1
|
Tseng CH, Shah KM, Chiu IJ, Hsiao LL. The Role of Autophagy in Type 2 Diabetic Kidney Disease Management. Cells 2023; 12:2691. [PMID: 38067119 PMCID: PMC10705810 DOI: 10.3390/cells12232691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD), or diabetic nephropathy (DN), is one of the most prevalent complications of type 2 diabetes mellitus (T2DM) and causes severe burden on the general welfare of T2DM patients around the world. While several new agents have shown promise in treating this condition and potentially halting the progression of the disease, more work is needed to understand the complex regulatory network involved in the disorder. Recent studies have provided new insights into the connection between autophagy, a physiological metabolic process known to maintain cellular homeostasis, and the pathophysiological pathways of DKD. Typically, autophagic activity plays a role in DKD progression mainly by promoting an inflammatory response to tissue damage, while both overactivated and downregulated autophagy worsen disease outcomes in different stages of DKD. This correlation demonstrates the potential of autophagy as a novel therapeutic target for the disease, and also highlights new possibilities for utilizing already available DN-related medications. In this review, we summarize findings on the relationship between autophagy and DKD, and the impact of these results on clinical management strategies.
Collapse
Affiliation(s)
- Che-Hao Tseng
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kavya M. Shah
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
| | - I-Jen Chiu
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
| |
Collapse
|
2
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
3
|
Na Y, Kim SW, Park IB, Choi SJ, Nam S, Jung J, Lee DH. Association Between DPP4 Inhibitor Use and the Incidence of Cirrhosis, ESRD, and Some Cancers in Patients With Diabetes. J Clin Endocrinol Metab 2022; 107:3022-3034. [PMID: 36108097 DOI: 10.1210/clinem/dgac540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 02/04/2023]
Abstract
CONTEXT There are relatively few data on noncardiovascular (non-CV) long-term clinical outcomes of dipeptidyl peptidase 4 inhibitor (DPP4i) treatment. OBJECTIVE We aimed to evaluate some non-CV effects of DPP4is in patients with diabetes. METHODS Based on data from the National Health Insurance Service database in Korea (2007-2018), we conducted 3 pairwise comparisons of metformin-combined antidiabetic therapies in adult patients with diabetes: DPP4is vs (1) all other oral antidiabetic agents, (2) sulfonylureas/glinides, and (3) thiazolidinediones (TZDs). Major outcomes were liver cirrhosis, end-stage renal disease (ESRD), and cancers in the liver, kidney, and pancreas. Adjusted hazard ratios (HRs) and 95% CIs for the outcomes were estimated using an adjusted Cox model. RESULTS Of the 747 124 patients included, 628 217 had received DPP4i therapy for a mean duration of 33.8 ± 25.0 months. Compared with TZD therapy, DPP4i therapy was associated with higher adjusted HRs [95% CIs] for liver cirrhosis (1.267 [1.108-1.449]), ESRD (1.596 [1.139-2.236]), liver cancer (1.117 [1.011-1.235]), and pancreatic cancer (1.158 [1.040-1.290]). Furthermore, apart from liver cirrhosis, a higher risk of each of these outcomes was associated with DPP4i use than with non-DPP4i use. The higher adjusted HRs associated with DPP4i use further increased when patients with long-term exposure to DPP4is were analyzed. CONCLUSION DPP4i therapy in patients with diabetes was associated with a higher risk of liver cirrhosis and cancer, ESRD, and pancreatic cancer than TZD therapy and, except for liver cirrhosis, the risk of these outcomes was greater with DPP4i treatment than with non-DPP4i treatment.
