1
|
Ma K, Li QS, Yin CJ, Zhang ZY. Latanoprost eye drops induce conjunctival lymphatic vessel development. Int J Ophthalmol 2021; 14:1345-1349. [PMID: 34540609 DOI: 10.18240/ijo.2021.09.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the effect of latanoprost eye drops on the conjunctival lymphatics. METHODS Twenty-four healthy New Zealand White rabbits weighing 1.5 to 2.0 kg were randomly divided into three groups: latanoprost group (n=8) administered with latanoprost eye drops once a day for 2mo, carteolol group (n=8) administered with carteolol eye drops once a day for 2mo, and control group (n=8) without any treatment. The conjunctival tissues in the three groups were extracted to investigate the expression levels of 5'-nucleotidase (5'-Nase) by Western blot, reverse transcription-polymerase chain reaction (RT-PCR), and immunofluorescence staining, respectively. RESULTS The protein expression level of 5'-Nase was significantly higher in latanoprost group than carteolol group (F=231.175, P<0.001) and control group (P<0.001), while there was no significant difference between the carteolol group and the control group (P>0.05). The mRNA expression level of 5'-Nase in the latanoprost group was also significantly higher than carteolol group (F=71.169 P<0.005) and control group (P<0.005). The conjunctival lymphatics were positive immunofluorescence stained with the 5'-Nase antibodies in the latanoprost group and not stained in the control group. CONCLUSION Latanoprost eye drops can induce conjunctival lymphangiogenesis which may be concerned in clinical implications.
Collapse
Affiliation(s)
- Kai Ma
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qing-Song Li
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Cheng-Juan Yin
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zhen-Yong Zhang
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
2
|
Prostaglandin E2 Receptor 4 (EP4) as a Therapeutic Target to Impede Breast Cancer-Associated Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13050942. [PMID: 33668160 PMCID: PMC7956318 DOI: 10.3390/cancers13050942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by the aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and showed that COX-2 is a major promoter of both events, primarily resulting from the activation of prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and the induction of oncogenic microRNAs. The COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and the stimulation of stem-like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors.
Collapse
|
3
|
IBTK Haploinsufficiency Affects the Tumor Microenvironment of Myc-Driven Lymphoma in E-myc Mice. Int J Mol Sci 2020; 21:ijms21030885. [PMID: 32019112 PMCID: PMC7038122 DOI: 10.3390/ijms21030885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment is a dynamic and interactive supporting network of various components, including blood vessels, cytokines, chemokines, and immune cells, which sustain the tumor cell’s survival and growth. Murine models of lymphoma are useful to study tumor biology, the microenvironment, and mechanisms of response to therapy. Lymphomas are heterogeneous hematologic malignancies, and the complex microenvironment from which they arise and their multifaceted genetic basis represents a challenge for the generation and use of an appropriate murine model. So, it is important to choose the correct methodology. Recently, we supported the first evidence on the pro-oncogenic action of IBTK in Myc-driven B cell lymphomagenesis in mice, inhibiting apoptosis in the pre-cancerous stage. We used the transgenic Eμ-myc mouse model of non-Hodgkin’s lymphoma and Ibtk hemizygous mice to evaluate the tumor development of Myc-driven lymphoma. Here, we report that the allelic loss of Ibtk alters the immunophenotype of Myc-driven B cell lymphomas, increasing the rate of pre-B cells and affecting the tumor microenvironment in Eμ-myc mice. In particular, we observed enhanced tumor angiogenesis, increasing pro-angiogenic and lymphangiogenic factors, such as VEGF, MMP-9, CCL2, and VEGFD, and a significant recruitment of tumor-associated macrophages in lymphomas of Ibtk+/-Eμ-myc compared to Ibtk+/+Eμ-myc mice. In summary, these results indicate that IBTK haploinsufficiency promotes Myc tumor development by modifying the tumor microenvironment.
