1
|
Labat-de-Hoz L, Fernández-Martín L, Correas I, Alonso MA. INF2 formin variants linked to human inherited kidney disease reprogram the transcriptome, causing mitotic chaos and cell death. Cell Mol Life Sci 2024; 81:279. [PMID: 38916773 PMCID: PMC11335204 DOI: 10.1007/s00018-024-05323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
2
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Degree of foot process effacement in patients with genetic focal segmental glomerulosclerosis: a single-center analysis and review of the literature. Sci Rep 2021; 11:12008. [PMID: 34103591 PMCID: PMC8187362 DOI: 10.1038/s41598-021-91520-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/25/2021] [Indexed: 01/15/2023] Open
Abstract
Determining the cause of focal segmental glomerulosclerosis (FSGS) has crucial implications for evaluating the risk of posttransplant recurrence. The degree of foot process effacement (FPE) on electron micrographs (EM) of native kidney biopsies can reportedly differentiate primary FSGS from secondary FSGS. However, no systematic evaluation of FPE in genetic FSGS has been performed. In this study, percentage of FPE and foot process width (FPW) in native kidney biopsies were analyzed in eight genetic FSGS patients and nine primary FSGS patients. All genetic FSGS patients showed segmental FPE up to 38% and FPW below 2000 nm, while all primary FSGS patients showed diffuse FPE above 88% and FPW above 3000 nm. We reviewed the literature which described the degree of FPE in genetic FSGS patients and identified 38 patients with a description of the degree of FPE. The degree of FPE in patients with mutations in the genes encoding proteins associated with slit diaphragm and cytoskeletal proteins was varied, while almost all patients with mutations in other FSGS genes showed segmental FPE. In conclusion, the present study suggests that the degree of FPE in native kidney biopsies may be useful for differentiating some genetic FSGS patients from primary FSGS patients.
Collapse
|
4
|
Bayraktar S, Nehrig J, Menis E, Karli K, Janning A, Struk T, Halbritter J, Michgehl U, Krahn MP, Schuberth CE, Pavenstädt H, Wedlich-Söldner R. A Deregulated Stress Response Underlies Distinct INF2-Associated Disease Profiles. J Am Soc Nephrol 2021; 31:1296-1313. [PMID: 32444357 DOI: 10.1681/asn.2019111174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Monogenic diseases provide favorable opportunities to elucidate the molecular mechanisms of disease progression and improve medical diagnostics. However, the complex interplay between genetic and environmental factors in disease etiologies makes it difficult to discern the mechanistic links between different alleles of a single locus and their associated pathophysiologies. Inverted formin 2 (INF2), an actin regulator, mediates a stress response-calcium mediated actin reset, or CaAR-that reorganizes the actin cytoskeleton of mammalian cells in response to calcium influx. It has been linked to the podocytic kidney disease focal segemental glomerulosclerosis (FSGS), as well as to cases of the neurologic disorder Charcot-Marie-Tooth disease that are accompanied by nephropathy, mostly FSGS. METHODS We used a combination of quantitative live cell imaging and validation in primary patient cells and Drosophila nephrocytes to systematically characterize a large panel of >50 autosomal dominant INF2 mutants that have been reported to cause either FSGS alone or with Charcot-Marie-Tooth disease. RESULTS We found that INF2 mutations lead to deregulated activation of formin and a constitutive stress response in cultured cells, primary patient cells, and Drosophila nephrocytes. We were able to clearly distinguish between INF2 mutations that were linked exclusively to FSGS from those that caused a combination of FSGS and Charcot-Marie-Tooth disease. Furthermore, we were able to identify distinct subsets of INF2 variants that exhibit varying degrees of activation. CONCLUSIONS Our results suggest that CaAR can be used as a sensitive assay for INF2 function and for robust evaluation of diseased-linked variants of formin. More broadly, these findings indicate that cellular profiling of disease-associated mutations has potential to contribute substantially to sequence-based phenotype predictions.