Collapse
Affiliation(s)
- Yewon Na
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Artificial Intelligence and Big-Data Convergence Center, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ie Byung Park
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Soo Jung Choi
- Department of Family Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- AI Convergence Center for Medical Science, Department of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Jaehun Jung
- Artificial Intelligence and Big-Data Convergence Center, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| |
Collapse
|
4
|
Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, Andersen JT, Sarmento B. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021; 175:113778. [PMID: 33887405 DOI: 10.1016/j.addr.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic disease with an elevated risk of micro- and macrovascular complications, such as fibrosis. To prevent diabetes-associated fibrosis, the symptomatology of diabetes must be controlled, which is commonly done by subcutaneous injection of antidiabetic peptides. To minimize the pain and distress associated with such injections, there is an urgent need for non-invasive oral transmucosal drug delivery strategies. However, orally administered peptide-based drugs are exposed to harsh conditions in the gastrointestinal tract and poorly cross the selective intestinal epithelium. Thus, targeting of drugs to receptors expressed in epithelial cells, such as the neonatal Fc receptor (FcRn), may therefore enhance uptake and transport through mucosal barriers. This review compiles how in-depth studies of FcRn biology and engineering of receptor-binding molecules may pave the way for design of new classes of FcRn-targeted nanosystems. Tailored strategies may open new avenues for oral drug delivery and provide better treatment options for diabetes and, consequently, fibrosis prevention.
Collapse
|
5
|
Nangaku M, Wanner C. Not only incretins for diabetic kidney disease-beneficial effects by DPP-4 inhibitors. Kidney Int 2021; 99:318-322. [PMID: 33509354 DOI: 10.1016/j.kint.2020.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Christoph Wanner
- Division of Nephrology, Würzburg University Clinic, Würzburg, Germany.
| |
Collapse
|
6
|
Li YC, Sung PH, Yang YH, Chiang JY, Yip HK, Yang CC. Dipeptidyl peptidase 4 promotes peritoneal fibrosis and its inhibitions prevent failure of peritoneal dialysis. Commun Biol 2021; 4:144. [PMID: 33514826 PMCID: PMC7846859 DOI: 10.1038/s42003-021-01652-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) possesses multiple advantages for end stage renal disease. However, long-term PD triggers peritoneal fibrosis (PF). From the nationwide analysis of diabetic PD patients (n = 19,828), we identified the incidence of PD failure was significantly lower in diabetic patients treated with dipeptidyl peptidase 4 (DPP4) inhibitors. Experimental study further showed high concentration of glucose remarkably enhanced DPP4 to promote epithelial-mesenchymal transition (EMT) in the mesothelial cells. In chlorhexidine gluconate (CG)-induced PF model of rats, DPP4 expression was enriched at thickening peritoneum. Moreover, as to CG-induced PF model, DPP4 deficiency (F344/DuCrlCrlj strain), sitagliptin and exendin-4 treatments significantly inhibited DPP4 to reverse the EMT process, angiogenesis, oxidative stress, and inflammation, resulting in the protection from PF, preservation of peritoneum and the corresponding functional integrity. Furthermore, DPP4 activity was significantly correlated with peritoneal dysfunction. Taken together, DPP4 caused peritoneal dysfunction/PF, whereas inhibition of DPP4 protected the PD patients against PD failure.
Collapse
Affiliation(s)
- Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yao-Hsu Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Putzu, Taiwan
- Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi Branch, Putzu, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Nursing, Asia University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Abd Elmaaboud M, Khattab H, Shalaby S. Hepatoprotective effect of linagliptin against liver fibrosis induced by carbon tetrachloride in mice. Can J Physiol Pharmacol 2020; 99:294-302. [PMID: 32726558 DOI: 10.1139/cjpp-2020-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The current study aimed to investigate linagliptin for its potential role in the prevention of liver fibrosis progression. Balb-C mice were randomly allocated into five groups (10 each): (i) control; (ii) mice were injected intraperitoneally with 50 μL carbon tetrachloride (CCl4) in corn oil in a dose of 0.6 μL/g three times per week for four weeks; (iii) linagliptin was administered orally in a daily dose of 10 mg/kg simultaneously with CCl4; (iv) silymarin was administered orally in a daily dose of 200 mg/kg concomitantly with CCl4; and (v) only linagliptin was administered. Hepatic injury was manifested in the CCl4 group by elevation of biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP)), and hepatic fibrosis was evident histopathologically by increased METAVIR score and immunostaining expression of alpha-smooth muscle actin (α-SMA), as well as increased liver tissue oxidative stress parameters, transforming growth factor-β1 (TGF-β1), and mammalian target of rapamycin (mTOR). Linagliptin was able to stop the progression of liver fibrosis, evident histopathologically with reduced METAVIR score and α-SMA expression. The possible mechanism may be via suppression of oxidative stress, TGF-β1, and mTOR, which was associated with improvement of serum biochemical parameters ALT and AST. In conclusion, linagliptin might help to protect the liver against persistent injury-related consequences.