Collapse
|
4
|
Roles of prostaglandins in tumor-associated lymphangiogenesis with special reference to breast cancer. Cancer Metastasis Rev 2019; 37:369-384. [PMID: 29858743 DOI: 10.1007/s10555-018-9734-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Lymphangiogenesis (formation of new lymphatic vessels), unlike angiogenesis, has been a lesser-focused field in cancer biology, because of earlier controversy regarding whether lymphatic metastasis occurs via pre-existing or newly formed lymphatics. Recent evidence reveals that peri-tumoral or intra-tumoral lymphangiogenesis is a precursor for lymphatic metastasis in most carcinomas and melanomas. Two major lymphangiogenic factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, are produced by cancer cells or immune cells such as macrophages in the tumor-stroma to promote sprouting of lymphatics from lymphatic endothelial cells (LEC) or LEC precursors (LECP) by binding to their primary (high affinity) receptor VEGF-R3 or secondary receptors VEGF-R2, neuropilin (NRP)2 and α9/β1 integrin. Many other growth factors/receptors such as VEGF-A/VEGF-R2, fibroblast growth factor (FGF)2/FGF-R, platelet-derived growth factor (PDGF)/PDGF-R, hepatocyte growth factor (HGF)/C-Met, angiopoietins (Ang)1, 2/Tie2, and chemokines/ chemokine receptors (CCL21/CCR7, CCL12/CCR4) can also stimulate LEC sprouting directly or indirectly. This review deals with the roles of prostaglandins (PG), in particular PGE2, in cancer-associated lymphangiogenesis, with special emphasis on breast cancer. We show that cyclooxygenase (COX)-2 expression by breast cancer cells or tumor stroma leading to high PGE2 levels in the tumor milieu promotes lymphangiogenesis and lymphatic metastases, resulting from binding of PGE2 to PGE receptors (EP, in particular EP4) on multiple cell types: tumor cells, tumor-infiltrating immune cells, and LEC. EP4 activation on cancer cells and macrophages upregulated VEGF-C/D production to stimulate LEC sprouting. Furthermore, ligation of EP4 with PGE2 on cancer or host cells can initiate a new cascade of molecular events leading to cross-talk between cancer cells and LEC, facilitating lymphangiogenesis and lympho-vascular transport of cancer cells. We make a case for EP4 as a potential therapeutic target for breast cancer.
Collapse
|
5
|
Wu M, Yuan H, Li X, Liao Q, Liu Z. Identification of a Five-Gene Signature and Establishment of a Prognostic Nomogram to Predict Progression-Free Interval of Papillary Thyroid Carcinoma. Front Endocrinol (Lausanne) 2019; 10:790. [PMID: 31803141 PMCID: PMC6872544 DOI: 10.3389/fendo.2019.00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The incidence of papillary thyroid carcinoma (PTC) is high and increasing worldwide. Although prognosis is relatively good, it is important to select the minority of patients with poorer prognosis to avoid side effects associated with unnecessary over-treatment in low-risk patients; this requires accurate prognostic predictions. Materials and Methods: Six PTC expression datasets were obtained from the gene expression omnibus (GEO) database. Level 3 mRNA expression and clinicopathological data were obtained from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) database. Through integrated analysis of these datasets, highly reliable differentially-expressed genes (DEGs) between tumor and normal tissue were identified and lasso Cox regression was applied to identify DEGs related to the progression-free interval (PFI) and to establish a prognostic gene signature. The performance of a five-gene signature was evaluated based on a Kaplan-Meier curve, receiver operating characteristic (ROC), and Harrell's concordance index (C-index). Multivariate Cox regression analysis was used to identify factors associated with PTC prognosis. Finally, a prognostic nomogram was established based on the TCGA-THCA dataset. Results: A novel five-gene signature was established to predict the PTC PFI, which included PLP2, LYVE1, FABP4, TGFBR3, and FXYD6, and the ROC curve and C-index showed good performance in both training and validation datasets. This could classify patients into high- and low-risk groups with distinct PFIs and differentiate PTC tumors from normal tissue. Univariate Cox regression revealed that this signature was an independent prognostic factor for PTC. The established nomogram, incorporating the prognostic gene signature and clinical parameters, was able to predict the PFI with high efficiency. The gene signature-based nomogram was superior to the American Thyroid Association (ATA) risk stratification to predict PTC PFI. Conclusions: Our study identified a five-gene signature and established a prognostic nomogram, which were reliable in predicting the PFI of PTC; this could be beneficial for individualized treatment and medical decision making.