Collapse
Affiliation(s)
- Samet Bayraktar
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany.,Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Julian Nehrig
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Ekaterina Menis
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Kevser Karli
- Medical Cell Biology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Annette Janning
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Thaddäus Struk
- Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Jan Halbritter
- Division of Nephrology, University of Leipzig, Leipzig, Germany
| | - Ulf Michgehl
- Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Michael P Krahn
- Medical Cell Biology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Christian E Schuberth
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | | | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Labat-de-Hoz L, Alonso MA. The formin INF2 in disease: progress from 10 years of research. Cell Mol Life Sci 2020; 77:4581-4600. [PMID: 32451589 PMCID: PMC11104792 DOI: 10.1007/s00018-020-03550-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Formins are a conserved family of proteins that primarily act to form linear polymers of actin. Despite their importance to the normal functioning of the cytoskeleton, for a long time, the only two formin genes known to be a genetic cause of human disorders were DIAPH1 and DIAPH3, whose mutation causes two distinct forms of hereditary deafness. In the last 10 years, however, the formin INF2 has emerged as an important target of mutations responsible for the appearance of focal segmental glomerulosclerosis, which are histological lesions associated with glomerulus degeneration that often leads to end-stage renal disease. In some rare cases, focal segmental glomerulosclerosis concurs with Charcot-Marie-Tooth disease, which is a degenerative neurological disorder affecting peripheral nerves. All known INF2 gene mutations causing disease map to the exons encoding the amino-terminal domain. In this review, we summarize the structure, biochemical features and functions of INF2, conduct a systematic and comprehensive analysis of the pathogenic INF2 mutations, including a detailed study exon-by-exon of patient cases and mutations, address the impact of the pathogenic mutations on the structure, regulation and known functions of INF2, draw a series of conclusions that could be useful for INF2-related disease diagnosis, and suggest lines of research for future work on the molecular mechanisms by which INF2 causes disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Hegsted A, Yingling CV, Pruyne D. Inverted formins: A subfamily of atypical formins. Cytoskeleton (Hoboken) 2017; 74:405-419. [PMID: 28921928 DOI: 10.1002/cm.21409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
Formins are a family of regulators of actin and microtubule dynamics that are present in almost all eukaryotes. These proteins are involved in many cellular processes, including cytokinesis, stress fiber formation, and cell polarization. Here we review one subfamily of formins, the inverted formins. Inverted formins as a group break several formin stereotypes, having atypical biochemical properties and domain organization, and they have been linked to kidney disease and neuropathy in humans. In this review, we will explore recent research on members of the inverted formin sub-family in mammals, zebrafish, fruit flies, and worms.
Collapse
Affiliation(s)
- Anna Hegsted
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Curtis V Yingling
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
7
|
Computational analysis of nsSNPs of NPHS1 gene and their effect on protein structural stability. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
8
|
Caridi G, Lugani F, Dagnino M, Gigante M, Iolascon A, Falco M, Graziano C, Benetti E, Dugo M, Del Prete D, Granata A, Borracelli D, Moggia E, Quaglia M, Rinaldi R, Gesualdo L, Ghiggeri GM. Novel INF2 mutations in an Italian cohort of patients with focal segmental glomerulosclerosis, renal failure and Charcot-Marie-Tooth neuropathy. Nephrol Dial Transplant 2014; 29 Suppl 4:iv80-6. [PMID: 25165188 DOI: 10.1093/ndt/gfu071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mutations of INF2 represent the major cause of familial autosomal dominant (AD) focal segmental glomerulosclerosis (FSGS). A few patients present neurological symptoms of Charcot-Marie-Tooth (CMT) disease but the prevalence of the association has not been assessed yet. METHODS We screened 28 families with AD FSGS and identified 8 INF2 mutations in 9 families (32 patients overall), 3 of which were new. Mutations were in all cases localized in the diaphanous-inhibitory domain (DID) of the protein. RESULTS Clinical features associated with INF2 mutations in our patient cohort included mild proteinuria (1.55 g/L; range 1-2.5) and haematuria as a unique symptom that was recognized at a median age of 21.75 years (range 8-30). Eighteen patients developed end-stage renal disease during their third decade of life; 12 patients presented a creatinine range between 1.2 and 1.5 mg/dL and 2 were healthy at 45 and 54 years of age. CMT was diagnosed in four cases (12.5%); one of these patients presented an already known mutation on exon 2 of INF2, whereas the other patients presented the same mutation on exon 4, a region that was not previously associated with CMT. CONCLUSIONS We confirmed the high incidence of INF2 mutations in families with AD FSGS. The clinical phenotype was mild at the onset of the disease, but evolution to ESRD was frequent. The incidence of CMT has, for the first time, been calculated here to be 12.5% of mutation carriers. Our findings support INF2 gene analysis in families in which renal failure and/or neuro-sensorial defects are inherited following an AD model.