Collapse
Affiliation(s)
- Maaly Abd Elmaaboud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Haidy Khattab
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shahinaz Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension. J Transl Med 2018; 98:1333-1346. [PMID: 29789684 DOI: 10.1038/s41374-018-0080-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-4) is well known for its role in glucose homeostasis, and DPP-4 inhibitor (DPP-4i) exhibits multiple actions in cardiovascular diseases. However, the effect of DPP-4i on pulmonary hypertension (PH) remains unclear. Therefore, this study aims to investigate the effect of DPP-4i on pulmonary arterial remodeling in rats with PH and the potential underlying mechanisms. Our results show that DPP-4 was expressed in epithelial cells, endothelial cells, smooth muscle cells, and inflammatory cells in lung. DPP-4i (Sitagliptin) attenuated right ventricular systolic pressure (RVSP), right ventricle remodeling, hypertrophy of pulmonary arterial medial layer, inflammatory cell infiltration, and endothelial-mesenchymal transition (EndMT) in monocrotaline (MCT)-induced PH rats. Similarly, DPP-4i also alleviated bleomycin- and chronic hypoxia-induced PH in rats. In cultured human pulmonary arterial smooth muscle cells (PASMCs), DPP-4i inhibited platelet derived growth factor (PDGF)-BB-induced proliferation and migration, which was abolished by phosphatase and tensin homolog deleted on chromosome ten (PTEN) knockout. These results demonstrate that DPP-4 inhibition alleviates pulmonary arterial remodeling in experimental PH by inhibiting proliferation and migration of PASMCs.
Collapse
|
9
|
Igarashi T, Niwano S, Niwano H, Yoshizawa T, Nakamura H, Fukaya H, Fujiishi T, Ishizue N, Satoh A, Kishihara J, Murakami M, Ako J. Linagliptin prevents atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 2018; 33:1258-1265. [PMID: 29721673 DOI: 10.1007/s00380-018-1170-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors have recently been reported to exhibit additional cardioprotective effects; however, their effect in atrial remodeling, such as in atrial fibrillation (AF), remains unclear. In this study, the effect of linagliptin on atrial electrical and structural remodeling was evaluated in a canine AF model. Sixteen beagle dogs with 3-week atrial rapid stimulation were divided into the linagliptin group (9 mg/kg/day, n = 8) and pacing control group (n = 8). Three additional dogs without rapid pacing were assigned into non-pacing group, which was used as sham in this study. In the dogs with rapid pacing, the atrial effective refractory period (AERP), conduction velocity (CV), and AF inducibility were evaluated and blood was sampled every week. After the entire protocol, atrial tissue was sampled for histological examinations using HE, Azan, and dihydroethidium (DHE) staining to evaluate any tissue damage or oxidative stress. The pacing control group exhibited a gradual AERP shortening and CV decrease along the time course as previously reported. In the linagliptin group, the AERP shortening was not affected, but the CV decrease was suppressed in comparison to the control group (p < 0.05). The AF inducibility was increased in the control group and suppressed in the linagliptin group (p < 0.05). The control group exhibited tissue fibrosis, the degree of which was suppressed in the linagliptin group. DHE staining exhibited suppression of the reactive oxygen species expression in the linagliptin group in comparison to the pacing control group. Linagliptin, a DPP-4-inhibitor, suppressed the AF inducibility, CV decrease, and overexpression of oxidative stress in the canine AF model. Such suppressive effects of linagliptin on AF in the canine model may possibly be related to the anti-oxidative effect.