Collapse
|
6
|
Doh SJ, Yamakawa M, Santosa SM, Montana M, Guo K, Sauer JR, Curran N, Han KY, Yu C, Ema M, Rosenblatt MI, Chang JH, Azar DT. Fluorescent reporter transgenic mice for in vivo live imaging of angiogenesis and lymphangiogenesis. Angiogenesis 2018; 21:677-698. [PMID: 29971641 PMCID: PMC6472480 DOI: 10.1007/s10456-018-9629-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
The study of lymphangiogenesis is an emerging science that has revealed the lymphatic system as a central player in many pathological conditions including cancer metastasis, lymphedema, and organ graft rejection. A thorough understanding of the mechanisms of lymphatic growth will play a key role in the development of therapeutic strategies against these conditions. Despite the known potential of this field, the study of lymphatics has historically lagged behind that of hemangiogenesis. Until recently, significant strides in lymphatic studies were impeded by a lack of lymphatic-specific markers and suitable experimental models compared to those of the more immediately visible blood vasculature. Lymphangiogenesis has also been shown to be a key phenomenon in developmental biological processes, such as cell proliferation, guided migration, differentiation, and cell-to-cell communication, making lymphatic-specific visualization techniques highly desirable and desperately needed. Imaging modalities including immunohistochemistry and in situ hybridization are limited by the need to sacrifice animal models for tissue harvesting at every experimental time point. Moreover, the processes of mounting and staining harvested tissues may introduce artifacts that can confound results. These traditional methods for investigating lymphatic and blood vasculature are associated with several problems including animal variability (e.g., between mice) when replicating lymphatic growth environments and the cost concerns of prolonged, labor-intensive studies, all of which complicate the study of dynamic lymphatic processes. With the discovery of lymphatic-specific markers, researchers have been able to develop several lymphatic and blood vessel-specific, promoter-driven, fluorescent-reporter transgenic mice for visualization of lymphatics in vivo and in vitro. For instance, GFP, mOrange, tdTomato, and other fluorescent proteins can be expressed under control of a lymphatic-specific marker like Prospero-related homeobox 1 (Prox1), which is a highly conserved transcription factor for determining embryonic organogenesis in vertebrates that is implicated in lymphangiogenesis as well as several human cancers. Importantly, Prox1-null mouse embryos develop without lymphatic vessels. In human adults, Prox1 maintains lymphatic endothelial cells and upregulates proteins associated with lymphangiogenesis (e.g., VEGFR-3) and downregulates angiogenesis-associated gene expression (e.g., STAT6). To visualize lymphatic development in the context of angiogenesis, dual fluorescent-transgenic reporters, like Prox1-GFP/Flt1-DsRed mice, have been bred to characterize lymphatic and blood vessels simultaneously in vivo. In this review, we discuss the trends in lymphatic visualization and the potential usage of transgenic breeds in hemangiogenesis and lymphangiogenesis research to understand spatial and temporal correlations between vascular development and pathological progression.
