1
|
Yang C, Harafuji N, Caldovic L, Yu W, Boddu R, Bhattacharya S, Barseghyan H, Gordish-Dressman H, Foreman O, Bebok Z, Eicher EM, Guay-Woodford LM. Pkhd1 cyli/cyli mice have altered renal Pkhd1 mRNA processing and hormonally sensitive liver disease. J Mol Med (Berl) 2023; 101:1141-1151. [PMID: 37584738 PMCID: PMC10482757 DOI: 10.1007/s00109-023-02351-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype. In the current study, we characterized a spontaneous mouse Pkhd1 mutation that is transmitted as a recessive trait and causes cysticliver (cyli), similar to the hepato-biliary disease in ARPKD, but which is exacerbated by age, sex, and parity. We mapped the mutation to Chromosome 1 and determined that an insertion/deletion mutation causes a frameshift within Pkhd1 exon 48, which is predicted to result in a premature termination codon (UGA). Pkhd1cyli/cyli (cyli) mice exhibit a severe liver pathology but lack renal disease. Further analysis revealed that several alternatively spliced Pkhd1 mRNA, all containing exon 48, were expressed in cyli kidneys, but in lower abundance than in wild-type kidneys, suggesting that these transcripts escaped from nonsense-mediated decay (NMD). We identified an AAAAAT motif in exon 48 upstream of the cyli mutation which could enable ribosomal frameshifting, thus potentially allowing production of sufficient amounts of FPC for renoprotection. This mechanism, expressed in a species-specific fashion, may help explain the disparities in the renal phenotype observed between Pkhd1 mutant mice and patients with PKHD1-related disease. KEY MESSAGES: The Pkhd1cyli/cyli mouse expresses cystic liver disease, but no kidney phenotype. Pkhd1 mRNA expression is decreased in cyli liver and kidneys compared to wild-type. Ribosomal frameshifting may be responsible for Pkhd1 mRNA escape from NMD. Pkhd1 mRNA escape from NMD could contribute to the absent kidney phenotype.
Collapse
Affiliation(s)
- Chaozhe Yang
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Naoe Harafuji
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Weiying Yu
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Ravindra Boddu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Heather Gordish-Dressman
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Oded Foreman
- Genentech USA, Inc, South San Francisco, CA, 94080, USA
- Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zsuzsa Bebok
- Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Eva M Eicher
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA.
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA.
- Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
2
|
Cordido A, Vizoso-Gonzalez M, Garcia-Gonzalez MA. Molecular Pathophysiology of Autosomal Recessive Polycystic Kidney Disease. Int J Mol Sci 2021; 22:6523. [PMID: 34204582 PMCID: PMC8235086 DOI: 10.3390/ijms22126523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare disorder and one of the most severe forms of polycystic kidney disease, leading to end-stage renal disease (ESRD) in childhood. PKHD1 is the gene that is responsible for the vast majority of ARPKD. However, some cases have been related to a new gene that was recently identified (DZIP1L gene), as well as several ciliary genes that can mimic a ARPKD-like phenotypic spectrum. In addition, a number of molecular pathways involved in the ARPKD pathogenesis and progression were elucidated using cellular and animal models. However, the function of the ARPKD proteins and the molecular mechanism of the disease currently remain incompletely understood. Here, we review the clinics, treatment, genetics, and molecular basis of ARPKD, highlighting the most recent findings in the field.