Collapse
Affiliation(s)
- Tazuru Igarashi
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan.
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Hiroe Niwano
- Department of Education, Tamagawa University, College of Education, Machida, Japan
| | - Tomoharu Yoshizawa
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Hironori Nakamura
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Hidehira Fukaya
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Tamami Fujiishi
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Naruya Ishizue
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Akira Satoh
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Jun Kishihara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Masami Murakami
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| |
Collapse
|
10
|
Thomson SC, Vallon V. Renal Effects of Incretin-Based Diabetes Therapies: Pre-clinical Predictions and Clinical Trial Outcomes. Curr Diab Rep 2018; 18:28. [PMID: 29654381 PMCID: PMC6426321 DOI: 10.1007/s11892-018-0991-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to correlate predictions based on pre-clinical data with outcomes from clinical trials that examine the effects of incretin-based diabetes treatments on the kidney. The incretin-based treatments include agonists of the glucagon-like peptide 1 receptor (GLP-1R) and inhibitors of the enzyme, dipeptidyl peptidase-4 (DPP-4). In addition, what is known about the incretin-based therapies will be compared to what is known about the renal effects of SGLT2 inhibitors. RECENT FINDINGS Large-scale clinical trials have shown that SGLT2 inhibitors reduce albuminuria and preserve estimated glomerular filtration rate (eGFR) in patients with diabetic nephropathy. A concise and plausible hemodynamic mechanism is supported by pre-clinical research on the physiology and pharmacology of SGLT2. Large-scale clinical trials have shown that incretin-based therapies mitigate albuminuria but have not shown beneficial effects on eGFR. Research on the incretin-based therapies has yielded a diverse array of direct effects throughout the body, which fuels speculation as to how these drugs might benefit the diabetic kidney and affect its function(s). But in vivo experiments have yet to confirm that the proposed mechanisms underlying emergent phenomena, such as proximal tubular fluid reabsorption, are the ones predicted by cell and molecular experiments. There may be salutary effects of incretin-based treatments on the diabetic kidney, but the system is complex and not amenable to simple explanation or prior prediction. This contrasts with the renal effects of SGLT2 inhibitors, which can be explained concisely.
Collapse
Affiliation(s)
- Scott C Thomson
- University of California, 3350 La Jolla Village Drive 9151, San Diego, CA, 92161, USA.
- VA San Diego Healthcare System, San Diego, USA.
| | - Volker Vallon
- University of California, 3350 La Jolla Village Drive 9151, San Diego, CA, 92161, USA
- VA San Diego Healthcare System, San Diego, USA
| |
Collapse
|
11
|
Kanasaki K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin Sci (Lond) 2018; 132:489-507. [PMID: 29491123 PMCID: PMC5828949 DOI: 10.1042/cs20180031] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that dipeptidyl peptidase-4 (DPP-4) inhibitors used to treat type 2 diabetes may have nephroprotective effects beyond the reduced renal risk conferred by glycemic control. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. The kidneys contain the highest levels of DPP-4, which is increased in diabetic nephropathy. DPP-4 inhibitors are a chemically heterogeneous class of drugs with important pharmacological differences. Of the globally marketed DPP-4 inhibitors, linagliptin is of particular interest for diabetic nephropathy as it is the only compound that is not predominantly excreted in the urine. Linagliptin is also the most potent DPP-4 inhibitor, has the highest affinity for this protein, and has the largest volume of distribution; these properties allow linagliptin to penetrate kidney tissue and tightly bind resident DPP-4. In animal models of kidney disease, linagliptin elicited multiple renoprotective effects, including reducing albuminuria, glomerulosclerosis, and tubulointerstitial fibrosis, independent of changes in glucagon-like peptide-1 (GLP-1) and glucose levels. At the molecular level, linagliptin prevented the pro-fibrotic endothelial-to-mesenchymal transition by disrupting the interaction between membrane-bound DPP-4 and integrin β1 that enhances signaling by transforming growth factor-β1 and vascular endothelial growth factor receptor-1. Linagliptin also increased stromal cell derived factor-1 levels, ameliorated endothelial dysfunction, and displayed unique antioxidant effects. Although the nephroprotective effects of linagliptin are yet to be translated to the clinical setting, the ongoing Cardiovascular and Renal Microvascular Outcome Study with Linagliptin in Patients with Type 2 Diabetes Mellitus (CARMELINA®) study will definitively assess the renal effects of this DPP-4 inhibitor. CARMELINA® is the only clinical trial of a DPP-4 inhibitor powered to evaluate kidney outcomes.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
