1
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
2
|
Zakeri AS, Wheeler DG, Huttinger A, Carfora A, Kini A, Stork T, Yacoub S, Anderson C, Joseph M, Shujaat MT, Nimjee SM. A canine thromboembolic model of anterior circulation large vessel occlusion stroke. Heliyon 2023; 9:e14692. [PMID: 37089293 PMCID: PMC10119506 DOI: 10.1016/j.heliyon.2023.e14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose To develop a large animal preclinical model of thromboembolic stroke with stable, protracted large vessel occlusion (LVO) utilizing an autologous clot. Materials and methods A reproducible canine model of large vessel occlusion stroke was established by endovascular placement of an autologous clot into the middle cerebral artery (MCA) of six adult hounds and confirmed using digital subtraction angiography (DSA). Infarct volume and evidence of hemorrhage were determined by magnetic resonance imaging (MRI) 7 h after occlusion and Thrombolysis in Cerebral Infarction scale (TICI) was assessed before and after clot placement and at 1, 6, 7, and 9 h after middle cerebral artery occlusion (MCAO). Heart rate (HR) and blood pressure (BP) were monitored continuously and invasively through an arterial sheath throughout the procedures and complete blood count and blood gas analysis completed at time of sacrifice. Histopathological findings at time of sacrifice were used to confirm stroke volume and hemorrhage. Results MCAO with resulting TICI 0 flow was observed in all six animals, verified by serial DSA, and lack of collateral flow persisted for 9 h after clot placement until time of sacrifice. The mean infarct volume was 47.0 ± 6.7% of the ipsilateral hemisphere and no events of spontaneous recanalization or clot autolysis were observed. Conclusion We demonstrate a thromboembolic canine model of MCAO that is both feasible and results in consistent infarct volumes to generate a clinically relevant LVO. This model is important to evaluate treatment of LVO in acute ischemic stroke (AIS) outside the established 4.5 h recombinant tissue plasminogen activator (rTPA) therapeutic window utilizing a prolonged occlusive thrombus.
Collapse
|
3
|
Dog models of human atherosclerotic cardiovascular diseases. Mamm Genome 2022:10.1007/s00335-022-09965-w. [PMID: 36243810 DOI: 10.1007/s00335-022-09965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of death worldwide. Eighty-five percent of CVD-associated deaths are due to heart attacks and stroke. Atherosclerosis leads to heart attack and stroke through a slow progression of lesion formation and luminal narrowing of arteries. Dogs are similar to humans in terms of their cardiovascular physiology, size, and anatomy. Dog models have been developed to recapitulate the complex phenotype of human patients and understand the underlying mechanism of CVD. Different methods, including high-fat, high-cholesterol diet and genetic modification, have been used to generate dog models of human CVD. Remarkably, the location and severity of atherosclerotic lesions in the coronary arteries and branches of the carotid arteries of dog models closely resemble those of human CVD patients. Overt clinical manifestations such as stroke caused by plaque rupture and thrombosis were observed in dog models. Thus, dog models can help define the pathophysiological mechanisms of atherosclerosis and develop potential strategy for preventing and treating CVD. In this review, we summarize the progress in generating and characterizing canine models to investigate CVD and discuss the advantages and limitations of canine CVD models.
