1
|
Collins CB, Nguyen TT, Leddy RS, Alula KM, Yeckes AR, Strassheim D, Aherne CM, Luck ME, Karoor V, Jedlicka P, Pierce A, de Zoeten EF. Heat shock factor 1 drives regulatory T-cell induction to limit murine intestinal inflammation. Mucosal Immunol 2024; 17:94-110. [PMID: 37944754 PMCID: PMC10953693 DOI: 10.1016/j.mucimm.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The heat shock response is a critical component of the inflammatory cascade that prevents misfolding of new proteins and regulates immune responses. Activation of clusters of differentiation (CD)4+ T cells causes an upregulation of heat shock transcription factor, heat shock factor 1 (HSF1). We hypothesized that HSF1 promotes a pro-regulatory phenotype during inflammation. To validate this hypothesis, we interrogated cell-specific HSF1 knockout mice and HSF1 transgenic mice using in vitro and in vivo techniques. We determined that while HSF1 expression was induced by anti-CD3 stimulation alone, the combination of anti-CD3 and transforming growth factor β, a vital cytokine for regulatory T cell (Treg) development, resulted in increased activating phosphorylation of HSF1, leading to increased nuclear translocation and binding to heat shock response elements. Using chromatin immunoprecipitation (ChIP), we demonstrate the direct binding of HSF1 to foxp3 in isolated murine CD4+ T cells, which in turn coincided with induction of FoxP3 expression. We defined that conditional knockout of HSF1 decreased development and function of Tregs and overexpression of HSF1 led to increased expression of FoxP3 along with enhanced Treg suppressive function. Adoptive transfer of CD45RBHigh CD4 colitogenic T cells along with HSF1 transgenic CD25+ Tregs prevented intestinal inflammation when wild-type Tregs did not. Finally, overexpression of HSF1 provided enhanced barrier function and protection from murine ileitis. This study demonstrates that HSF1 promotes Treg development and function and may represent both a crucial step in the development of induced regulatory T cells and an exciting target for the treatment of inflammatory diseases with a regulatory T-cell component. SIGNIFICANCE STATEMENT: The heat shock response (HSR) is a canonical stress response triggered by a multitude of stressors, including inflammation. Evidence supports the role of the HSR in regulating inflammation, yet there is a paucity of data on its influence in T cells specifically. Gut homeostasis reflects a balance between regulatory clusters of differentiation (CD)4+ T cells and pro-inflammatory T-helper (Th)17 cells. We show that upon activation within T cells, heat shock factor 1 (HSF1) translocates to the nucleus, and stimulates Treg-specific gene expression. HSF1 deficiency hinders Treg development and function and conversely, HSF1 overexpression enhances Treg development and function. While this work, focuses on HSF1 as a novel therapeutic target for intestinal inflammation, the findings have significance for a broad range of inflammatory conditions.
Collapse
Affiliation(s)
- Colm B Collins
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Tom T Nguyen
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert S Leddy
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Kibrom M Alula
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Alyson R Yeckes
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Derek Strassheim
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Carol M Aherne
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Marisa E Luck
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Vijaya Karoor
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Edwin F de Zoeten
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Curtis LM. Sex and Gender Differences in AKI. KIDNEY360 2024; 5:160-167. [PMID: 37990360 PMCID: PMC10833607 DOI: 10.34067/kid.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Sex differences in AKI continue to be identified. Generally, women are protected from AKI when compared to men. Much of the protection exhibited in women is diminished after menopause. These sex and age effects have also been noted in animal models of AKI. Gonadal hormones, as modifiers of incidence, severity, and progression of AKI, have been offered as likely contributors to this sex and age effect. In animal models of AKI, estrogen and testosterone seem to modulate susceptibility. Questions remain however regarding cellular and molecular changes that are initiated by modulation of these hormones because both estrogen and testosterone have effects across cell types that play a role in AKI. Although findings have largely been informed by studies in males, molecular pathways that are involved in the initiation and progression of AKI may be modulated by gonadal hormones. Compounding the hormone-receptor effects are developmental effects of sex chromosomal complement and epigenetic influences that may confer sex-based baseline differences in gene and protein expression, and gene dosage effects of X inactivation and escape on molecular pathways. Elucidation of sex-based protection may afford a more complete view of AKI and potential therapeutic interventions. Furthermore, the effect on susceptibility to AKI in transgender patients, who receive life-altering and essential gender-affirming hormone therapy, requires greater attention. In this review, several potential contributors to the sex differences observed in humans and animal models are discussed.
