1
|
Roach KA, Kodali V, Shoeb M, Meighan T, Kashon M, Stone S, McKinney W, Erdely A, Zeidler-Erdely PC, Roberts JR, Antonini JM. Examination of the exposome in an animal model: The impact of high fat diet and rat strain on local and systemic immune markers following occupational welding fume exposure. Toxicol Appl Pharmacol 2023; 464:116436. [PMID: 36813138 DOI: 10.1016/j.taap.2023.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
The goal of this study was to investigate the impact of multiple exposomal factors (genetics, lifestyle factors, environmental/occupational exposures) on pulmonary inflammation and corresponding alterations in local/systemic immune parameters. Accordingly, male Sprague-Dawley (SD) and Brown Norway (BN) rats were maintained on either regular (Reg) or high fat (HF) diets for 24wk. Welding fume (WF) exposure (inhalation) occurred between 7 and 12wk. Rats were euthanized at 7, 12, and 24wk to evaluate local and systemic immune markers corresponding to the baseline, exposure, and recovery phases of the study, respectively. At 7wk, HF-fed animals exhibited several immune alterations (blood leukocyte/neutrophil number, lymph node B-cell proportionality)-effects which were more pronounced in SD rats. Indices of lung injury/inflammation were elevated in all WF-exposed animals at 12wk; however, diet appeared to preferentially impact SD rats at this time point, as several inflammatory markers (lymph node cellularity, lung neutrophils) were further elevated in HF over Reg animals. Overall, SD rats exhibited the greatest capacity for recovery by 24wk. In BN rats, resolution of immune alterations was further compromised by HF diet, as many exposure-induced alterations in local/systemic immune markers were still evident in HF/WF animals at 24wk. Collectively, HF diet appeared to have a greater impact on global immune status and exposure-induced lung injury in SD rats, but a more pronounced effect on inflammation resolution in BN rats. These results illustrate the combined impact of genetic, lifestyle, and environmental factors in modulating immunological responsivity and emphasize the importance of the exposome in shaping biological responses.
Collapse
Affiliation(s)
- K A Roach
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA.
| | - V Kodali
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - M Shoeb
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - T Meighan
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - M Kashon
- Bioanalytics Branch (BB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - S Stone
- Physical Effects Research Branch (PERB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - W McKinney
- Physical Effects Research Branch (PERB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - A Erdely
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - P C Zeidler-Erdely
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - J R Roberts
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - J M Antonini
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
2
|
Ding C, Zheng J, Wang B, Li Y, Xiang H, Dou M, Qiao Y, Tian P, Ding X, Xue W. Exosomal MicroRNA-374b-5p From Tubular Epithelial Cells Promoted M1 Macrophages Activation and Worsened Renal Ischemia/Reperfusion Injury. Front Cell Dev Biol 2020; 8:587693. [PMID: 33324643 PMCID: PMC7726230 DOI: 10.3389/fcell.2020.587693] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023] Open
Abstract
Tubular epithelial cells (TECs) represent the primary site of renal ischemia/reperfusion injury (RIRI). However, whether the damage of TECs could drive the initiation of inflammation was unclear. Here we investigated the role of the TECs and macrophages during RIRI. Increased expression of inflammation response and activated M1 macrophage were determined in the mice model of RIRI. Moreover, we demonstrated global miRNA expression profiling of renal exosomes, and miR-374b-5p was most upregulated in these exosomes in vivo. Inhibition of miR-374b-5p in the mice upon RIR operation would alleviate the kidney injury via decreasing the production of proinflammatory cytokines and suppressing the macrophage activation. Similar results were also identified in the hypoxia-induced cell model where exosomal miR-374b-5p was dramatically upregulated. Uptake of exosomes derived from the hypoxic TECs by macrophages would trigger M1 polarization via transferring miR-374b-5p. Besides, we confirmed that miR-374b-5p could directly bind to Socs1 using a dual-luciferase reporter assay. Notably, when we injected the miR-374b-5p-enriched exosomes into mice, a high-level inflammatory response and M1 macrophage activation were performed. Our studies demonstrated that exosomal miR-374b-5p played an essential role in the communication between injured TECs and macrophages, resulting in the M1 macrophage activation during RIRI. The blockage of the release of such exosomes may serve as a new therapeutic strategy for RIRI.
