1
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Sulatskaya AI. Degradation of pathogenic amyloids induced by matrix metalloproteinase-9. Int J Biol Macromol 2024; 281:136362. [PMID: 39395518 DOI: 10.1016/j.ijbiomac.2024.136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Over the past decade, the greatest promise for treating severe and currently incurable systemic and neurodegenerative diseases has turned to agents capable of effectively degrading pathological amyloid deposits without causing side effects. Specifically, amyloid destruction observed in immunotherapy is hypothesized to occur through activation of proteolytic enzymes. This study examines poorly understood effects of an immune enzyme, extracellular matrix metalloproteinase-9 (MMP9), on amyloids associated with Alzheimer's and Parkinson's diseases, lysozyme, insulin, and dialysis-related amyloidoses. The study establishes the universality of MMP9's effect on various amyloids, with its efficacy largely depending on the fibrillar cluster size. Irreversible amyloid degradation by MMP9 is attributed to the destruction of intramolecular interactions rather than intermolecular hydrogen bonds in the fibril backbone. This process results in the loss of ordered fiber structure without reducing aggregate size or increasing cytotoxicity. Thus, MMP9 can mitigate side effects of anti-amyloid therapy associated with the formation of low-molecular-weight degradation products that may accelerate fibrillogenesis and amyloid propagation between tissues and organs. MMP9 shows promise as a component of safe anti-amyloid drugs by enhancing the accessibility of binding sites through "loosening" amyloid clusters, which facilitates subsequent fragmentation and monomerization by other enzymes.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
2
|
Morfino P, Aimo A, Franzini M, Vergaro G, Castiglione V, Panichella G, Limongelli G, Emdin M. Pathophysiology of Cardiac Amyloidosis. Heart Fail Clin 2024; 20:261-270. [PMID: 38844297 DOI: 10.1016/j.hfc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Amyloidosis refers to a heterogeneous group of disorders sharing common pathophysiological mechanisms characterized by the extracellular accumulation of fibrillar deposits consisting of the aggregation of misfolded proteins. Cardiac amyloidosis (CA), usually caused by deposition of misfolded transthyretin or immunoglobulin light chains, is an increasingly recognized cause of heart failure burdened by a poor prognosis. CA manifests with a restrictive cardiomyopathy which progressively leads to biventricular thickening, diastolic and then systolic dysfunction, arrhythmias, and valvular disease. The pathophysiology of CA is multifactorial and includes increased oxidative stress, mitochondrial damage, apoptosis, impaired metabolism, and modifications of intracellular calcium balance.
Collapse
Affiliation(s)
| | - Alberto Aimo
- Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Franzini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Giuseppe Vergaro
- Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Castiglione
- Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giorgia Panichella
- Department of Clinical and Experimental Medicine, Careggi University Hospital, Florence, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
3
|
De Michieli L, Cipriani A, Iliceto S, Dispenzieri A, Jaffe AS. Cardiac Troponin in Patients With Light Chain and Transthyretin Cardiac Amyloidosis: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:1-15. [PMID: 38510286 PMCID: PMC10950441 DOI: 10.1016/j.jaccao.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 03/22/2024] Open
Abstract
Cardiac amyloidosis (CA) is an infiltrative disease caused by amyloid fibril deposition in the myocardium; the 2 forms that most frequently involve the heart are amyloid light chain (AL) and amyloid transthyretin (ATTR) amyloidosis. Cardiac troponin (cTn) is the biomarker of choice for the detection of myocardial injury and is frequently found to be elevated in patients with CA, particularly with high-sensitivity assays. Multiple mechanisms of myocardial injury in CA have been proposed, including cytotoxic effect of amyloid precursors, interstitial amyloid fibril infiltration, coronary microvascular dysfunction, amyloid- and non-amyloid-related coronary artery disease, diastolic dysfunction, and heart failure. Regardless of the mechanisms, cTn values have relevant prognostic (and potentially diagnostic) implications in both AL and ATTR amyloidosis. In this review, the authors discuss the significant aspects of cTn biology and measurement methods, potential mechanisms of myocardial injury in CA, and the clinical application of cTn in the management of both AL and ATTR amyloidosis.