Collapse
Affiliation(s)
- Lisa M Curtis
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Ferdinand JR, Morrison MI, Andreasson A, Charlton C, Chhatwal AK, Scott WE, Borthwick LA, Clatworthy MR, Fisher AJ. Transcriptional analysis identifies potential novel biomarkers associated with successful ex-vivo perfusion of human donor lungs. Clin Transplant 2021; 36:e14570. [PMID: 34954872 PMCID: PMC9285052 DOI: 10.1111/ctr.14570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
Background Transplantation is an effective treatment for end‐stage lung disease, but the donor organ shortage is a major problem. Ex‐vivo lung perfusion (EVLP) of extended criteria organs enables functional assessment to facilitate clinical decision‐making around utilization, but the molecular processes occurring during EVLP, and how they differ between more or less viable lungs, remain to be determined. Methods We used RNA sequencing of lung tissue to delineate changes in gene expression occurring in 10 donor lungs undergoing EVLP and compare lungs that were deemed non‐transplantable (n = 4) to those deemed transplantable (n = 6) following perfusion. Results We found that lungs deemed unsuitable for transplantation had increased induction of innate immune pathways and lower expression of oxidative phosphorylation related genes. Furthermore, the expression of SCGB1A1, a gene encoding an anti‐inflammatory secretoglobin CC10, and other club cell genes was significantly decreased in non‐transplantable lungs, while CHIT‐1 was increased. Using a larger validation cohort (n = 17), we confirmed that the ratio of CHIT1 and SCGB1A1 protein levels in lung perfusate have potential utility to distinguish transplantable from non‐transplantable lungs (AUC .81). Conclusions Together, our data identify novel biomarkers that may assist with pre‐transplant lung assessment, as well as pathways that may be amenable to therapeutic intervention during EVLPAQ6.
Collapse
Affiliation(s)
- John Robert Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | - Anders Andreasson
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK
| | - Catriona Charlton
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Alisha Kaur Chhatwal
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - William Earl Scott
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Lee Anthony Borthwick
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Menna Ruth Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK.,Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Lou Q, Li Y, Hou B, Liu Y, Zhang Y, Hao J, Ma Y. Heat shock transcription factor 1 affects kidney tubular cell migration by regulating the TGF‑β1‑Smad2/3 signaling pathway. Mol Med Rep 2019; 20:4323-4330. [PMID: 31545442 DOI: 10.3892/mmr.2019.10689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/23/2019] [Indexed: 11/06/2022] Open
Abstract
Cell migration is important for renal recovery from tubular cell injury. Heat shock transcription factor 1 (HSF1) is a well‑studied regulatory factor that is active during acute kidney injury. HSF1 is also involved in the migration process during tumor metastasis. Therefore, we hypothesized that HSF1 may promote the recovery of renal function by affecting kidney tubular cell migration. A wound healing assay was used to examine the cell migration rate. The results demonstrated that the migration of rat kidney proximal tubular cells (RPTCs) was increased following knockdown of HSF1. In addition, the invasion ability of HSF1 knockdown RPTCs was also significantly upregulated. The present study also identified that transforming growth factor‑β1 (TGF‑β1) was highly expressed at the edge of the wound in control cells, and its expression was further increased upon knockdown of HSF1. Inhibition of TGF‑β1 signaling prevented RPTC HSF1 knockdown cell migration, suggesting that HSF1‑regulated RPTC cell migration was dependent on the TGF‑β1 signaling pathway. Furthermore, phosphorylation of TGF‑β1 and Smad2/3 was induced in HSF1 knockdown cells. Together, these results suggest that HSF1 may suppress RPTC migration by inhibiting the activation of the TGF‑β1‑Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yuanyuan Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Beibei Hou
- International Office of Henan University, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yonglian Liu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yan Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jielu Hao
- Department of Nephrology, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai 200003, P.R. China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
5
|
Musiał K, Zwolińska D. Fractional excretion as a new marker of tubular damage in children with chronic kidney disease. Clin Chim Acta 2018; 480:99-106. [PMID: 29421151 DOI: 10.1016/j.cca.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/04/2018] [Accepted: 02/04/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Vitamin D-binding protein (VDBP), retinol-binding protein (RBP)4, and heat shock proteins (hsp) are markers of tubular function and apoptosis, accompanying chronic kidney disease (CKD) from its earliest stages. Fractional excretion of proteins with urine is a marker of tubular damage. The aim of study was to assess the usefulness of fractional excretion (FE) of VDBP, RBP4, HSF1 and Hsp27 as markers of tubular damage in the course of CKD. METHODS The study group consisted of 70 children with CKD stages 1-5, treated conservatively, and 12 age-matched controls with normal kidney function. The serum and urine concentrations of VDBP, RBP4, HSF1 and Hsp27 were assessed by ELISA. The fractional excretion of analyzed parameters was calculated according to the formula: ([parameter urine concentration] × [creatinine serum concentration]) / ([parameter serum concentration] × [creatinine urine concentration])×100%. RESULTS The FE values of all parameters exceeded 1% in CKD stage 2. However, the values of FE have raised significantly versus control group no sooner than CKD stage 2 (RBP4 and HSF1), stage 3 (VDBP) or stage 4 (Hsp27). CONCLUSION Fractional excretion of RBP4 and HSF1 with urine may become a valuable marker, assessing the damage of tubular cells in children with CKD.