Collapse
Affiliation(s)
- Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Institute of Organ Transplantation, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jin Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Institute of Organ Transplantation, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Institute of Organ Transplantation, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia
| | - Yang Li
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Institute of Organ Transplantation, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Heli Xiang
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Institute of Organ Transplantation, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Meng Dou
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuxi Qiao
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Puxun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Institute of Organ Transplantation, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Institute of Organ Transplantation, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Institute of Organ Transplantation, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
HIF-1α induction during reperfusion avoids maladaptive repair after renal ischemia/reperfusion involving miR127-3p. Sci Rep 2017; 7:41099. [PMID: 28106131 PMCID: PMC5247697 DOI: 10.1038/srep41099] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Ischemia/reperfusion (I/R) leads to Acute Kidney Injury. HIF-1α is a key factor during organ response to I/R. We previously demonstrated that HIF-1α is induced during renal reperfusion, after ischemia. Here we investigate the role of HIF-1α and the HIF-1α dependent mechanisms in renal repair after ischemia. By interference of HIF-1α in a rat model of renal I/R, we observed loss of expression and mis-localization of e-cadherin and induction of α-SMA, MMP-13, TGFβ, and collagen I. Moreover, we demonstrate that HIF-1α inhibition promotes renal cell infiltrates by inducing IL-1β, TNF-α, MCP-1 and VCAM-1, through NFkB activity. In addition, HIF-1α inhibition induced proximal tubule cells proliferation but it did not induce compensatory apoptosis, both in vivo. In vitro, HIF-1α knockdown in HK2 cells subjected to hypoxia/reoxygenation (H/R) promote cell entry into S phase, correlating with in vivo data. HIF-1α interference leads to downregulation of miR-127-3p and induction of its target gene Bcl6 in vivo. Moreover, modulation of miR-127-3p in HK2 cells subjected to H/R results in EMT regulation: miR127-3p inhibition promote loss of e-cadherin and induction of α-SMA and collagen I. In conclusion, HIF-1α induction during reperfusion is a protector mechanism implicated in a normal renal tissue repair after I/R.
Collapse
|
4
|
Jung M, Brüne B, Hotter G, Sola A. Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury. Sci Rep 2016; 6:21950. [PMID: 26911537 PMCID: PMC4766505 DOI: 10.1038/srep21950] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/01/2016] [Indexed: 11/10/2022] Open
Abstract
Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury.
Collapse
Affiliation(s)
- Michaela Jung
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | - Georgina Hotter
- Department of Ischemia and Inflammation, IIBB-CSIC-IDIBAPS, Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Anna Sola
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Department of Experimental Nephrology, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| |
Collapse
|
5
|
An RNA interference screen identifies new avenues for nephroprotection. Cell Death Differ 2015; 23:608-15. [PMID: 26564400 DOI: 10.1038/cdd.2015.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 01/28/2023] Open
Abstract
Acute kidney injury is a major public health problem, which is commonly caused by renal ischemia and is associated with a high risk of mortality and long-term disability. Efforts to develop a treatment for this condition have met with very limited success. We used an RNA interference screen to identify genes (BCL2L14, BLOC1S2, C2ORF42, CPT1A, FBP1, GCNT3, RHOB, SCIN, TACR1, and TNFAIP6) whose suppression improves survival of kidney epithelial cells in in vitro models of oxygen and glucose deprivation. Some of the genes also modulate the toxicity of cisplatin, an anticancer agent whose use is currently limited by nephrotoxicity. Furthermore, pharmacological inhibition of TACR1 product NK1R was protective in a model of mouse renal ischemia, attesting to the in vivo relevance of our findings. These data shed new light on the mechanisms of stress response in mammalian cells, and open new avenues to reduce the morbidity and mortality associated with renal injury.