Collapse
Affiliation(s)
- Laura De Michieli
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Cardiovascular Department, Mayo Clinic and Medical School, Rochester, Minnesota, USA
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Cardiology Unit, University Hospital of Padua, Padua, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Cardiology Unit, University Hospital of Padua, Padua, Italy
| | | | - Allan S. Jaffe
- Cardiovascular Department, Mayo Clinic and Medical School, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Medical School, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Moreira J, Martins H, Saraiva M, Saraiva MJ. TLR2 and 4 signaling pathways are altered in macrophages from V30M TTR mice with down-regulated expression of chemokines. Clin Sci (Lond) 2023; 137:355-366. [PMID: 36852978 DOI: 10.1042/cs20220656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
Hereditary amyloid transthyretin (ATTRv) amyloidosis is a fatal neurodegenerative disorder, first identified in Portugal. The most common transthyretin (TTR) mutation in ATTRv results from an exchange of a methionine for a valine at position 30 (V30M). ATTRv is characterized by the extracellular deposition of aggregates and fibrils of mutant forms of TTR, particularly in the nerves and ganglia of the peripheral nervous system (PNS). This phenotype is often accompanied by the lack of inflammatory infiltrates, despite the importance of macrophages in removal of TTR deposits in ATTRv patients. The mechanisms underlying this impairment of inflammatory responses in ATTRv patients are poorly understood. Here, we show a significant down-regulation in the expression of several chemokines by bone marrow-derived macrophages (BMDM) generated from V30M TTR mice upon stimulation with toll-like receptor 4 (TLR4) and TLR2 agonists. The phosphorylation of the MAP kinase p38, important for TLR4 and TLR2 signaling pathways, was also down-regulated in V30M macrophages, as compared with wild-type (WT) ones. The present study contributes with new insights to unravel the molecular mechanisms underlying the lack of inflammatory immune responses observed in ATTRv patients and may help in the development of new immune therapeutic strategies for the disease.
Collapse
Affiliation(s)
- João Moreira
- Molecular Neurobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, Department of Neurobiology and Neurologic Disorders, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Department of Molecular Biology, Universidade do Porto, 4050-313 Porto, Portugal
| | - Helena Martins
- Molecular Neurobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, Department of Neurobiology and Neurologic Disorders, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Margarida Saraiva
- Immune Regulation Group, i3S - Instituto de Investigação e Inovação em Saúde, Department of Infection, Immunity,and Regeneration, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria João Saraiva
- Molecular Neurobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, Department of Neurobiology and Neurologic Disorders, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Teixeira C, Martins HS, Saraiva MJ. Cellular environment of TTR deposits in an animal model of ATTR—Cardiomyopathy. Front Mol Biosci 2023; 10:1144049. [PMID: 36968272 PMCID: PMC10030511 DOI: 10.3389/fmolb.2023.1144049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction: Cardiac amyloidoses are the most fatal manifestation of systemic amyloidoses. It is believed the number of cases to be greatly underestimated mostly due to misdiagnosis. Particularly, the involvement of TTR V30M in the heart of ATTRV30M amyloidosis has not been completely understood specifically in terms of implicated cellular pathways, heart function and cardiac physiology. In the present work we proposed to characterize TTR V30M cardiac involvement particularly at the tissue cellular level in a mouse model.Methods: HSF ± hTTR V30M mice, a model that expresses human TTRV30M in a Ttr null background, widely used for the characterization and modulation of neurological features of ATTRV30M amyloidosis was used. SDS-PAGE of cardiac homogenates followed by Western blot was performed. Immunohistochemistry and double immunofluorescence analyses were carried out to determine TTR deposition pattern and sub-localization.Results: Western blots were able to detect TTR in its monomeric state at ∼14 kDa. Immunofluorescent images showed TTR was found mostly in the intercellular spaces. Blood contamination was excluded by CD31 staining. Tissues were Congo Red negative. Upon TTR and macrophages (CD68) staining in the cardiac tissue a clear tendency of macrophage convergence to the tissue regions where TTR was more abundant was observed. Moreover, in some instances it was possible to detect co-localization of both fluorophores. Cardiac fibroblasts were stained with PDGFr-alpha, and here the co-localization was not so evident although there was some degree of co-occurrence. The hearts of transgenic mice revealed higher content of Galectin-3.Conclusion: This animal model and associated features observed as result of cardiac TTR deposition provide a promising and invaluable research tool for a better understanding of the implicated pathways that lead to the lethality associated to TTR cardiac amyloidosis. New therapeutic strategies can be tested and ultimately this will lead to improved treatment alternatives capable of increasing patient’s quality of life and life expectancy and, hopefully to eradicate a condition that is silently spreading worldwide.