12
|
Effects of incretin-based therapies on renal function. Eur J Pharmacol 2018; 818:103-109. [DOI: 10.1016/j.ejphar.2017.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/03/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
|
13
|
Abstract
The gastrointestinal tract - the largest endocrine network in human physiology - orchestrates signals from the external environment to maintain neural and hormonal control of homeostasis. Advances in understanding entero-endocrine cell biology in health and disease have important translational relevance. The gut-derived incretin hormone glucagon-like peptide 1 (GLP-1) is secreted upon meal ingestion and controls glucose metabolism by modulating pancreatic islet cell function, food intake and gastrointestinal motility, amongst other effects. The observation that the insulinotropic actions of GLP-1 are reduced in type 2 diabetes mellitus (T2DM) led to the development of incretin-based therapies - GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors - for the treatment of hyperglycaemia in these patients. Considerable interest exists in identifying effects of these drugs beyond glucose-lowering, possibly resulting in improved macrovascular and microvascular outcomes, including in diabetic kidney disease. As GLP-1 has been implicated as a mediator in the putative gut-renal axis (a rapid-acting feed-forward loop that regulates postprandial fluid and electrolyte homeostasis), direct actions on the kidney have been proposed. Here, we review the role of GLP-1 and the actions of associated therapies on glucose metabolism, the gut-renal axis, classical renal risk factors, and renal end points in randomized controlled trials of GLP-1 receptor agonists and DPP-4 inhibitors in patients with T2DM.
Collapse
|
14
|
Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Tornøe K, Zinman B, Buse JB. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med 2017; 377:839-848. [PMID: 28854085 DOI: 10.1056/nejmoa1616011] [Citation(s) in RCA: 794] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In a randomized, controlled trial that compared liraglutide, a glucagon-like peptide 1 analogue, with placebo in patients with type 2 diabetes and high cardiovascular risk who were receiving usual care, we found that liraglutide resulted in lower risks of the primary end point (nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes) and death. However, the long-term effects of liraglutide on renal outcomes in patients with type 2 diabetes are unknown. METHODS We report the prespecified secondary renal outcomes of that randomized, controlled trial in which patients were assigned to receive liraglutide or placebo. The secondary renal outcome was a composite of new-onset persistent macroalbuminuria, persistent doubling of the serum creatinine level, end-stage renal disease, or death due to renal disease. The risk of renal outcomes was determined with the use of time-to-event analyses with an intention-to-treat approach. Changes in the estimated glomerular filtration rate and albuminuria were also analyzed. RESULTS A total of 9340 patients underwent randomization, and the median follow-up of the patients was 3.84 years. The renal outcome occurred in fewer participants in the liraglutide group than in the placebo group (268 of 4668 patients vs. 337 of 4672; hazard ratio, 0.78; 95% confidence interval [CI], 0.67 to 0.92; P=0.003). This result was driven primarily by the new onset of persistent macroalbuminuria, which occurred in fewer participants in the liraglutide group than in the placebo group (161 vs. 215 patients; hazard ratio, 0.74; 95% CI, 0.60 to 0.91; P=0.004). The rates of renal adverse events were similar in the liraglutide group and the placebo group (15.1 events and 16.5 events per 1000 patient-years), including the rate of acute kidney injury (7.1 and 6.2 events per 1000 patient-years, respectively). CONCLUSIONS This prespecified secondary analysis shows that, when added to usual care, liraglutide resulted in lower rates of the development and progression of diabetic kidney disease than placebo. (Funded by Novo Nordisk and the National Institutes of Health; LEADER ClinicalTrials.gov number, NCT01179048 .).