Collapse
|
6
|
Monteiro Carvalho Mori da Cunha MG, Zia S, Oliveira Arcolino F, Carlon MS, Beckmann DV, Pippi NL, Luhers Graça D, Levtchenko E, Deprest J, Toelen J. Amniotic Fluid Derived Stem Cells with a Renal Progenitor Phenotype Inhibit Interstitial Fibrosis in Renal Ischemia and Reperfusion Injury in Rats. PLoS One 2015; 10:e0136145. [PMID: 26295710 PMCID: PMC4546614 DOI: 10.1371/journal.pone.0136145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
Objectives Mesenchymal stem cells derived from human amniotic fluid (hAFSCs) are a promising source for cellular therapy, especially for renal disorders, as a subpopulation is derived from the fetal urinary tract. The purpose of this study was to evaluate if hAFSCs with a renal progenitor phenotype demonstrate a nephroprotective effect in acute ischemia reperfusion (I/R) model and prevent late stage fibrosis. Methods A total of 45 male 12-wk-old Wistar rats were divided into three equal groups;: rats subjected to I/R injury and treated with Chang Medium, rats subjected to I/R injury and treated with hAFSCs and sham-operated animals. In the first part of this study, hAFSCs that highly expressed CD24, CD117, SIX2 and PAX2 were isolated and characterized. In the second part, renal I/R injury was induced in male rats and cellular treatment was performed 6 hours later via arterial injection. Functional and histological analyses were performed 24 hours, 48 hours and 2 months after treatment using serum creatinine, urine protein to creatinine ratio, inflammatory and regeneration markers and histomorphometric analysis of the kidney. Statistical analysis was performed by analysis of variance followed by the Tukey’s test for multiple comparisons or by nonparametric Kruskal-Wallis followed by Dunn. Statistical significance level was defined as p <0.05. Results hAFSCs treatment resulted in significantly reduced serum creatinine level at 24 hours, less tubular necrosis, less hyaline cast formation, higher proliferation index, less inflammatory cell infiltration and less myofibroblasts at 48h. The treated group had less fibrosis and proteinuria at 2 months after injury. Conclusion hAFSCs contain a renal progenitor cell subpopulation that has a nephroprotective effect when delivered intra-arterially in rats with renal I/R injury, and reduces interstitial fibrosis on long term follow-up.
Collapse
Affiliation(s)
- Marina Gabriela Monteiro Carvalho Mori da Cunha
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Fanny Oliveira Arcolino
- Department of Development and Regeneration, Organ System Cluster, Laboratory of Pediatric Nephrology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marianne Sylvia Carlon
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Diego Vilibaldo Beckmann
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Ney Luis Pippi
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Dominguita Luhers Graça
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Laboratory of Pediatric Nephrology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
7
|
Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, Erickson-Miller CL, Sutton TA, Haase VH. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Invest 2014; 124:2396-409. [PMID: 24789906 DOI: 10.1172/jci69073] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The hypoxia-inducible transcription factors HIF-1 and HIF-2 mediate key cellular adaptions to hypoxia and contribute to renal homeostasis and pathophysiology; however, little is known about the cell type-specific functions of HIF-1 and HIF-2 in response to ischemic kidney injury. Here, we used a genetic approach to specifically dissect the roles of endothelial HIF-1 and HIF-2 in murine models of hypoxic kidney injury induced by ischemia reperfusion or ureteral obstruction. In both models, inactivation of endothelial HIF increased injury-associated renal inflammation and fibrosis. Specifically, inactivation of endothelial HIF-2α, but not endothelial HIF-1α, resulted in increased expression of renal injury markers and inflammatory cell infiltration in the postischemic kidney, which was reversed by blockade of vascular cell adhesion molecule-1 (VCAM1) and very late antigen-4 (VLA4) using monoclonal antibodies. In contrast, pharmacologic or genetic activation of HIF via HIF prolyl-hydroxylase inhibition protected wild-type animals from ischemic kidney injury and inflammation; however, these same protective effects were not observed in HIF prolyl-hydroxylase inhibitor-treated animals lacking endothelial HIF-2. Taken together, our data indicate that endothelial HIF-2 protects from hypoxia-induced renal damage and represents a potential therapeutic target for renoprotection and prevention of fibrosis following acute ischemic injury.