Collapse
Affiliation(s)
- Cristina Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helena Sofia Martins
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Maria João Saraiva
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- *Correspondence: Maria João Saraiva,
| |
Collapse
|
6
|
Magaud C, Harnois T, Sebille S, Chatelier A, Faivre JF, Bois P, Page G, Gellen B. Pro-inflammatory cytokine secretion induced by amyloid transthyretin in human cardiac fibroblasts. Biochem Biophys Res Commun 2023; 642:83-89. [PMID: 36566566 DOI: 10.1016/j.bbrc.2022.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Extracellular aggregates of wild-type human transthyretin are associated with heart diseases such as wild-type transthyretin (TTR)-derived amyloidosis (ATTR-wt). Due to their strategic location, cardiac fibroblasts act as sentinel cells that sense injury and activate the inflammasome. No studies of the effects of TTR amyloid aggregation on the secretion of inflammatory factors by primary human cardiac fibroblasts (hCFs) have been reported yet. The intracellular internalization of TTR aggregates, which correspond to the early stage of ATTR-wt, were determined using immunofluorescence and Western blotting of cell lysates. A further objective of this study was to analyze the secretion of inflammatory factors by hCFs after analysis of TTR amyloid aggregation using X-MAP® Luminex Assay techniques. We show that TTR aggregates are internalized in hCFs and induce the secretion of both Brain Natriuretic Peptide (BNP) and N-terminal pro B-type Natriuretic Peptide(NT-proBNP). Also, pro-inflammatory mediators such as interleukin-6 (IL-6) and IL-8 are secreted without significant changes in the levels of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). In conclusion, these findings suggest that IL-6 and IL-8 play important roles in the development of ATTR-wt, and indicate that IL-6 in particular could be a potentially important therapeutic target in patients with ATTR-wt.
Collapse
Affiliation(s)
| | - Thomas Harnois
- Laboratoire 4CS UMR 6041 CNRS, Université de Poitiers, France
| | | | | | | | - Patrick Bois
- Laboratoire PRéTI UR 24184, Université de Poitiers, France.
| | - Guylene Page
- UFR Médecine et Pharmacie, Université de Poitiers, France
| | | |
Collapse
|
7
|
Knier AS, Davis EE, Buchholz HE, Dorweiler JE, Flannagan LE, Manogaran AL. The yeast molecular chaperone, Hsp104, influences transthyretin aggregate formation. Front Mol Neurosci 2022; 15:1050472. [PMID: 36590917 PMCID: PMC9802906 DOI: 10.3389/fnmol.2022.1050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with the fatal disorder Transthyretin Amyloidosis (ATTR) experience polyneuropathy through the progressive destruction of peripheral nervous tissue. In these patients, the transthyretin (TTR) protein dissociates from its functional tetrameric structure, misfolds, and aggregates into extracellular amyloid deposits that are associated with disease progression. These aggregates form large fibrillar structures as well as shorter oligomeric aggregates that are suspected to be cytotoxic. Several studies have shown that these extracellular TTR aggregates enter the cell and accumulate intracellularly, which is associated with increased proteostasis response. However, there are limited experimental models to study how proteostasis influences internalized TTR aggregates. Here, we use a humanized yeast system to recapitulate intracellular TTR aggregating protein in vivo. The yeast molecular chaperone Hsp104 is a disaggregase that has been shown to fragment amyloidogenic aggregates associated with certain yeast prions and reduce protein aggregation associated with human neurogenerative diseases. In yeast, we found that TTR forms both SDS-resistant oligomers and SDS-sensitive large molecular weight complexes. In actively dividing cultures, Hsp104 has no impact on oligomeric or large aggregate populations, yet overexpression of Hsp104 is loosely associated with an increase in overall aggregate size. Interestingly, a potentiating mutation in the middle domain of Hsp104 consistently results in an increase in overall TTR aggregate size. These data suggest a novel approach to aggregate management, where the Hsp104 variant shifts aggregate populations away from toxic oligomeric species to more inert larger aggregates. In aged cultures Hsp104 overexpression has no impact on TTR aggregation profiles suggesting that these chaperone approaches to shift aggregate populations are not effective with age, possibly due to proteostasis decline.