Collapse
Affiliation(s)
- Adrian Cordido
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Fundación Publica Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
4
|
MacAskill CJ, Erokwu BO, Markley M, Parsons A, Farr S, Zhang Y, Tran U, Chen Y, Anderson CE, Serai S, Hartung EA, Wessely O, Ma D, Dell KM, Flask CA. Multi-parametric MRI of kidney disease progression for autosomal recessive polycystic kidney disease: mouse model and initial patient results. Pediatr Res 2021; 89:157-162. [PMID: 32283547 PMCID: PMC7554096 DOI: 10.1038/s41390-020-0883-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/20/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) is a rare but potentially lethal genetic disorder typically characterized by diffuse renal microcysts. Clinical trials for patients with ARPKD are not currently possible due to the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. METHODS In this study, animal and human magnetic resonance imaging (MRI) scanners were used to obtain quantitative kidney T1 and T2 relaxation time maps for both excised kidneys from bpk and wild-type (WT) mice as well as for a pediatric patient with ARPKD and a healthy adult volunteer. RESULTS Mean kidney T1 and T2 relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 × 10-10). Significant or nearly significant linear correlations were observed for mean kidney T1 (p = 0.030) and T2 (p = 0.054) as a function of total kidney volume, respectively. Initial magnetic resonance fingerprinting assessments in a patient with ARPKD showed visible increases in both kidney T1 and T2 in comparison to the healthy volunteer. CONCLUSIONS These preclinical and initial clinical MRI studies suggest that renal T1 and T2 relaxometry may provide an additional outcome measure to assess cystic kidney disease progression in patients with ARPKD. IMPACT A major roadblock for implementing clinical trials in patients with ARPKD is the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. A clinical need exists to develop a safe and sensitive measure for kidney disease progression, and eventually therapeutic efficacy, for patients with ARPKD. Mean kidney T1 and T2 MRI relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 ×10-10), indicating that T1 and T2 may provide sensitive assessments of cystic changes associated with progressive ARPKD kidney disease. This preclinical and initial clinical study suggests that MRI-based kidney T1 and T2 mapping could be used as a non-invasive assessment of ARPKD kidney disease progression. These non-invasive, quantitative MRI techniques could eventually be used as an outcome measure for clinical trials evaluating novel therapeutics aimed at limiting or preventing ARPKD kidney disease progression.
Collapse
Affiliation(s)
| | - Bernadette O Erokwu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Markley
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Ashlee Parsons
- Center for Pediatric Nephrology, Cleveland Clinic Children's, Cleveland, OH, USA
| | - Susan Farr
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Yifan Zhang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Uyen Tran
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Christian E Anderson
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Suraj Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erum A Hartung
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Dan Ma
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Katherine M Dell
- Center for Pediatric Nephrology, Cleveland Clinic Children's, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Chris A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
López A. Autosomal recessive polycystic kidney disease prenatally diagnosed in a fetus with unreported paternal inherited PKHD1 mutation. Eur J Obstet Gynecol Reprod Biol 2018; 228:332-333. [PMID: 30017326 DOI: 10.1016/j.ejogrb.2018.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 11/25/2022]
|
6
|
Pennekamp P, Menchen T, Dworniczak B, Hamada H. Situs inversus and ciliary abnormalities: 20 years later, what is the connection? Cilia 2015; 4:1. [PMID: 25589952 PMCID: PMC4292827 DOI: 10.1186/s13630-014-0010-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Heterotaxy (also known as situs ambiguous) and situs inversus totalis describe disorders of laterality in which internal organs do not display their typical pattern of asymmetry. First described around 1600 by Girolamo Fabrizio, numerous case reports about laterality disorders in humans were published without any idea about the underlying cause. Then, in 1976, immotile cilia were described as the cause of a human syndrome that was previously clinically described, both in 1904 by AK Siewert and in 1933 by Manes Kartagener, as an association of situs inversus with chronic sinusitis and bronchiectasis, now commonly known as Kartagener’s syndrome. Despite intense research, the underlying defect of laterality disorders remained unclear. Nearly 20 years later in 1995, Björn Afzelius discussed five hypotheses to explain the connection between ciliary defects and loss of laterality control in a paper published in the International Journal of Developmental Biology asking: ‘Situs inversus and ciliary abnormalities: What is the connection?’. Here, nearly 20 research years later, we revisit some of the key findings that led to the current knowledge about the connection between situs inversus and ciliary abnormalities.