Collapse
Affiliation(s)
- Susan J Doh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph R Sauer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicholas Curran
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Shiga University of Medical Science, Otsu, Japan
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Horizontal transfer of exosomal CXCR4 promotes murine hepatocarcinoma cell migration, invasion and lymphangiogenesis. Gene 2018; 676:101-109. [DOI: 10.1016/j.gene.2018.07.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
|
8
|
Nandi P, Girish GV, Majumder M, Xin X, Tutunea-Fatan E, Lala PK. PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer 2017; 17:11. [PMID: 28056899 PMCID: PMC5217626 DOI: 10.1186/s12885-016-3018-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Background Lymphatic metastasis, facilitated by lymphangiogenesis is a common occurrence in breast cancer, the molecular mechanisms remaining incompletely understood. We had earlier shown that cyclooxygenase (COX)-2 expression by human or murine breast cancer cells promoted lymphangiogenesis and lymphatic metastasis by upregulating VEGF-C/D production by tumor cells or tumor-associated macrophages primarily due to activation of the prostaglandin receptor EP4 by endogenous PGE2. It is not clear whether tumor or host-derived PGE2 has any direct effect on lymphangiogenesis, and if so, whether EP4 receptors on lymphatic endothelial cells (LEC) play any role. Methods Here, we address these questions employing in vitro studies with a COX-2-expressing and VEGF-C/D-producing murine breast cancer cell line C3L5 and a rat mesenteric (RM) LEC line and in vivo studies in nude mice. Results RMLEC responded to PGE2, an EP4 agonist PGE1OH, or C3L5 cell-conditioned media (C3L5-CM) by increased proliferation, migration and accelerated tube formation on growth factor reduced Matrigel. Native tube formation by RMLEC on Matrigel was abrogated in the presence of a selective COX-2 inhibitor or an EP4 antagonist. Addition of PGE2 or EP4 agonist, or C3L5-CM individually in the presence of COX-2 inhibitor, or EP4 antagonist, restored tube formation, reinforcing the role of EP4 on RMLEC in tubulogenesis. These results were partially duplicated with a human dermal LEC (HMVEC-dLyAd) and a COX-2 expressing human breast cancer cell line MDA-MB-231. Knocking down EP4 with shRNA in RMLEC abrogated their tube forming capacity on Matrigel in the absence or presence of PGE2, EP4 agonist, or C3L5-CM. RMLEC tubulogenesis following EP4 activation by agonist treatment was dependent on PI3K/Akt and Erk signaling pathways and VEGFR-3 stimulation. Finally in a directed in vivo lymphangiogenesis assay (DIVLA) we demonstrated the lymphangiogenic as well as angiogenic capacity of PGE2 and EP4 agonist in vivo. Discussion/conclusions These results demonstrate the roles of tumor as well as host-derived PGE2 in inducing lymphangiogenesis, at least in part, by activating EP4 and VEGFR-3 on LEC. EP4 being a common target on both tumor and host cells contributing to tumor-associated lymphangiogenesis reaffirms the therapeutic value of EP4 antagonists in the intervention of lymphatic metastasis in breast cancer.
Collapse
Affiliation(s)
- Pinki Nandi
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Gannareddy V Girish
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Mousumi Majumder
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada.,Department of Biology, Brandon University, Brandon, Manitoba, R7A 6A9, Canada
| | - Xiping Xin
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Elena Tutunea-Fatan
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Peeyush K Lala
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada. .,Department of Oncology, University of Western Ontario, London, Ontario, N6A5C1, Canada. .,Children's Health Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
9
|
The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis. Mol Cancer 2015; 14:35. [PMID: 25744065 PMCID: PMC4339430 DOI: 10.1186/s12943-015-0306-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Tumor-induced lymphangiogenesis facilitates breast cancer progression by generating new lymphatic vessels that serve as conduits for tumor dissemination to lymph nodes and beyond. Given the recent evidence suggesting the implication of C-C chemokine ligand 21/chemokine receptor 7 (CCL21/CCR7) in lymph node metastasis, the aim of our study was to define the role of this chemokine pair in breast cancer-associated lymphangiogenesis. Methods The expression analysis of CCL21/CCR7 pair and lymphatic endothelial cell (LEC) markers in breast cancer specimens was performed by means of quantitative real-time PCR. By utilizing CCR7 and CCL21 gene manipulated breast cancer cell implants into orthotopic sites of nude mice, lymphatic vessel formation was assessed through quantitative real-time PCR, immunohistochemistry and immunofluorescence