Collapse
|
4
|
Identification of the atherosclerosis phenotype in vivo by vascular duplex ultrasonography in ApoE-deficient dogs. ATHEROSCLEROSIS PLUS 2021; 47:8-15. [PMID: 36643601 PMCID: PMC9833219 DOI: 10.1016/j.athplu.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/29/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023]
Abstract
Background and aims This study evaluated the atherosclerosis phenotype by vascular duplex ultrasonography (VDU) in ApoE-deficient dogs. Methods A total of 108 beagle dogs were examined by VDU, which included 32 wild-type, 68 heterozygous (ApoE-/+) mutant and 8 homozygous (ApoE-/-) mutant dogs. According to age, wild-type and ApoE-/+ dogs were divided into two subgroups: young (6-15 months) and adult dogs (18-29 months). All homozygous dogs were young dogs. Dogs were feed with normal diet. The plasma lipid levels were tested. The diameter of the common carotid artery (CCA), internal carotid artery (ICA), external carotid artery (ECA), abdominal aorta and common iliac artery (CIA) and the intima-media thickness (IMT) of the CCA and abdominal aorta were measured by VDU. The artery sections of ApoE-/- and control dogs were analyzed by histological analysis. Results The plasma triglycerides (2.5-3 fold), total cholesterol (4-5 fold) and LDL levels (35-40 fold) of ApoE-/- dogs were higher than those of the wild-type and ApoE-/+ dogs. Compared with the wild-type and young ApoE-/+ dogs, the IMT of CCA and aorta in ApoE-/- dogs were increased (p<0.05). The occurrence of atherosclerosis in ApoE-/- dogs was higher than that in ApoE-/+ dogs (50% vs. 10.3%, p=0.013) and the occurrence time was earlier. Histology confirmed that the aorta, carotid arteries and CIA had atherosclerotic lesions in ApoE-/- dogs. Conclusions The ApoE-deficient dogs were a reliable animal model of atherosclerosis. VDU is an optimal in vivo noninvasive method for evaluating atherosclerosis phenotypes in large animal models.
Collapse
|
5
|
Berkman JM, Rosenthal JA, Saadi A. Carotid Physiology and Neck Restraints in Law Enforcement: Why Neurologists Need to Make Their Voices Heard. JAMA Neurol 2021; 78:267-268. [PMID: 33369628 DOI: 10.1001/jamaneurol.2020.4669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jillian M Berkman
- Department of Neurology, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
| | - Joseph A Rosenthal
- Department of Neurology, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
| | - Altaf Saadi
- Department of Neurology, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Endovascular model of ischemic stroke in swine guided by real-time MRI. Sci Rep 2020; 10:17318. [PMID: 33057149 PMCID: PMC7560864 DOI: 10.1038/s41598-020-74411-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023] Open
Abstract
Modeling stroke in animals is essential for testing efficacy of new treatments; however, previous neuroprotective therapies, based on systemic delivery in rodents failed, exposing the need for model with improved clinical relevance. The purpose of this study was to develop endovascular approach for inducing ischemia in swine. To achieve that goal, we used intra-arterial administration of thrombin mixed with gadolinium and visualized the occlusion with real-time MRI. Placement of the microcatheter proximally to rete allowed trans-catheter perfusion of the ipsilateral hemisphere as visualized by contrast-enhanced perfusion MR scans. Dynamic T2*w MRI facilitated visualization of thrombin + Gd solution transiting through cerebral vasculature and persistent hyperintensities indicated occlusion. Area of trans-catheter perfusion dynamically quantified on representative slice before and after thrombin administration (22.20 ± 6.31 cm2 vs. 13.28 ± 4.71 cm2 respectively) indicated significantly reduced perfusion. ADC mapping showed evidence of ischemia as early as 27 min and follow-up T2w scans confirmed ischemic lesion (3.14 ± 1.41 cm2). Animals developed contralateral neurological deficits but were ambulatory. Our study has overcome long lasting challenge of inducing endovascular stroke model in pig. We were able to induce stroke using minimally invasive endovascular approach and observe in real-time formation of the thrombus, blockage of cerebral perfusion and eventually stroke lesion.