Collapse
Affiliation(s)
- Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Bernd Dworniczak
- Department of Human Genetics, University Hospital Muenster, 48149 Muenster, Germany
| | - Hiroshi Hamada
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, which encode polycystin-1 and polycystin-2, respectively. Rodent models are available to study the pathogenesis of polycystic kidney disease (PKD) and for preclinical testing of potential therapies-either genetically engineered models carrying mutations in Pkd1 or Pkd2 or models of renal cystic disease that do not have mutations in these genes. The models are characterized by age at onset of disease, rate of disease progression, the affected nephron segment, the number of affected nephrons, synchronized or unsynchronized cyst formation and the extent of fibrosis and inflammation. Mouse models have provided valuable mechanistic insights into the pathogenesis of PKD; for example, mutated Pkd1 or Pkd2 cause renal cysts but additional factors are also required, and the rate of cyst formation is increased in the presence of renal injury. Animal studies have also revealed complex genetic and functional interactions among various genes and proteins associated with PKD. Here, we provide an update on the preclinical models commonly used to study the molecular pathogenesis of ADPKD and test potential therapeutic strategies. Progress made in understanding the pathophysiology of human ADPKD through these animal models is also discussed.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| |
Collapse
|
8
|
Novel Mutation in the PKHD1 Gene Diagnosed Prenatally in a Fetus with Autosomal Recessive Polycystic Kidney Disease. Case Rep Genet 2014; 2014:517952. [PMID: 25114813 PMCID: PMC4120792 DOI: 10.1155/2014/517952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/25/2014] [Indexed: 11/24/2022] Open
Abstract
We report a 29-year-old gravida 2, para 0100, who presented at 19 weeks and 4 days of gestation for ultrasound to assess fetal anatomy. Routine midtrimester fetal anatomy ultrasound revealed enlarged, hyperechoic fetal kidneys and normal amniotic fluid index. Follow-up ultrasound at 23 weeks and 5 days revealed persistently enlarged, hyperechoic fetal kidneys. Progressive oligohydramnios was not evident until 29 weeks of gestation, with anhydramnios noted by 35 weeks of gestation. Amniocentesis was performed for karyotype and to search for mutations in the PKHD1 for the presumptive diagnosis of autosomal recessive polycystic kidney disease (ARPKD). In our patient, a maternally inherited, previously reported pathogenic missense mutation in the PKHD1 gene, c.10444C>T, was identified. A second, previously unreported de novo mutation, c.5909-2delA, was also identified. This mutation affects the canonical splice site and is most likely pathogenic. Our case highlights PKHD1 allelic heterogeneity and the importance of genetic testing in the prenatal setting where many other genetic etiologies can phenocopy ARPKD.
Collapse
|
9
|
Yengkopiong JP, Lako JDW. Genetic background of nonmutant Piebald-Virol-Glaxo rats does not influence nephronophthisis phenotypes. Int J Nephrol Renovasc Dis 2013; 6:39-46. [PMID: 23549608 PMCID: PMC3579405 DOI: 10.2147/ijnrd.s39295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nephronophthisis (NPHP), which affects multiple organs, is a hereditary cystic kidney disease (CKD), characterized by interstitial fibrosis and numerous fluid-filled cysts in the kidneys. It is caused by mutations in NPHP genes, which encode for ciliary proteins known as nephrocystins. The disorder affects many people across the world and leads to end-stage renal disease. The aim of this study was to determine if the genetic background of the nonmutant female Piebald-Virol-Glaxo (PVG/Seac(-/-)) rat influences phenotypic inheritance of NPHP from mutant male Lewis polycystic kidney rats. METHODS Mating experiments were performed between mutant Lewis polycystic kidney male rats with CKD and nonmutant PVG and Wistar Kyoto female rats without cystic kidney disease to raise second filial and backcross 1 progeny, respectively. Rats that developed cystic kidneys were identified. Systolic blood pressure was determined in each rat at 12 weeks of age using the tail and cuff method. After euthanasia, blood samples were collected and chemistry was determined. Histological examination of the kidneys, pancreas, and liver of rats with and without cystic kidney disease was performed. RESULTS It was established that the genetic background of nonmutant female PVG rats did not influence the phenotypic inheritance of the CKD from mutant male Lewis polycystic kidney rats. The disease arose as a result of a recessive mutation in a single gene (second filial generation, CKD = 13, non-CKD = 39, χ (2) = 0.00, P ≥ 0.97; backcross 1 generation, CKD = 67, non-CKD = 72, χ (2) = 0.18, P > 0.05) and inherited as NPHP. The rats with CKD developed larger fluid-filled cystic kidneys, higher systolic blood pressure, and anemia, but there were no extrarenal cysts and disease did not lead to early pup mortality. CONCLUSION The genetic background of the nonmutant PVG rats does not influence the genetic and phenotypic inheritance of CKD from mutant Lewis polycystic kidney rats. A single recessive mutation incapacitated the gene, which relaxed its functional constraints, and led to formation of multiple cysts in the kidneys of the homozygous mutant rats.
Collapse
Affiliation(s)
- Jada Pasquale Yengkopiong
- John Garang Memorial University of Science and Technology, Faculty of Science and Technology, Bor, Jonglei State, Republic of South Sudan
| | | |
Collapse
|
10
|
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a developmental disorder that mainly affects the kidneys and the biliary tract. Affected patients often have massively enlarged cystic kidneys as well as congenital hepatic fibrosis (CHF) characterized by dilated bile ducts and associated peribiliary fibrosis. This review will examine what is known about ARPKD-associated liver disease and will highlight areas of ongoing research into its pathogenesis and potential treatment.