Collapse
|
8
|
Sanguinetti C, Minniti M, Susini V, Caponi L, Panichella G, Castiglione V, Aimo A, Emdin M, Vergaro G, Franzini M. The Journey of Human Transthyretin: Synthesis, Structure Stability, and Catabolism. Biomedicines 2022; 10:biomedicines10081906. [PMID: 36009453 PMCID: PMC9405911 DOI: 10.3390/biomedicines10081906] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein mainly synthesised by the liver and the choroid plexus whose function is to carry the thyroid hormone thyroxine and the retinol-binding protein bound to retinol in plasma and cerebrospinal fluid. When the stability of the tetrameric structure is lost, it breaks down, paving the way for the aggregation of TTR monomers into insoluble fibrils leading to transthyretin (ATTR) amyloidosis, a progressive disorder mainly affecting the heart and nervous system. Several TTR gene mutations have been characterised as destabilisers of TTR structure and are associated with hereditary forms of ATTR amyloidosis. The reason why also the wild-type TTR is intrinsically amyloidogenic in some subjects is largely unknown. The aim of the review is to give an overview of the TTR biological life cycle which is largely unknown. For this purpose, the current knowledge on TTR physiological metabolism, from its synthesis to its catabolism, is described. Furthermore, a large section of the review is dedicated to examining in depth the role of mutations and physiological ligands on the stability of TTR tetramers.
Collapse
Affiliation(s)
- Chiara Sanguinetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marianna Minniti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Vanessa Susini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Laura Caponi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Giorgia Panichella
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Vincenzo Castiglione
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Alberto Aimo
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Michele Emdin
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Giuseppe Vergaro
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Maria Franzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
9
|
Nakano T, Onoue K, Terada C, Terasaki S, Ishihara S, Hashimoto Y, Nakada Y, Nakagawa H, Ueda T, Seno A, Nishida T, Watanabe M, Hoshii Y, Hatakeyama K, Sakaguchi Y, Ohbayashi C, Saito Y. Transthyretin Amyloid Cardiomyopathy: Impact of Transthyretin Amyloid Deposition in Myocardium on Cardiac Morphology and Function. J Pers Med 2022; 12:jpm12050792. [PMID: 35629214 PMCID: PMC9147607 DOI: 10.3390/jpm12050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is increasingly being recognized as a cause of left ventricular (LV) hypertrophy (LVH) and progressive heart failure in elderly patients. However, little is known about the cardiac morphology of ATTR-CM and the association between the degree of TTR amyloid deposition and cardiac dysfunction in these patients. Methods: We studied 28 consecutive patients with ATTR-CM and analyzed the relationship between echocardiographic parameters and pathological features using endomyocardial biopsy samples. Results: The cardiac geometries of patients with ATTR-CM were mainly classified as concentric LVH (96.4%). The relative wall thickness, a marker of LVH, tended to be positively correlated with the degree of non-cardiomyocyte area. The extent of TTR deposition was positively correlated with enlargement of the non-cardiomyocyte area, and these were positively correlated with LV diastolic dysfunction. Additionally, the extent of the area containing TTR was positively correlated with the percentage of cardiomyocyte nuclei stained for 8-hydroxy-2′deoxyguanosine, a marker of reactive oxygen species (ROS). ROS accumulation in cardiomyocytes was positively correlated with LV systolic dysfunction. Conclusion: Patients with ATTR-CM mainly displayed concentric LVH geometry. TTR amyloid deposition was associated with cardiac dysfunction via increased non-cardiomyocyte area and ROS accumulation in cardiomyocytes.
Collapse
Affiliation(s)
- Tomoya Nakano
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
- Department of Cardiovascular Medicine, Yamato Takada Municipal Hospital, Yamato-Takada 635-8501, Nara, Japan
| | - Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
- Correspondence: ; Tel.: +81-744-22-3051
| | - Chiyoko Terada
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (C.T.); (C.O.)
| | - Satoshi Terasaki
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Satomi Ishihara
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Yukihiro Hashimoto
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Yasuki Nakada
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Hitoshi Nakagawa
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Tomoya Ueda
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Ayako Seno
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Taku Nishida
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Makoto Watanabe
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube 755-0046, Yamaguchi, Japan;
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita 564-8565, Osaka, Japan;
| | - Yasuhiro Sakaguchi
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (C.T.); (C.O.)