Collapse
|
7
|
Camstra KM, Srinivasan VM, Collins D, Chen S, Kan P, Johnson J. Canine Model for Selective and Superselective Cerebral Intra-Arterial Therapy Testing. Neurointervention 2020; 15:107-116. [PMID: 32777874 PMCID: PMC7608496 DOI: 10.5469/neuroint.2020.00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE With advancing endovascular technology and increasing interest in minimally invasive intra-arterial therapies such as stem cell and chemotherapy for cerebral disease, the establishment of a translational model with cerebral circulation accessible to microcatheters is needed. We report our experience catheterizing canine cerebral circulation with microcatheters, present high-resolution angiographic images of the canine vascular anatomy, describe arterial branch flow patterns and provide measurements of canine arterial conduits. MATERIALS AND METHODS Angiograms were performed on 10 intact purpose-bred hounds. Angiography, measurements of arterial conduits and catheterization information for intracranial arterial branches were obtained. RESULTS Selective and superselective cerebral angiography was successful in all subjects. Relevant arterial mean diameters include the femoral (4.64 mm), aorta (9.38 mm), external carotid (3.65 mm), internal carotid arteries (1.6 mm), vertebrobasilar system and Circle of Willis branches. Catheterization of the Circle of Willis was achieved via the posterior circulation in all subjects tested (n=3) and the use of flow directed microcatheters resulted in reduced arterial tree deformation and improved superselection of intracranial vessels. Catheterization of the intracranial circulation was attempted but not achieved via the internal carotid artery (n=7) due to its tortuosity and subsequent catheter related vasospasm. CONCLUSION The canine cerebral vasculature is posterior circulation dominant. Anterior circulation angiography is achievable via the internal carotid artery, but direct cerebral arterial access is best achieved via the posterior circulation using flow-directed microcatheters. It is feasible to deliver intra-arterial therapies to selective vascular territories within the canine cerebral circulation, thus making it a viable animal model for testing novel intra-arterial cerebral treatments.
Collapse
Affiliation(s)
- Kevin M Camstra
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Dalis Collins
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.,Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Chen
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter Kan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeremiah Johnson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Kaiser EE, West FD. Large animal ischemic stroke models: replicating human stroke pathophysiology. Neural Regen Res 2020; 15:1377-1387. [PMID: 31997796 PMCID: PMC7059570 DOI: 10.4103/1673-5374.274324] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The high morbidity and mortality rate of ischemic stroke in humans has led to the development of numerous animal models that replicate human stroke to further understand the underlying pathophysiology and to explore potential therapeutic interventions. Although promising therapeutics have been identified using these animal models, with most undergoing significant testing in rodent models, the vast majority of these interventions have failed in human clinical trials. This failure of preclinical translation highlights the critical need for better therapeutic assessment in more clinically relevant ischemic stroke animal models. Large animal models such as non-human primates, sheep, pigs, and dogs are likely more predictive of human responses and outcomes due to brain anatomy and physiology that are more similar to humans-potentially making large animal testing a key step in the stroke therapy translational pipeline. The objective of this review is to highlight key characteristics that potentially make these gyrencephalic, large animal ischemic stroke models more predictive by comparing pathophysiological responses, tissue-level changes, and model limitations.
Collapse
Affiliation(s)
- Erin E Kaiser
- Regenerative Bioscience Center; Neuroscience Program, Biomedical and Health Sciences Institute; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center; Neuroscience Program, Biomedical and Health Sciences Institute; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Johnson LSM. The Trouble with Animal Models in Brain Research. NEUROETHICS AND NONHUMAN ANIMALS 2020. [DOI: 10.1007/978-3-030-31011-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Jiang RH, Zu QQ, Xu XQ, Wang B, Ding Y, Wang J, Liu S, Shi HB. A Canine Model of Hemorrhagic Transformation Using Recombinant Tissue Plasminogen Activator Administration After Acute Ischemic Stroke. Front Neurol 2019; 10:673. [PMID: 31293509 PMCID: PMC6603151 DOI: 10.3389/fneur.2019.00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
Early reperfusion of occluded arteries via recombinant tissue plasminogen activator (rtPA) administration is considered to be an effective strategy for the treatment of acute ischemic stroke. However, delayed administration of rtPA may cause severe hemorrhagic transformation (HT) and undesirable neurological outcomes. The current study aims to establish a canine HT model using rtPA administration and to investigate the potential mechanisms underlying HT. Following anesthesia, two autologous clots were injected into the middle cerebral artery (MCA) to induce ischemic stroke. To induce reperfusion, rtPA (2 mg/kg) was administrated intravenously 4.5 h after the establishment of stroke. The occurrence of HT was determined by computed tomography (CT) and by pathological assessment. Transmission electron microscopy was utilized to assess blood-brain barrier (BBB) damage. The expression of matrix metalloprotein 9 (MMP-9) was analyzed by enzyme linked immunosorbent assay (ELISA), immunofluorescence (IF), and western blot. Administration of rtPA 4.5 h after stroke induced reperfusion in 73.9% of the canines, caused evident HT, and did not improve neurological outcomes compared to canines that did not receive rtPA. There was a significant increase in expression of MMP-9 after rtPA administration, accompanied by BBB disruption. We have established a canine HT model that closely mimics human HT by using rtPA administration after the induction of middle cerebral artery occlusion (MCAO) with autologous clots. Our data suggest that a potential mechanism underlying rtPA-caused HT may be related to BBB dysfunction induced by an increase in MMP-9 expression.