Collapse
Affiliation(s)
- Jessica Wen
- Division of Gastroenterology, Hepatology & Nutrition, The Children's Hospital of Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Stroope A, Radtke B, Huang B, Masyuk T, Torres V, Ritman E, LaRusso N. Hepato-renal pathology in pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1282-91. [PMID: 20093497 DOI: 10.2353/ajpath.2010.090658] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycystic liver diseases, the most important of which are autosomal dominant and autosomal recessive polycystic kidney diseases, are incurable pathological conditions. Animal models that resemble human pathology in these diseases provide an opportunity to study the mechanisms of cystogenesis and to test potential treatments. Here we demonstrate that Pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease, developed hepatic cysts. As assessed by micro-computed tomography scanning of intact livers and by light microscopy of hepatic tissue, hepatic cystic volumes increased from 12.82+/-3.16% (5- to 8-month-old mice) to 21.58+/-4.81% (9- to 12-month-old mice). Renal cystogenesis was more severe at early stages of disease: in 5- to 7-month-old mice, cystic volumes represented 40.67+/-5.48% of kidney parenchyma, whereas in older mice cysts occupied 31.04+/-1.88% of kidney parenchyma. Mild fibrosis occurred only in liver, and its degree was unchanged with age. Hepatic cysts were lined by single or multiple layers of squamous cholangiocytes. Cystic cholangiocyte cilia were short and malformed, whereas in renal cysts they appeared normal. In Pkd2ws25/- mice, mitotic and apoptotic indices in both kidney and liver were increased compared with wild-type mice. In conclusion, Pkd2ws25/- mice exhibit hepatorenal pathology resembling human autosomal dominant polycystic kidney disease and represent a useful model to study mechanisms of cystogenesis and to evaluate treatment options.
Collapse
Affiliation(s)
- Angela Stroope
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Primary (nonmotile) cilia are currently enjoying a renaissance in light of novel ascribed functions ranging from mechanosensory to signal transduction. Their importance for key developmental pathways such as Sonic Hedgehog (Shh) and Wnt is beginning to emerge. The function of nodal cilia, for example, is vital for breaking early embryonic symmetry, Shh signaling is important for tissue morphogenesis and successful Wnt signaling for organ growth and differentiation. When ciliary function is perturbed, photoreceptors may die, kidney tubules develop cysts, limb digits multiply and brains form improperly. The etiology of several uncommon disorders has recently been associated with cilia dysfunction. The causative genes are often similar and their cognate proteins certainly share cellular locations and/or pathways. Animal models of ciliary gene ablation such as Ift88, Kif3a, and Bbs have been invaluable for understanding the broad function of the cilium. Herein, we describe the wealth of information derived from the study of the ciliopathies and their animal models.
Collapse
|
13
|
Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T. TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol 2007; 27:6383-95. [PMID: 17636028 PMCID: PMC2099608 DOI: 10.1128/mcb.00254-07] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Studies of a TAZ knockout mouse reveal a novel function of the transcriptional regulator TAZ, that is, as a binding partner of the F-box protein beta-Trcp. TAZ-/- mice develop polycystic kidney disease (PKD) and emphysema. The calcium-permeable cation channel protein polycystin 2 (PC2) is overexpressed in kidneys of TAZ-/- mice as a result of decreased degradation via an SCF(beta-Trcp) E3 ubiquitin ligase pathway. Replacements of serines in a phosphodegron motif in TAZ prevent beta-Trcp binding and PC2 degradation. Coexpression of a cytoplasmic fragment of polycystin 1 blocks the PC2-TAZ interaction and prevents TAZ-mediated degradation of PC2. Depletion of TAZ in zebrafish also results in a cystic kidney accompanied by overexpression of PC2. These results establish a common role of TAZ across vertebrate species in a protein degradation pathway regulated by phosphorylation and implicate deficiencies in this pathway in the development of PKD.
Collapse
Affiliation(s)
- Yu Tian
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cystic kidney disorders are one of the leading causes of end-stage renal disease. Numerous experimental animal models have been used to understand the disease pathogenesis. Recent advancements in this field have provided a surprising finding: that many of the proteins associated with cystic kidney disease localize to a nearly forgotten organelle, the primary cilium.