Collapse
Affiliation(s)
- Johannes F E Mann
- From KfH Kidney Center, Munich, and Friedrich Alexander University of Erlangen, Erlangen - both in Germany (J.F.E.M.); Novo Nordisk, Bagsvaerd, Denmark (D.D.Ø., K.B.-F., S.R., K.T.); University of Texas Southwestern Medical Center, Dallas (S.P.M.); Imperial College London, London (N.R.P.); Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto (B.Z.); and University of North Carolina School of Medicine, Chapel Hill (J.B.B.)
| | - David D Ørsted
- From KfH Kidney Center, Munich, and Friedrich Alexander University of Erlangen, Erlangen - both in Germany (J.F.E.M.); Novo Nordisk, Bagsvaerd, Denmark (D.D.Ø., K.B.-F., S.R., K.T.); University of Texas Southwestern Medical Center, Dallas (S.P.M.); Imperial College London, London (N.R.P.); Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto (B.Z.); and University of North Carolina School of Medicine, Chapel Hill (J.B.B.)
| | - Kirstine Brown-Frandsen
- From KfH Kidney Center, Munich, and Friedrich Alexander University of Erlangen, Erlangen - both in Germany (J.F.E.M.); Novo Nordisk, Bagsvaerd, Denmark (D.D.Ø., K.B.-F., S.R., K.T.); University of Texas Southwestern Medical Center, Dallas (S.P.M.); Imperial College London, London (N.R.P.); Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto (B.Z.); and University of North Carolina School of Medicine, Chapel Hill (J.B.B.)
| | - Steven P Marso
- From KfH Kidney Center, Munich, and Friedrich Alexander University of Erlangen, Erlangen - both in Germany (J.F.E.M.); Novo Nordisk, Bagsvaerd, Denmark (D.D.Ø., K.B.-F., S.R., K.T.); University of Texas Southwestern Medical Center, Dallas (S.P.M.); Imperial College London, London (N.R.P.); Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto (B.Z.); and University of North Carolina School of Medicine, Chapel Hill (J.B.B.)
| | - Neil R Poulter
- From KfH Kidney Center, Munich, and Friedrich Alexander University of Erlangen, Erlangen - both in Germany (J.F.E.M.); Novo Nordisk, Bagsvaerd, Denmark (D.D.Ø., K.B.-F., S.R., K.T.); University of Texas Southwestern Medical Center, Dallas (S.P.M.); Imperial College London, London (N.R.P.); Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto (B.Z.); and University of North Carolina School of Medicine, Chapel Hill (J.B.B.)
| | - Søren Rasmussen
- From KfH Kidney Center, Munich, and Friedrich Alexander University of Erlangen, Erlangen - both in Germany (J.F.E.M.); Novo Nordisk, Bagsvaerd, Denmark (D.D.Ø., K.B.-F., S.R., K.T.); University of Texas Southwestern Medical Center, Dallas (S.P.M.); Imperial College London, London (N.R.P.); Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto (B.Z.); and University of North Carolina School of Medicine, Chapel Hill (J.B.B.)
| | - Karen Tornøe
- From KfH Kidney Center, Munich, and Friedrich Alexander University of Erlangen, Erlangen - both in Germany (J.F.E.M.); Novo Nordisk, Bagsvaerd, Denmark (D.D.Ø., K.B.-F., S.R., K.T.); University of Texas Southwestern Medical Center, Dallas (S.P.M.); Imperial College London, London (N.R.P.); Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto (B.Z.); and University of North Carolina School of Medicine, Chapel Hill (J.B.B.)