Collapse
Affiliation(s)
- Run-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Quan Zu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Charles T. Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, OR, United States
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Meadows KL. Experimental models of focal and multifocal cerebral ischemia: a review. Rev Neurosci 2018; 29:661-674. [PMID: 29397392 DOI: 10.1515/revneuro-2017-0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Rodent and rabbit stroke models have been instrumental in our current understanding of stroke pathophysiology; however, translational failure is a significant problem in preclinical ischemic stroke research today. There are a number of different focal cerebral ischemia models that vary in their utility, pathophysiology of causing disease, and their response to treatments. Unfortunately, despite active preclinical research using these models, treatment options for ischemic stroke have not significantly advanced since the food and drug administration approval of tissue plasminogen activator in 1996. This review aims to summarize current stroke therapies, the preclinical experimental models used to help develop stroke therapies, as well as their advantages and limitations. In addition, this review discusses the potential for naturally occurring canine ischemic stroke models to compliment current preclinical models and to help bridge the translational gap between small mammal models and human clinical trials.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, Grafton, MA 01536, USA
| |
Collapse
|
12
|
Sorby-Adams AJ, Vink R, Turner RJ. Large animal models of stroke and traumatic brain injury as translational tools. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29537289 DOI: 10.1152/ajpregu.00163.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute central nervous system injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide. Studies in animal models have greatly enhanced our understanding of the complex pathophysiology that underlies TBI and stroke and enabled the preclinical screening of over 1,000 novel therapeutic agents. Despite this, the translation of novel therapeutics from experimental models to clinical therapies has been extremely poor. One potential explanation for this poor clinical translation is the choice of experimental model, given that the majority of preclinical TBI and ischemic stroke studies have been conducted in small animals, such as rodents, which have small lissencephalic brains. However, the use of large animal species such as nonhuman primates, sheep, and pigs, which have large gyrencephalic human-like brains, may provide an avenue to improve clinical translation due to similarities in neuroanatomical structure when compared with widely adopted rodent models. This purpose of this review is to provide an overview of large animal models of TBI and ischemic stroke, including the surgical considerations, key benefits, and limitations of each approach.
Collapse
Affiliation(s)
- Annabel J Sorby-Adams
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, The University of Adelaide , Adelaide, South Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia
| | - Renée J Turner
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, The University of Adelaide , Adelaide, South Australia
| |
Collapse
|
13
|
Temporal evolution of the signal intensity of hyper-acute ischemic lesions in a canine stroke model: influence of hyperintense acute reperfusion marker. Jpn J Radiol 2017; 35:161-167. [DOI: 10.1007/s11604-017-0615-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
|
14
|
Atchaneeyasakul K, Guada L, Ramdas K, Watanabe M, Bhattacharya P, Raval AP, Yavagal DR. Large animal canine endovascular ischemic stroke models: A review. Brain Res Bull 2016; 127:134-140. [PMID: 27496066 DOI: 10.1016/j.brainresbull.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Stroke is one of the leading causes of death and long-term disability worldwide. Recent exciting developments in the field with endovascular treatments have shown excellent outcomes in acute ischemic stroke. Prior to translating these treatments to human populations, a large-animal ischemic stroke model is needed. With the advent of new technologies in digital subtraction angiography, less invasive endovascular stroke models have been developed. Canines have gyrencephalic brain similar to human brain and accessible neurovascular anatomy for stroke model creation. Canine stroke model can be widely utilized to understand the disease process of stroke and to develop novel treatment. Less invasive endovascular internal carotid emboli injection and coil embolization methods can be used to simulate transient or permanent middle cerebral artery occlusion. Major restriction includes the extensive collateral circulation of canine cerebral arteries that can limit the stroke size. Transient internal carotid artery occlusion can decrease collateral circulation and increase stroke size to some degree. Additional method of manipulating the extent of collateral circulation needs to be studied. Other types of canine stroke models, including vertebral artery occlusion and basilar artery occlusion, can also be accomplished by endovascular thrombi injection. CONCLUSIONS We extensively review the literature on endovascular technique of creating canine ischemic stroke models and their application in finding new therapies for ischemic stroke.