Collapse
Affiliation(s)
- Qihong Zhang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
15
|
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe form of inherited childhood nephropathy ( approximately 1:20,000 live births) characterized by fusiform dilatation of collecting ducts and congenital hepatic fibrosis. Up to 30% die as neonates due to respiratory insufficiency and the majority of surviving infants develop hypertension. Progression to end stage renal disease occurs in 20-45% of cases within 15 years but a proportion maintain renal function into adulthood where complications of liver disease predominate. The ARPKD disease gene, PKHD1, has recently been identified through analysis of an orthologous animal model, the PCK rat. PKHD1 is a large gene ( approximately 470 kb) with 67 exons from which multiple transcripts may be generated by alternative splicing. It is highly expressed in kidney, with lower levels in liver and pancreas. The ARPKD protein, fibrocystin (4074 aa and 447 kDa), is predicted to be an integral membrane, receptor-like protein containing multiple copies of an Ig-like domain (TIG). Fibrocystin is localized to the branching ureteric bud, collecting and biliary ducts, consistent with the disease phenotype, and often absent from ARPKD tissue. In common with other PKD-related proteins, fibrocystin is localized to the primary cilia of renal epithelial cells, reinforcing the link between ciliary dysfunction and cyst development. Screens of PKHD1 have revealed 119 different mutations of various types spread throughout the gene. Several ancestral changes have been described, some localized to specific geographic populations. The majority of patients are compound heterozygotes and preliminary genotype/phenotype studies associate two truncating mutations with severe disease. The complexities of PKHD1, marked allelic heterogeneity and high level of missense changes complicate gene-based diagnostics.
Collapse
Affiliation(s)
- Peter C Harris
- Division of Nephrology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
16
|
Gattone VH, Tourkow BA, Trambaugh CM, Yu AC, Whelan S, Phillips CL, Harris PC, Peterson RG. Development of multiorgan pathology in thewpk rat model of polycystic kidney disease. ACTA ACUST UNITED AC 2004; 277:384-95. [PMID: 15052665 DOI: 10.1002/ar.a.20022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rodent models of polycystic kidney disease (PKD) have provided valuable insight into the cellular changes associated with cystogenesis in humans. The present study characterizes the morphology of renal and extrarenal pathology of autosomal recessive PKD induced by the wpk gene in Wistar rats. In wpk(-/-) rats, proximal tubule and collecting duct cysts develop in utero and eventually consume the kidney. Increased apoptosis, mitosis, and extracellular tenascin deposition parallel cyst development. Extrarenal pathology occurs in the immune system (thymic and splenic hypoplasia) and central nervous system (CNS; hypoplasia to agenesis of the corpus callosum with severe hydrocephalus). Severity of hydrocephalus varied inversely with size of the corpus callosum. In wpk(-/-) rats, the corpus callosum exhibits relatively few axons that cross the midline. This CNS pathology is similar to that described in three human renal cystic syndromes: orofaciodigital, genitopatellar, and cerebrorenal-digital syndromes. Collecting duct and ventricular ependymal cilia appear morphologically normal. To determine if rodent background strain and the presence of modifier genes affect severity of the disease, we crossed the Wistar-wpk rat with Brown Norway (BN) and Long Evan (LE) rats and found the degree of renal and cerebral pathology was diminished as evidenced by lower kidney weight as a percent of body weight and serum urea nitrogen concentration in cystic rats on LE or BN strains as well as less prominent cranial enlargement. Crosses with BN rats allowed us to localize the wpk gene on chromosome 5 very close to the D5Rat73 marker. The wpk gene lies within a chromosomal region known to harbor a PKD modifier locus. In summary, the types of renal and cerebral pathology seen in the Wistar wpk rat are a unique combination seen only in this rodent model.