Collapse
|
8
|
Shen B, Zhou S, He Y, Zhao H, Mei M, Wu X. Revealing the underlying mechanism of ischemia reperfusion injury using bioinformatics approach. Kidney Blood Press Res 2014; 38:99-108. [PMID: 24603189 DOI: 10.1159/000355759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS To reveal the potential pathogenesis of ischemia/reperfusion (I/R) injury. METHODS GSE9943 were downloaded from Genome Expression Omnibus database, including I/R and control samples for both Brown Norway (BN) and Sprague Dawley (SD) rats (3 rats/each group). Then differentially expressed genes (DEGs) were identified by limma package. miRNA-target gene network pairs were predicted using WebGestalt, and protein-protein interactions (PPI) were identified based on STRING database, followed by the networks construction using Cytoscape. Next, ClusterONE was used for modules screening. Furthermore, functional analyses were performed to common DEGs and genes. RESULTS Totally, 23 common DEGs of BR and SD rats were screened, enriched in functions, such as regulation of cellular protein metabolic process, response to wounding, proteinaceous extracellular matrix, and Enzyme inhibitor activity. MIR-29A, MIR-29B and MIR-29C were discovered both in up- and down-regulated miRNA-target gene networks. Genes in the PPI network were significantly disturbed in p53 signaling, complement and coagulation cascades pathway. Four modules were found significantly disturbed cytochrome P450, Serine/threonine protein kinase, calcium binding and Transient receptor potential channel protein domains. CONCLUSION During I/R injury, many genes mutated, interrupting several biological functions, pathways and protein domains. MIR-29C and TRPC6 were suggested to be potential novel targets for this disease. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Bingbing Shen
- Department of kidney, Southwest hospital of Third Military Medical University, Chongqing City, 400038, China
| | | | | | | | | | | |
Collapse
|
9
|
Basile DP, Dwinell MR, Wang SJ, Shames BD, Donohoe DL, Chen S, Sreedharan R, Van Why SK. Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats. Kidney Int 2012; 83:242-50. [PMID: 23235564 PMCID: PMC3561482 DOI: 10.1038/ki.2012.391] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Brown Norway rats (BN, BN/NHsdMcwi) are profoundly resistant to developing acute kidney injury (AKI) following ischemia reperfusion. To help define the genetic basis for this resistance, we used consomic rats, in which individual chromosomes from BN rats were placed into the genetic background of Dahl SS rats (SS, SS/JrHsdMcwi) to determine which chromosomes contain alleles contributing to protection from AKI. The parental strains had dramatically different sensitivity to ischemia reperfusion with plasma creatinine levels following 45 minutes of ischemia and 24 hours reperfusion of 4.1 and 1.3 mg/dl in SS and in BN, respectively. No consomic strain showed protection similar to the parental BN strain. Nine consomic strains (SS-7BN, SS-XBN, SS-8BN, SS-4BN, SS-15BN, SS-3BN, SS-10BN, SS-6BN, and SS-5BN) showed partial protection (plasma creatinine about 2.5-3.0 mg/dl), suggesting that multiple alleles contribute to the severity of AKI. In silico analysis was performed using disease ontology database terms and renal function quantitative trait loci from the rat genome database on the BN chromosomes giving partial protection from AKI. This tactic identified at least 36 candidate genes, with several previously linked to the pathophysiology of AKI. Thus, natural variants of these alleles or yet to be identified alleles on these chromosomes provide protection against AKI. These alleles may be potential modulators of AKI in susceptible patient populations.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Aguado-Fraile E, Ramos E, Sáenz-Morales D, Conde E, Blanco-Sánchez I, Stamatakis K, del Peso L, Cuppen E, Brüne B, Bermejo MLG. miR-127 protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target. PLoS One 2012; 7:e44305. [PMID: 22962609 PMCID: PMC3433485 DOI: 10.1371/journal.pone.0044305] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/01/2012] [Indexed: 11/26/2022] Open
Abstract
Ischemia/reperfusion (I/R) is at the basis of renal transplantation and acute kidney injury. Molecular mechanisms underlying proximal tubule response to I/R will allow the identification of new therapeutic targets for both clinical settings. microRNAs have emerged as crucial and tight regulators of the cellular response to insults including hypoxia. Here, we have identified several miRNAs involved in the response of the proximal tubule cell to I/R. Microarrays and RT-PCR analysis of proximal tubule cells submitted to I/R mimicking conditions in vitro demonstrated that miR-127 is induced during ischemia and also during reperfusion. miR-127 is also modulated in a rat model of renal I/R. Interference approaches demonstrated that ischemic induction of miR-127 is mediated by Hypoxia Inducible Factor-1alpha (HIF-1α) stabilization. Moreover, miR-127 is involved in cell-matrix and cell-cell adhesion maintenance, since overexpression of miR-127 maintains focal adhesion complex assembly and the integrity of tight junctions. miR-127 also regulates intracellular trafficking since miR-127 interference promotes dextran-FITC uptake. In fact, we have identified the Kinesin Family Member 3B (KIF3B), involved in cell trafficking, as a target of miR-127 in rat proximal tubule cells. In summary, we have described a novel role of miR-127 in cell adhesion and its regulation by HIF-1α. We also identified for the first time KIF3B as a miR-127 target. Both, miR-127 and KIF3B appear as key mediators of proximal epithelial tubule cell response to I/R with potential al application in renal ischemic damage management.