Collapse
Affiliation(s)
- Kunakorn Atchaneeyasakul
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Luis Guada
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Kevin Ramdas
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Mitsuyoshi Watanabe
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Pallab Bhattacharya
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Ami P Raval
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Dileep R Yavagal
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
15
|
Cheng Q, Xu X, Zu Q, Lu S, Yu J, Liu X, Wang B, Shi H, Teng G, Liu S. High b value DWI in evaluation of the hyperacute cerebral ischemia at 3T: A comparative study in an embolic canine stroke model. Exp Ther Med 2016; 12:951-956. [PMID: 27446301 PMCID: PMC4950572 DOI: 10.3892/etm.2016.3403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 05/05/2016] [Indexed: 01/23/2023] Open
Abstract
Previous studies have indicated that the temporal change of relative diffusion weighted imaging (rDWI) signal intensity may help to determine the onset time of a stroke. Furthermore, several studies have indicated that high b value DWI offered improved detection rates for hyper-acute ischemic lesions compared with standard b value DWI. However, the temporal changes of the rDWI on high b value DWI remain unclear. Therefore, based on our embolic canine stroke model, we evaluated the temporal evolution of rDWI on high b value DWI, and further compared its diagnostic value in predicting the onset time of ischemic stroke with rDWI on standard b value DWI. Twelve canine MCAO models were established, and DWI was performed at 1, 2, 3, 4, 5 and 6 h after MCAO, with 3 b values of 1,000, 2,000 and 3,000. High b value DWI detected all ischemic lesions after 1 h, while standard b value did not detect the ischemic lesions in one dog at 1 h. With all three of the tested b values, rDWIs increased continuously within 6 h, while relative apparent diffusion coefficient (rADC) values rapidly decreased in 1 h, then became relatively stable. The area under the curve values for rDWI with b value of 1,000, 2,000 and 3,000, in predicting ischemic lesions within 3 h were 0.897, 0.929 and 0.938, while for rADC were 0.645, 0.583 and 0.599, respectively. Therefore, the results indicated that the rDWI was helpful in aging hyper-acute ischemic stroke, while rADC appeared not to be. High b value DWI had a higher detection rate for ischemic lesions and better predictive efficacy in determining the onset time of hyper-acute stroke.
Collapse
Affiliation(s)
- Qiguang Cheng
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoquan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qingquan Zu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shanshan Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Yu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinglong Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bin Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Haibin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Gaojun Teng
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210029, P.R. China
| | - Sheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
16
|
Snyder JM, Meisner A, Mack D, Goddard M, Coulter IT, Grange R, Childers MK. Validity of a Neurological Scoring System for Canine X-Linked Myotubular Myopathy. HUM GENE THER CL DEV 2016; 26:131-7. [PMID: 26086764 DOI: 10.1089/humc.2015.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A simple clinical neurological test was developed to evaluate response to gene therapy in a preclinical canine model of X-linked myotubular myopathy (XLMTM). This devastating congenital myopathy is caused by mutation in the myotubularin (MTM1) gene. Clinical signs include muscle weakness, early respiratory failure, and ventilator dependence. A spontaneously occurring canine model has a similar clinical picture and histological abnormalities on muscle biopsy compared with patients. We developed a neuromuscular assessment score, graded on a scale from 10 (normal) to 1 (unable to maintain sternal recumbency). We hypothesize that this neurological assessment score correlates with genotype and established measures of disease severity and is reliable when performed by an independent observer. At 17 weeks of age, there was strong correlation between neurological assessment scores and established methods of severity testing. The neurological severity score correctly differentiated between XLMTM and wild-type dogs with good interobserver reliability, on the basis of strong agreement between neurological scores assigned by independent observers. Together, these data indicate that the neurological scoring system developed for this canine congenital neuromuscular disorder is reliable and valid. This scoring system may be helpful in evaluating response to therapy in preclinical testing in this disease model, such as response to gene therapy.