Collapse
Affiliation(s)
- Vincent H Gattone
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Guay-Woodford LM. Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol 2003; 285:F1034-49. [PMID: 14600027 DOI: 10.1152/ajprenal.00195.2003] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous murine (mouse and rat) models of polycystic kidney disease (PKD) have been described in which the mutant phenotype results from a spontaneous mutation or engineering via chemical mutagenesis, transgenic technologies, or gene-specific targeting in mouse orthologs of human PKD genes. These murine phenotypes closely resemble human PKD, with common abnormalities observed in tubular epithelia, the interstitial compartment, and the extracellular matrix of cystic kidneys. In both human and murine PKD, genetic background appears to modulate the renal cystic phenotype. In murine models, these putative modifying effects have been dissected into discrete factors called quantitative trait loci and genetically mapped. Several lines of experimental evidence support the hypothesis that PKD genes and their modifiers may define pathways involved in cystogenesis and PKD progression. Among the various pathway abnormalities described in murine PKD, recent provocative data indicate that structural and/or functional defects in the primary apical cilia of tubular epithelia may play a key role in PKD pathogenesis. This review describes the most widely studied murine models; highlights the data regarding specific gene defects and genetic modifiers; summarizes the data from these models that have advanced our understanding of PKD pathogenesis; and examines the effect of various therapeutic interventions in murine PKD.
Collapse
Affiliation(s)
- Lisa M Guay-Woodford
- Division of Genetic and Translational Medicine, Department of Medicine, University of Alabama at Birmingham, Kaul 740, 1530 3rd Ave. South 19th St., Birmingham, AL 35294, USA.
| |
Collapse
|
18
|
Chittenden L, Lu X, Cacheiro NLA, Cain KT, Generoso W, Bryda EC, Stubbs L. A new mouse model for autosomal recessive polycystic kidney disease. Genomics 2002; 79:499-504. [PMID: 11944981 DOI: 10.1006/geno.2002.6731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the course of large-scale mutagenesis studies, we discovered a mutant that provides a new mouse model for human autosomal recessive polycystic kidney disease. Animals homozygous for this mutation, T(2;10)67Gso, present evidence of grossly cystic renal and hepatic tissue at birth and a limited survival time of 3-4 days. The recessively expressed phenotype is associated with inheritance of a reciprocal translocation involving mouse chromosomes 2 and 10. Here we describe the pathology and phenotype of this new mutation. The mapping of the chromosomal breakpoint to the 1.0-cM critical region defined for another mouse autosomal recessive polycystic kidney disease model, juvenile congenital polycystic kidney disease (jcpk), led us to undertake the complementation testing that confirmed T(2;10)67Gso and jcpk are allelic. Because of the strong resemblance between the phenotype associated with these mouse mutations and early childhood polycystic kidney disease, and because of advantages offered by reciprocal translocations for gene mapping and cloning, T(2;10)67Gso should prove a valuable asset for studies concerning this fatal disease.
Collapse
Affiliation(s)
- Laura Chittenden
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, L-452, 7000 East Avenue, Livermore, California 94550, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Yoder BK, Tousson A, Millican L, Wu JH, Bugg CE, Schafer JA, Balkovetz DF. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol 2002; 282:F541-52. [PMID: 11832437 DOI: 10.1152/ajprenal.00273.2001] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cilia are organelles that play diverse roles, from fluid movement to sensory reception. Polaris, a protein associated with cystic kidney disease in Tg737(o)(rpk) mice, functions in a ciliogenic pathway. Here, we explore the role of polaris in primary cilia on Madin-Darby canine kidney cells. The results indicate that polaris localization and solubility change dramatically during cilia formation. These changes correlate with the formation of basal bodies and large protein rafts at the apical surface of the epithelia. A cortical collecting duct cell line has been derived from mice with a mutation in the Tg737 gene. These cells do not develop normal cilia, which can be corrected by reexpression of the wild-type Tg737 gene. These data suggest that the primary cilia are important for normal renal function and/or development and that the ciliary defect may be a contributing factor to the cystic disease in Tg737(o)(rpk) mice. Further characterization of these cells will be important in elucidating the physiological role of renal cilia and in determining their relationship to cystic disease.
Collapse
Affiliation(s)
- Bradley K Yoder
- Department of Cell Biology, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Sommardahl C, Cottrell M, Wilkinson JE, Woychik RP, Johnson DK. Phenotypic variations of orpk mutation and chromosomal localization of modifiers influencing kidney phenotype. Physiol Genomics 2001; 7:127-34. [PMID: 11773599 DOI: 10.1152/physiolgenomics.00089.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Oak Ridge polycystic kidney (orpk) mutant mouse model resulted from a transgene insertion into the Tg737 gene and exhibits a pleiotropic syndrome with lesions in the kidney, liver, and pancreas. We found marked differences in the phenotypic expression of the orpk mutation when bred on different genetic backgrounds. In the FVB/N background, the phenotype is very severe for kidney, pancreas, and liver lesions. To evaluate better how genetic background might influence the expressivity of the orpk phenotype, we bred the transgene into the C3HeB/FeJLe (C3H) genetic background. We performed a genome-wide scan using backcross and intercross populations with more than 150 markers to map the chromosomal location of the modifier genes that differ in the FVB/N and C3H genetic backgrounds that affect the severity of kidney disease in the orpk mouse. Low-resolution interval mapping was performed using the Map Manager QTb program, with the interval explaining a significant portion of the variance being the distal end of chromosome 4.