Collapse
Affiliation(s)
- Gianluca Caridi
- Laboratory on Pathophysiology of Uremia and Division of Nephrology, Dialysis, Transplantation, Istituto Giannina Gaslini, Genova, Italy
| | - Francesca Lugani
- Laboratory on Pathophysiology of Uremia and Division of Nephrology, Dialysis, Transplantation, Istituto Giannina Gaslini, Genova, Italy
| | - Monica Dagnino
- Laboratory on Pathophysiology of Uremia and Division of Nephrology, Dialysis, Transplantation, Istituto Giannina Gaslini, Genova, Italy
| | - Maddalena Gigante
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II of Naples - CEINGE - Advanced Biotechnologies, Napoli, Italy
| | - Mariateresa Falco
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II of Naples - CEINGE - Advanced Biotechnologies, Napoli, Italy
| | - Claudio Graziano
- Medical Genetics Unit, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Elisa Benetti
- Nephrology, Dialysis, Transplantation Unit, Azienda Ospedaliera-University of Padova, Padova, Italy
| | - Mauro Dugo
- Nefrologia, Dialisi, Trapianti Renali, O.C. Ca' Foncello, ULSS 9, Treviso, Italy
| | - Dorella Del Prete
- Department of Medicine, Nephrology Unit, University of Padoa, Padova, Italy
| | - Antonio Granata
- Nephrology and Dialysis Unit, 'San Giovanni di Dio' Hospital, Agrigento, Italy
| | - Donella Borracelli
- Nephrology and Dialysis Unit, Ospedale Alta Val D'Elsa, Poggibonsi, Siena, Italy
| | - Elisabetta Moggia
- Nephrology and Dialysis Unit, Ospedale S. Croce e Carle, Cuneo, Italy
| | - Marco Quaglia
- Nephrology and Transplantation Unit, Department of Translational Medicine, Azienda Ospedaliero-Universitaria 'Maggiore della Carità', 'Amedeo Avogadro' University, Novara, Italy
| | - Rita Rinaldi
- Neurology Unit, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Gian Marco Ghiggeri
- Laboratory on Pathophysiology of Uremia and Division of Nephrology, Dialysis, Transplantation, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
9
|
Joshi S, Andersen R, Jespersen B, Rittig S. Genetics of steroid-resistant nephrotic syndrome: a review of mutation spectrum and suggested approach for genetic testing. Acta Paediatr 2013; 102:844-56. [PMID: 23772861 DOI: 10.1111/apa.12317] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/21/2013] [Accepted: 06/10/2013] [Indexed: 01/03/2023]
Abstract
UNLABELLED Identification of genes, associated mutations and genotype-phenotype correlations in steroid-resistant nephrotic syndrome (SRNS) is being translated to clinical practice through genetic testing. This review provides an update on the genes and mutations associated with SRNS along with a suggested approach for genetic testing in patients with SRNS. CONCLUSION The number of indentified genes associated with SRNS is increasing along with our understanding of their impact on treatment response and risk of recurrence. A systematic approach to genetic testing in patients with SRNS might aid the physician in selecting appropriate treatment.
Collapse
Affiliation(s)
- S Joshi
- Department of Clinical Medicine - The Department of Pediatrics; Research Laboratory-A; Aarhus University Hospital; Aarhus N Denmark
| | - R Andersen
- Department of Clinical Medicine - The Department of Pediatrics; Research Laboratory-A; Aarhus University Hospital; Aarhus N Denmark
| | - B Jespersen
- Department of Clinical Medicine - The Department of Medicine and Nephrology C; Aarhus University Hospital; Aarhus N Denmark
| | - S Rittig
- Department of Clinical Medicine - The Department of Pediatrics; Research Laboratory-A; Aarhus University Hospital; Aarhus N Denmark
| |
Collapse
|
10
|
Floege J. Primary glomerulonephritis: A review of important recent discoveries. Kidney Res Clin Pract 2013; 32:103-10. [PMID: 26877924 PMCID: PMC4714100 DOI: 10.1016/j.krcp.2013.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/29/2013] [Indexed: 01/29/2023] Open
Abstract
The publication of the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines on the treatment of glomerular diseases in 2012 marked a milestone in this field, as it is the first time that comprehensive guidelines are provided for such disease entities. The current review focuses on major findings, both pathogenesis related and clinical, in the primary glomerulonephritis that have been made after the guidelines came into effect.
Collapse
Affiliation(s)
- Jürgen Floege
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule University of Aachen, Aachen, Germany
| |
Collapse
|
11
|
Yamamoto J, Nakazawa D, Tsukaguchi H, Toyoyama T, Sato A, Nakagaki T, Ishikawa Y, Shibazaki S, Nishio S, Atsumi T. [Case report; A case of familial focal segmental glomerulosclerosis with a mutation in the formin INF2]. ACTA ACUST UNITED AC 2013; 102:1220-2. [PMID: 23847988 DOI: 10.2169/naika.102.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junya Yamamoto
- Department of Medicine II, Hokkaido University Hospital, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|