Collapse
Affiliation(s)
- Jessica M Snyder
- 1 Department of Comparative Medicine, University of Washington , Seattle, WA 98195
| | - Allison Meisner
- 2 Department of Biostatistics, University of Washington , Seattle, WA 98195
| | - David Mack
- 3 Department of Rehabilitation Medicine, University of Washington , Seattle, WA 98195.,4 Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington , Seattle, WA 98195
| | - Melissa Goddard
- 4 Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington , Seattle, WA 98195.,5 Department of Integrative Physiology and Pharmacology, Wake Forest University , Winston Salem, NC 27101
| | - Ian T Coulter
- 4 Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington , Seattle, WA 98195
| | - Robert Grange
- 6 Department of Human Nutrition, Foods and Exercise, Virginia Tech University , Blacksburg, VA 24061
| | - Martin K Childers
- 3 Department of Rehabilitation Medicine, University of Washington , Seattle, WA 98195.,4 Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington , Seattle, WA 98195
| |
Collapse
|
17
|
Goddard MA, Mack DL, Czerniecki SM, Kelly VE, Snyder JM, Grange RW, Lawlor MW, Smith BK, Beggs AH, Childers MK. Muscle pathology, limb strength, walking gait, respiratory function and neurological impairment establish disease progression in the p.N155K canine model of X-linked myotubular myopathy. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:262. [PMID: 26605308 DOI: 10.3978/j.issn.2305-5839.2015.10.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Loss-of-function mutations in the myotubularin (MTM1) gene cause X-linked myotubular myopathy (XLMTM), a fatal, inherited pediatric disease that affects the entire skeletal musculature. Labrador retriever dogs carrying an MTM1 missense mutation exhibit strongly reduced synthesis of myotubularin, the founder member of a lipid phosphatase required for normal skeletal muscle function. The resulting canine phenotype resembles that of human patients with comparably severe mutations, and survival does not normally exceed 4 months. METHODS We studied MTM1 mutant dogs (n=7) and their age-matched control littermates (n=6) between the ages of 10 and 25 weeks. Investigators blinded to the animal identities sequentially measured limb muscle pathology, fore- and hind limb strength, walking gait, respiratory function and neurological impairment. RESULTS MTM1-mutant puppies display centrally-nucleated myofibers of reduced size and disrupted sarcotubular architecture progressing until the end of life, an average of 17 weeks. In-life measures of fore- and hind limb strength establish the rate at which XLMTM muscles weaken, and their corresponding decrease in gait velocity and stride length. Pulmonary function tests in affected dogs reveal a right-shifted relationship between peak inspiratory flow (PIF) and inspiratory time (TI); neurological assessments indicate that affected puppies as young as 10 weeks show early signs of neurological impairment (neurological severity score, NSS =8.6±0.9) with progressive decline (NSS =5.6±1.7 at 17 weeks-of-age). CONCLUSIONS Our findings document the rate of disease progression in a large animal model of XLMTM and lay a foundation for preclinical studies.
Collapse
Affiliation(s)
- Melissa A Goddard
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David L Mack
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan M Czerniecki
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie E Kelly
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica M Snyder
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert W Grange
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael W Lawlor
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Barbara K Smith
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan H Beggs
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin K Childers
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Snyder JM, Meisner A, Mack D, Goddard M, Coulter IT, Grange R, Childers M. Validity of a neurological scoring system for canine X-linked myotubular myopathy. HUM GENE THER CL DEV 2015. [DOI: 10.1089/hum.2015.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|