Collapse
Affiliation(s)
- C Sommardahl
- Department of Pathology, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee 37901-1071, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Autosomal dominant polycystic kidney disease is a common inherited disorder, which is characterised by the formation of fluid-filled cysts in both kidneys that leads to progressive renal failure. Mutations in two genes, PKD1 and PKD2, are associated with the disorder. We describe the various factors that cause variation in disease progression between patients. These include whether the patient has a germline mutation in the PKD1 or in the PKD2 gene, and the nature of the mutation. Detection of mutations in PKD1 is complicated, but the total number identified is rising and will enable genotype-to-phenotype studies. Another factor affecting disease progression is the occurrence of somatic mutations in PKD genes. Furthermore, modifying genes might directly affect the function of polycystins by affecting the rate of somatic mutations or the rate of protein interactions, or they might affect cystogenesis itself or clinical factors associated with disease progression. Finally, environmental factors that speed up or slow down progress towards chronic renal failure have been identified in rodents.
Collapse
Affiliation(s)
- D J Peters
- Department of Human and Clinical Genetics, Leiden University Medical Centre, 2333AL, Leiden, Netherlands.
| | | |
Collapse
|
22
|
Abstract
Collated in this highly personal commentary are the most important research findings of the past 10 years that deal primarily with the renal manifestations of inherited polycystic kidney diseases. Progress in understanding these complex disorders has followed two major concurrent and convergent lines of investigation: genes and genetic mechanisms, and pathogenesis and progression. The field has moved from descriptive pathobiology to the elucidation of molecular mechanisms consequent to genetic and epigenetic events. Doubtless, the favorite works of some who have labored diligently in this field have not been fully exalted, and for this I apologize. Were I the editor, this entire celebratory volume would be used to extol the thrilling growth of knowledge during the tenure of this polycystic kidney disease watcher.
Collapse
Affiliation(s)
- J J Grantham
- Department of Internal Medicine, Biochemistry and Molecular Biology, Kidney Institute, Kansas University Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
23
|
Nauta J, Goedbloed MA, Herck HVAN, Hesselink DA, Visser P, Willemsen R, Dokkum RPEVAN, Wright CJ, Guay-Woodford LM. New rat model that phenotypically resembles autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2000; 11:2272-2284. [PMID: 11095650 DOI: 10.1681/asn.v11122272] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Numerous murine models of polycystic kidney disease (PKD) have been described. While mouse models are particularly well suited for investigating the molecular pathogenesis of PKD, rats are well established as an experimental model of renal physiologic processes. Han:SPRD-CY: rats have been proposed as a model for human autosomal dominant PKD. A new spontaneous rat mutation, designated wpk, has now been identified. In the mutants, the renal cystic phenotype resembles human autosomal recessive PKD (ARPKD). This study was designed to characterize the clinical and histopathologic features of wpk/wpk mutants and to map the wpk locus. Homozygous mutants developed nephromegaly, hypertension, proteinuria, impaired urine-concentrating capacity, and uremia, resulting in death at 4 wk of age. Early cysts were present in the nephrogenic zone at embryonic day 19. These were localized, by specific staining and electron microscopy, to differentiated proximal tubules, thick limbs, distal tubules, and collecting ducts. In later stages, the cysts were largely confined to collecting ducts. Although the renal histopathologic features are strikingly similar to those of human ARPKD, wpk/wpk mutants exhibited no evidence of biliary tract abnormalities. The wpk locus maps just proximal to the CY: locus on rat chromosome 5, and complementation studies demonstrated that these loci are not allelic. It is concluded that the clinical and renal histopathologic features of this new rat model strongly resemble those of human ARPKD. Although homology mapping indicates that rat wpk and human ARPKD involve distinct genes, this new rat mutation provides an excellent experimental model to study the molecular pathogenesis and renal pathophysiologic features of recessive PKD.
