyde dehydrogenase revealed that the three enzymes have highly similar substrate specificities. In addition, the highest V(max)/K(m) values were obtained with gamma-trimethylaminobutyraldehyde as substrate. This indicates that human aldehyde dehydrogenase 9 is the gamma-trimethylaminobutyraldehyde dehydrogenase, which functions in carnitine biosynthesis.
Collapse
Affiliation(s)
- F M Vaz
- Laboratory for Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, P. O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Grunewald RW, Kinne RK. Osmoregulation in the mammalian kidney: the role of organic osmolytes. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1999; 283:708-24. [PMID: 10222592 DOI: 10.1002/(sici)1097-010x(19990601)283:7<708::aid-jez9>3.0.co;2-v] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- R W Grunewald
- Georg-August-Universität, Zentrum Innere Medizin, Göttingen, Germany
| | | |
Collapse
|
14
|
Figueroa-Soto CG, Lopez-Cervantes G, Valenzuela-Soto EM. Immunolocalization of betaine aldehyde dehydrogenase in porcine kidney. Biochem Biophys Res Commun 1999; 258:732-6. [PMID: 10329454 DOI: 10.1006/bbrc.1999.0584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyclonal anti-BADH serum was raised in rabbits against native BADH purified from porcine kidney. The antiserum cross-reacted strongly with BADH purified from kidney, Amaranthus palmierii, and Pseudomona aeuroginosa (1:1000), and weakly with Amaranthus hypochondriacus L (1:100). Antibodies bound to purified native kidney BADH in immunoblots showed a major band of an apparent molecular mass of 340 kDa and a subunit with an apparent molecular mass of 52 kDa. Data on activity assays showed higher activity in cortex sections (81.3 nmol/min/mg protein) than in medulla sections (21.3 nmol/min/mg protein). Immunolocalization of BADH in kidney tissue sections showed that BADH is found in cortex and medulla. In inner medulla, the enzyme was mainly localized in cells surrounding the tubules. Western blot analysis on extracts from the cortex and medulla sections showed higher concentration of BADH protein in cortex than in medulla. These results were in accordance with immunolocalization and activity analysis.
Collapse
Affiliation(s)
- C G Figueroa-Soto
- Dirección de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, México
| | | | | |
Collapse
|
15
|
Guzman-Partida AM, Valenzuela-Soto EM. Porcine kidney betaine aldehyde dehydrogenase: purification and properties. Comp Biochem Physiol B Biochem Mol Biol 1998; 119:485-91. [PMID: 9734333 DOI: 10.1016/s0305-0491(98)00009-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Significant betaine aldehyde dehydrogenase activity was found in porcine kidney. The enzyme was purified 320-fold with an overall recovery of 11%. It had a specific activity of 115.8 nkats/mg protein and proved to be homogeneous by SDS-PAGE with a subunit molecular mass of 52 kDa. IEF studies showed three bands with pI values of 5.74, 5.68 and 5.58, respectively. The enzyme was stable in a pH range between 5.0 and 10.0 and the optimum pH was 9.5. The reaction is highly specific for NAD+ and betaine aldehyde, although acetaldehyde, butyraldehyde and glyceraldehyde can be used. Estimated values of Km at pH 8.0 and 25 degrees C were 127 microM for betaine aldehyde and 40 microM for NAD+. The reaction could not be reversed even at high glycine betaine concentrations. The enzyme was not activated by salts at high concentrations but it was salt tolerant-retaining 50% of maximal activity at 1.0 M K+ and Na+. It is inferred that salt tolerance is an essential property for an enzyme participating in the cellular synthesis of an osmoprotectant. Proline, glycerol, sucrose and mannitol had a little effect on the enzyme activity while glycine betaine had an inhibitory effect.
Collapse
Affiliation(s)
- A M Guzman-Partida
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, Mexico
| | | |
Collapse
|
16
|
Izaguirre G, Kikonyogo A, Pietruszko R. Tissue distribution of human aldehyde dehydrogenase E3 (ALDH9): comparison of enzyme activity with E3 protein and mRNA distribution. Comp Biochem Physiol B Biochem Mol Biol 1997; 118:59-64. [PMID: 9417993 DOI: 10.1016/s0305-0491(97)00022-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tissue distribution of the E3 isozyme of human aldehyde dehydrogenase has been investigated by three methods: enzyme activity assay employing betaine aldehyde as substrate, Western blotting employing E3 isozyme-specific antibodies, and Northern blotting using a human liver E3 cDNA as probe. All three methods showed that E3 isozyme was universally distributed among all tissues tested. The highest levels of the E3 isozyme activity were found in liver, adrenal gland, and kidney. These same tissues also showed highest levels of the E3 protein via the Western blot. This distribution is consistent with the possible physiological role of E3 isozyme in the synthesis of the osmolyte, betaine, and the neurotransmitter, GABA. Northern blot analysis, however, differed from that of enzyme assay and the Western blot in that it showed highest mRNA levels in skeletal and heart muscles, which had low enzyme activities and E3 protein levels.
Collapse
Affiliation(s)
- G Izaguirre
- Center of Alcohol Studies, Rutgers University, Piscataway, NJ 08855-0969, USA
| | | | | |
Collapse
|
17
|
Burnham CE, Buerk B, Schmidt C, Bucuvalas JC. A liver-specific isoform of the betaine/GABA transporter in the rat: cDNA sequence and organ distribution. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1284:4-8. [PMID: 8865807 DOI: 10.1016/0005-2736(96)00118-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report the cloning of a 2.2 kb cDNA encoding a Na(+)-and Cl- dependent betaine/GABA (gamma-aminobutyric acid) transporter from rat liver poly(A+) RNA. 5'-RACE revealed an additional 355 bases 5' to the 2.2 kb cDNA sequence. Northern analysis demonstrated two (2.2 kb and 2.6 kb) mRNA isoforms in rat liver. Betaine transporter mRNA was also detected in the brain, spleen, lung, and kidney using the 2.2 kb cDNA clone as a probe. Only the 2.6 kb mRNA from the liver hybridized with the 5'-RACE product.
Collapse
Affiliation(s)
- C E Burnham
- Division of Nephrology and Hypertension, University of Cincinnati College of Medicine, OH 45267-0585, USA.
| | | | | | | |
Collapse
|