Collapse
Affiliation(s)
- Kinga Musiał
- Department of Pediatric Nephrology, Wrocław Medical University, Poland.
| | - Danuta Zwolińska
- Department of Pediatric Nephrology, Wrocław Medical University, Poland
| |
Collapse
|
6
|
Sreedharan R, Van Why SK. Heat shock proteins in the kidney. Pediatr Nephrol 2016; 31:1561-70. [PMID: 26913726 DOI: 10.1007/s00467-015-3297-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022]
Abstract
Heat shock proteins (Hsps) are essential to cell survival through their function as protein chaperones. The role they play in kidney health and disease is varied. Hsp induction may be either beneficial or detrimental to the kidney, depending on the specific Hsp, type of cell, and context. This review addresses the role of Hsps in the kidney, including during development, as osmoprotectants, and in various kidney disease models. Heat shock transcription factor, activated by a stress on renal cells, induces Hsp elaboration and separately regulates immune responses that can contribute to renal injury. Induced Hsps in the intracellular compartment are mostly beneficial in the kidney by stabilizing and restoring cell architecture and function through acting as protein chaperones. Intracellular Hsps also inhibit apoptosis and facilitate cell proliferation, preserving renal tubule viability after acute injury, but enhancing progression of cystic kidney disease and malignancy. Induced Hsps in the extracellular compartment, either circulating or located on outer cell membranes, are mainly detrimental through enhancing inflammation pathways to injury. Correctly harnessing these stress proteins promises the opportunity to alter the course of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Rajasree Sreedharan
- Pediatrics, Nephrology, Medical College of Wisconsin, 999 N. 92nd St., Suite C510, Milwaukee, WI, 53226, USA
| | - Scott K Van Why
- Pediatrics, Nephrology, Medical College of Wisconsin, 999 N. 92nd St., Suite C510, Milwaukee, WI, 53226, USA.
| |
Collapse
|
7
|
Lou Q, Hu Y, Ma Y, Dong Z. Heat shock factor 1 induces crystallin-αB to protect against cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2016; 311:F94-F102. [PMID: 27194715 DOI: 10.1152/ajprenal.00201.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
Cisplatin, a wildly used chemotherapy drug, induces nephrotoxicity that is characterized by renal tubular cell apoptosis. In response to toxicity, tubular cells can activate cytoprotective mechanisms, such as the heat shock response. However, the role and regulation of the heat shock response in cisplatin-induced nephrotoxicity remain largely unclear. In the present study, we demonstrated the induction of heat shock factor (Hsf)1 and the small heat shock protein crystallin-αB (CryAB) during cisplatin nephrotoxicity in mice. Consistently, cisplatin induced Hsf1 and CryAB in a cultured renal proximal tubular cells (RPTCs). RPTCs underwent apoptosis during cisplatin treatment, which was increased when Hsf1 was knocked down. Transfection or restoration of Hsf1 into Hsf1 knockdown cells suppressed cisplatin-induced apoptosis, further supporting a cytoprotective role of Hsf1 and its associated heat shock response. Moreover, Hsf1 knockdown increased Bax translocation to mitochondria and cytochrome c release into the cytosol. In RPTCs, Hsf1 knockdown led to a specific downregulation of CryAB. Transfection of CryAB into Hsf1 knockdown cells diminished their sensitivity to cisplatin-induced apoptosis, suggesting that CryAB may be a key mediator of the cytoprotective effect of Hsf1. Taken together, these results demonstrate a heat shock response in cisplatin nephrotoxicity that is mediated by Hsf1 and CryAB to protect tubular cells against apoptosis.
Collapse
Affiliation(s)
- Qiang Lou
- Antibody Drug Engineering Laboratory of Henan Province, Henan University School of Medicine, Kaifeng, Henan, China; and Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Yanzhong Hu
- Antibody Drug Engineering Laboratory of Henan Province, Henan University School of Medicine, Kaifeng, Henan, China; and Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Yuanfang Ma
- Antibody Drug Engineering Laboratory of Henan Province, Henan University School of Medicine, Kaifeng, Henan, China; and
| | - Zheng Dong
- Antibody Drug Engineering Laboratory of Henan Province, Henan University School of Medicine, Kaifeng, Henan, China; and Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
8
|
Jheng HF, Tsai PJ, Chuang YL, Shen YT, Tai TA, Chen WC, Chou CK, Ho LC, Tang MJ, Lai KTA, Sung JM, Tsai YS. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech 2015; 8:1311-21. [PMID: 26398934 PMCID: PMC4610229 DOI: 10.1242/dmm.019398] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. Summary: Activation of the HSP70-TLR4 axis by albumin in the tubular cell induces tubular inflammation and injury.
Collapse
Affiliation(s)
- Huei-Fen Jheng
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Lun Chuang
- Department of Physiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Ting Shen
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Ting-An Tai
- Department of Physiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chung Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Chuan-Kai Chou
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan
| | - Li-Chun Ho
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital/I-Shou University, Kaohsiung 824, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, National Cheng Kung University, Tainan 701, Taiwan
| | | | - Junne-Ming Sung
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Yau-Sheng Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Taiwan Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan, Republic of China
| |
Collapse
|