Collapse
Affiliation(s)
- Elia Aguado-Fraile
- Department of Pathology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Edurne Ramos
- Department of Pathology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - David Sáenz-Morales
- Department of Pathology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elisa Conde
- Department of Pathology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Ignacio Blanco-Sánchez
- Department of Pathology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Konstantinos Stamatakis
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBM-SO) (CSIC-UAM), Madrid, Spain
| | - Luis del Peso
- Department of Biochemistry/HIV Unit, Hospital La Paz (IdiPAZ), Madrid, Spain
- Institute of Biomedical Research Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Edwin Cuppen
- Genome Biology Group, Hubrecht Institute, Utrecht, The Netherlands
| | - Bernhard Brüne
- Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - María Laura García Bermejo
- Department of Pathology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Physiology Department, Alcalá University, Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Schreiber A, Theilig F, Schweda F, Höcherl K. Acute endotoxemia in mice induces downregulation of megalin and cubilin in the kidney. Kidney Int 2012; 82:53-9. [PMID: 22437417 DOI: 10.1038/ki.2012.62] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe sepsis is often accompanied by acute renal failure with renal tubular dysfunction. Albuminuria is a common finding in septic patients and we studied whether it was due to an impairment of proximal tubular endocytosis of filtered albumin. We studied the regulation of megalin and cubilin, the two critical multiligand receptors responsible for albumin absorption, during severe experimental endotoxemia. Lipopolysaccharide (LPS) caused a time- and dose-dependent suppression of megalin and cubilin expression that was paralleled by a decrease in plasma albumin levels and an increase in the urine concentration of albumin in mice. Incubation of rat renal cortical slices with LPS also reduced the mRNA expression of megalin and cubilin. Further, LPS suppressed megalin and cubilin mRNA expression in murine primary proximal tubule cells and decreased the uptake of FITC albumin in these cells. In addition, the increase in urine levels of albumin in response to ischemia/reperfusion-induced acute renal failure was paralleled by a decrease in the expression of megalin and cubilin. Thus, our data indicate that the expression of megalin and cubilin is decreased during experimental endotoxemia and in response to renal ischemia/reperfusion injury. This downregulation may contribute, in part, to an increase in urine levels of albumin during acute renal failure.
Collapse
Affiliation(s)
- Andrea Schreiber
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
12
|
Conde E, Alegre L, Blanco-Sánchez I, Sáenz-Morales D, Aguado-Fraile E, Ponte B, Ramos E, Sáiz A, Jiménez C, Ordoñez A, López-Cabrera M, del Peso L, de Landázuri MO, Liaño F, Selgas R, Sanchez-Tomero JA, García-Bermejo ML. Hypoxia inducible factor 1-alpha (HIF-1 alpha) is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival. PLoS One 2012; 7:e33258. [PMID: 22432008 PMCID: PMC3303832 DOI: 10.1371/journal.pone.0033258] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/06/2012] [Indexed: 01/17/2023] Open
Abstract
Acute tubular necrosis (ATN) caused by ischemia/reperfusion (I/R) during renal transplantation delays allograft function. Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 α), using in vitro and in vivo experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 α is stabilized in proximal tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to gene expression in vitro and in vivo. In vitro interference of HIF-1 α promoted cell death and in vivo interference exacerbated tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 α was expressed only in proximal tubules which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using experimental models and human biopsies, we identified a novel HIF-1 α induction during reperfusion with a potential critical role in renal transplant.
Collapse
Affiliation(s)
- Elisa Conde
- Department of System Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
| | - Laura Alegre
- Department of System Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
- Department of Nephrology, Instituto de Investigación La Princesa (IP), Madrid, Spain
| | - Ignacio Blanco-Sánchez
- Department of System Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
| | - David Sáenz-Morales
- Department of System Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
| | - Elia Aguado-Fraile
- Department of System Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
| | - Belén Ponte
- Department of System Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
| | - Edurne Ramos
- Department of System Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
| | - Ana Sáiz
- Department of System Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
| | - Carlos Jiménez
- Department of Nephrology, Hospital La Paz (IdIPaz), Madrid, Spain
| | - Angel Ordoñez
- Department of Immunology, Instituto de Investigación La Princesa (IP), Madrid, Spain
| | | | - Luis del Peso
- HIV Unit, Department of Biochemistry, Hospital La Paz (IdiPAZ), Autónoma University School of Medicine, Institute of Biomedical Research Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | - Fernando Liaño
- Department of Nephrology, Hospital Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
| | - Rafael Selgas
- Department of Nephrology, Hospital La Paz (IdIPaz), Madrid, Spain
| | | | - María Laura García-Bermejo
- Department of System Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Heyman SN, Khamaisi M, Rosen S, Rosenberger C. In vivo models of acute kidney injury. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ddmod.2010.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|