| | - Bernard Zinman
- From KfH Kidney Center, Munich, and Friedrich Alexander University of Erlangen, Erlangen - both in Germany (J.F.E.M.); Novo Nordisk, Bagsvaerd, Denmark (D.D.Ø., K.B.-F., S.R., K.T.); University of Texas Southwestern Medical Center, Dallas (S.P.M.); Imperial College London, London (N.R.P.); Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto (B.Z.); and University of North Carolina School of Medicine, Chapel Hill (J.B.B.)
| | - John B Buse
- From KfH Kidney Center, Munich, and Friedrich Alexander University of Erlangen, Erlangen - both in Germany (J.F.E.M.); Novo Nordisk, Bagsvaerd, Denmark (D.D.Ø., K.B.-F., S.R., K.T.); University of Texas Southwestern Medical Center, Dallas (S.P.M.); Imperial College London, London (N.R.P.); Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto (B.Z.); and University of North Carolina School of Medicine, Chapel Hill (J.B.B.)
| |
Collapse
|
15
|
Hasan AA, Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J Mol Endocrinol 2017; 59:R1-R10. [PMID: 28420715 DOI: 10.1530/jme-17-0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membrane-bound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure- and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Department of BiochemistryFaculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Institut für Laboriatorumsmedizin IFLbBerlin, Germany
- Departments of Embryology and NephrologyBasic Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Abstract
Scarring and fibrosis are an enormous public health concern, resulting in excessive morbidity and mortality in addition to countless lost health care dollars. Recent advances in cell and developmental biology promise a better understanding of scarring and fibrosis and may translate to new clinical therapies.
Collapse
|
17
|
Kanasaki K. The pathological significance of dipeptidyl peptidase-4 in endothelial cell homeostasis and kidney fibrosis. Diabetol Int 2016; 7:212-220. [PMID: 30603266 DOI: 10.1007/s13340-016-0281-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
Endothelial dysfunction and tubulointerstitial fibrosis are characteristics of diabetic kidneys. Recent evidence has suggested that the diabetic kidney is associated with dipeptidyl peptidase (DPP)-4 overexpression in endothelial cells. Several insults can induce endothelial cells to alter their phenotype into a mesenchymal-like phenotype via endothelial-mesenchymal transition (EndMT), which plays pivotal roles in tissue fibrosis. We have recently revealed the fibrogenic role of DPP-4 through the induction of EndMT in diabetic kidneys. This review mainly focuses on the biological and pathological significance of DPP-4 overexpression in endothelial cells through the mechanisms of endothelial homeostasis defects, EndMT, and kidney fibrosis.
Collapse
Affiliation(s)
- Keizo Kanasaki
- 1Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan.,2Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
18
|
Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. FIBROGENESIS & TISSUE REPAIR 2016; 9:1. [PMID: 26877767 PMCID: PMC4752740 DOI: 10.1186/s13069-016-0038-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage kidney disease worldwide and is associated with increased morbidity and mortality in patients with both type 1 and type 2 diabetes. Recent evidence revealed that dipeptidyl peptidase-4 (DPP-4) inhibitors may exhibit a protective effect against DN. In fact, the kidney is the organ where the DPP-4 activity is the highest level per organ weight. A preclinical analysis revealed that DPP-4 inhibitors also ameliorated kidney fibrosis. In this review, we analyzed recent reports in this field and explore the renoprotective effects and possible mechanism of the DPP-4 inhibitors.
Collapse
Affiliation(s)
- Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; The Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, 646000 People's Republic of China
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
19
|
Linagliptin but not Sitagliptin inhibited transforming growth factor-β2-induced endothelial DPP-4 activity and the endothelial-mesenchymal transition. Biochem Biophys Res Commun 2016; 471:184-90. [DOI: 10.1016/j.bbrc.2016.01.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 12/25/2022]
|