assays. Finally, the lymphangiogenic potential of CCL21/CCR7 was assessed in vitro with primary LECs through separate functional assays, each attempting to mimic different stages of the lymphangiogenic process. Results We found that CCR7 mRNA expression in human breast cancer tissues positively correlates with the expression of lymphatic endothelial markers LYVE-1, podoplanin, Prox-1, and vascular endothelial growth factor-C (VEGF-C). We demonstrated that the expression of CCL21/CCR7 by breast cancer cells has the ability to promote tumor-induced lymph-vascular recruitment in vivo. In vitro, CCL21/CCR7 chemokine axis regulates the expression and secretion of lymphangiogenic factor VEGF-C and thereby promotes proliferation, migration, as well as tube formation of the primary human LECs. Finally, we showed that protein kinase B (AKT) signaling pathway is the intracellular mechanism of CCR7-mediated VEGF-C secretion by human breast cancer cells. Conclusions These results reveal that CCR7 and VEGF-C display a significant crosstalk and suggest a novel role of the CCL21/CCR7 chemokine axis in the promotion of breast cancer-induced lymphangiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0306-4) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Majumder M, Xin X, Liu L, Girish GV, Lala PK. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci 2014; 105:1142-51. [PMID: 24981602 PMCID: PMC4462388 DOI: 10.1111/cas.12475] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/21/2014] [Accepted: 06/26/2014] [Indexed: 01/09/2023] Open
Abstract
We previously established that COX-2 overexpression promotes breast cancer progression and metastasis. As long-term use of COX-2 inhibitors (COX-2i) can promote thrombo-embolic events, we tested an alternative target, prostaglandin E2 receptor EP4 subtype (EP4), downstream of COX-2. Here we used the highly metastatic syngeneic murine C3L5 breast cancer model to test the role of EP4-expressing macrophages in vascular endothelial growth factor (VEGF)-C/D production, angiogenesis, and lymphangiogenesis in situ, the role of EP4 in stem-like cell (SLC) functions of tumor cells, and therapeutic effects of an EP4 antagonist RQ-15986 (EP4A). C3L5 cells expressed all EP receptors, produced VEGF-C/D, and showed high clonogenic tumorsphere forming ability in vitro, functions inhibited with COX-2i or EP4A. Treating murine macrophage RAW 264.7 cell line with COX-2i celecoxib and EP4A significantly reduced VEGF-A/C/D production in vitro, measured with quantitative PCR and Western blots. Orthotopic implants of C3L5 cells in C3H/HeJ mice showed rapid tumor growth, angiogenesis, lymphangiogenesis (CD31/LYVE-1 and CD31/PROX1 immunostaining), and metastasis to lymph nodes and lungs. Tumors revealed high incidence of EP4-expressing, VEGF-C/D producing macrophages identified with dual immunostaining of F4/80 and EP4 or VEGF-C/D. Celecoxib or EP4A therapy at non-toxic doses abrogated tumor growth, lymphangiogenesis, and metastasis to lymph nodes and lungs. Residual tumors in treated mice revealed markedly reduced VEGF-A/C/D and phosphorylated Akt/ERK proteins, VEGF-C/D positive macrophage infiltration, and proliferative/apoptotic cell ratios. Knocking down COX-2 or EP4 in C3L5 cells or treating cells in vitro with celecoxib or EP4A and treating tumor-bearing mice in vivo with the same drug reduced SLC properties of tumor cells including preferential co-expression of COX-2 and SLC markers ALDH1A, CD44, OCT-3/4, β-catenin, and SOX-2. Thus, EP4 is an excellent therapeutic target to block stem-like properties, angiogenesis, and lymphangiogenesis induced by VEGF-A/C/D secreted by cancer cells and tumor infiltrating macrophages.
Collapse
MESH Headings
- Adenocarcinoma/blood supply
- Adenocarcinoma/drug therapy
- Adenocarcinoma/secondary
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Celecoxib
- Cell Line, Tumor
- Cell Proliferation
- Cyclooxygenase 2/metabolism
- Drug Screening Assays, Antitumor
- Female
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/secondary
- Lymphangiogenesis
- Lymphatic Metastasis
- Macrophages/metabolism
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred C3H
- Molecular Targeted Therapy
- Neoplasm Transplantation
- Neoplastic Stem Cells
- Neovascularization, Pathologic/drug therapy
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Tumor Burden
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Mousumi Majumder
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, Ontario, Canada
| | - Xiping Xin
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, Ontario, Canada
| | - Ling Liu
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, Ontario, Canada
| | - Gannareddy V Girish
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, Ontario, Canada
| | - Peeyush K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, Ontario, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, Ontario, Canada
| |
Collapse
|