Collapse
Affiliation(s)
- Jeroen Nauta
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Miriam A Goedbloed
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Harry VAN Herck
- Central Laboratory Animal Institute, Utrecht University, Utrecht, The Netherlands
| | - Dennis A Hesselink
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pim Visser
- Department of Cell Biology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rob Willemsen
- Department of Cell Biology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Richard P E VAN Dokkum
- Department of Pediatric Surgery, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christopher J Wright
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lisa M Guay-Woodford
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
24
|
Guay-Woodford LM, Wright CJ, Walz G, Churchill GA. Quantitative trait loci modulate renal cystic disease severity in the mouse bpk model. J Am Soc Nephrol 2000; 11:1253-1260. [PMID: 10864581 DOI: 10.1681/asn.v1171253] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Numerous mouse models of polycystic kidney disease (PKD) have been described in which the mutant phenotypes closely resemble human PKD with regard to morphology, cyst localization, and disease progression. As in human PKD, genetic background affects the disease phenotype in mouse PKD models. Using experimental crosses, these modifying effects can be dissected into discrete genetic factors referred to as quantitative trait loci. The locus for the mouse bpk model was recently mapped to chromosome (Chr) 10. In the course of these studies, marked variability was observed in the renal cystic disease expressed in F2 bpk/bpk homozygotes of a (BALB/c-+/bpk x CAST/Ei)F1 intercross. The current study was undertaken to further characterize the renal cystic disease as quantitative trait in this F2 cohort and to map the genetic modifiers that modulate this phenotype. Whole-genome scans revealed a CAST-derived locus on distal Chr 6, near D6Mit14, that affects renal cystic disease severity. Additional analyses identified loci on Chr 1, Chr 2, and Chr 4, as well as a possible interaction between the Chr 6 locus and a locus on distal Chr 1, near D1Mit17. Interestingly, the gene encoding RGS7, a regulator of G protein signaling that binds to polycystin-1, was mapped to the same Chr 1 interval. It is concluded that the severity of the bpk renal cystic disease phenotype is modulated by multiple loci and possibly by epistatic interaction among them. It is hypothesized that the gene encoding the polycystin-binding partner RGS7 is a candidate for the Chr 1 genetic modifier.
Collapse
Affiliation(s)
- Lisa M Guay-Woodford
- Department of Medicine, University of Alabama at Birmingham, Alabama
- Department of Pediatrics, University of Alabama at Birmingham, Alabama
- Department of Cell Biology, University of Alabama at Birmingham, Alabama
| | | | - Gerd Walz
- Division of Nephrology, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
25
|
Griffin MD, O'Sullivan DA, Torres VE, Grande JP, Kanwar YS, Kumar R. Expression of polycystin in mouse metanephros and extra-metanephric tissues. Kidney Int 1997; 52:1196-205. [PMID: 9350642 DOI: 10.1038/ki.1997.444] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of messenger RNA for the mouse homologue of the polycystic kidney disease 1 gene (PKD1) was demonstrated by reverse transcription-polymerase chain reaction (RT-PCR) methods in mouse embryo messenger RNA. A single locus for the PKD1 gene was detected on mouse chromosome 17 by fluorescent in situ hybridization. Immunoprecipitation of proteins from [35S] methionine-labeled mouse metanephric explants with an anti-polycystin antibody (Pc1) revealed high molecular weight bands, the highest being > 400 kDa. Immunoperoxidase staining of mouse embryos with Pc1 revealed expression of polycystin as early as day 8 gestation. The expression was seen in epithelial cells of the ureteric bud, in condensing blastemal cells of the developing metanephros and, subsequently, in cells of the nascent tubules. In addition, Pc1 immunoreactivity was seen in hepatocytes and biliary epithelium, cardiac and skeletal muscle, neural tissue, gut, and bronchial epithelium. In post-natal and adult mouse kidney and liver persistent slight to moderate immunoreactivity was observed. Immunofluorescent studies of cultured 13-day mouse metanephroi revealed polycystin expression in ureteric bud epithelium, early glomerular structures (that is, condensates, S-shaped and comma-shaped bodies) and in proximal and distal tubular epithelia. These data indicate that the mouse has a single gene homologous to human PKD1 on chromosome 17, and polycystin is expressed in a variety of tissues during embryonic development.
Collapse
Affiliation(s)
- M D Griffin
- Nephrology Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | |
Collapse
|