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| |
Collapse
|
10
|
Rimbas RC, Balinisteanu A, Magda SL, Visoiu SI, Ciobanu AO, Beganu E, Nicula AI, Vinereanu D. New Advanced Imaging Parameters and Biomarkers-A Step Forward in the Diagnosis and Prognosis of TTR Cardiomyopathy. J Clin Med 2022; 11:2360. [PMID: 35566485 PMCID: PMC9101617 DOI: 10.3390/jcm11092360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is an infiltrative disorder characterized by extracellular myocardial deposits of amyloid fibrils, with poor outcome, leading to heart failure and death, with significant treatment expenditure. In the era of a novel therapeutic arsenal of disease-modifying agents that target a myriad of pathophysiological mechanisms, timely and accurate diagnosis of ATTR-CM is crucial. Recent advances in therapeutic strategies shown to be most beneficial in the early stages of the disease have determined a paradigm shift in the screening, diagnostic algorithm, and risk classification of patients with ATTR-CM. The aim of this review is to explore the utility of novel specific non-invasive imaging parameters and biomarkers from screening to diagnosis, prognosis, risk stratification, and monitoring of the response to therapy. We will summarize the knowledge of the most recent advances in diagnostic, prognostic, and treatment tailoring parameters for early recognition, prediction of outcome, and better selection of therapeutic candidates in ATTR-CM. Moreover, we will provide input from different potential pathways involved in the pathophysiology of ATTR-CM, on top of the amyloid deposition, such as inflammation, endothelial dysfunction, reduced nitric oxide bioavailability, oxidative stress, and myocardial fibrosis, and their diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Roxana Cristina Rimbas
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Anca Balinisteanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Stefania Lucia Magda
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Simona Ionela Visoiu
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Andrea Olivia Ciobanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Elena Beganu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
| | - Alina Ioana Nicula
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
- Radiology Department, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Dragos Vinereanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| |
Collapse
|
11
|
Molecular Mechanisms of Cardiac Amyloidosis. Int J Mol Sci 2021; 23:ijms23010025. [PMID: 35008444 PMCID: PMC8744761 DOI: 10.3390/ijms23010025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiac involvement has a profound effect on the prognosis of patients with systemic amyloidosis. Therapeutic methods for suppressing the production of causative proteins have been developed for ATTR amyloidosis and AL amyloidosis, which show cardiac involvement, and the prognosis has been improved. However, a method for removing deposited amyloid has not been established. Methods for reducing cytotoxicity caused by amyloid deposition and amyloid precursor protein to protect cardiovascular cells are also needed. In this review, we outline the molecular mechanisms and treatments of cardiac amyloidosis.
Collapse
|
12
|
Pucci A, Aimo A, Musetti V, Barison A, Vergaro G, Genovesi D, Giorgetti A, Masotti S, Arzilli C, Prontera C, Pastormerlo LE, Coceani MA, Ciardetti M, Martini N, Palmieri C, Passino C, Rapezzi C, Emdin M. Amyloid Deposits and Fibrosis on Left Ventricular Endomyocardial Biopsy Correlate With Extracellular Volume in Cardiac Amyloidosis. J Am Heart Assoc 2021; 10:e020358. [PMID: 34622675 PMCID: PMC8751897 DOI: 10.1161/jaha.120.020358] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The relative contribution of amyloid and fibrosis to extracellular volume expansion in cardiac amyloidosis (CA) has never been defined. Methods and Results We included all patients diagnosed with amyloid light-chain (AL) or transthyretin cardiac amyloidosis at a tertiary referral center between 2014 to 2020 and undergoing a left ventricular endomyocardial biopsy. Patients (n=37) were more often men (92%), with a median age of 72 years (interquartile range, 68-81). Lambda-positive AL was found in 14 of 19 AL cases (38%) and kappa-positive AL in 5 of 19 (14%), while transthyretin was detected in the other 18 cases (48%). Amyloid deposits accounted for 15% of tissue sample area (10%-30%), without significant differences between AL and transthyretin amyloidosis. All patients displayed myocardial fibrosis, with a median extent of 15% of tissue samples (10%-23%; range, 5%-60%), in the absence of spatial overlap with amyloid deposits. Interstitial fibrosis was often associated with mild and focal subendocardial fibrosis. The extent of fibrosis or the combination of amyloidosis and fibrosis did not differ significantly between transthyretin amyloidosis and AL subgroups. In 20 patients with myocardial T1 mapping at cardiac magnetic resonance, the combined amyloid and fibrosis extent displayed a modest correlation with extracellular volume (r=0.661, P=0.001). The combined amyloid and fibrosis extent correlated with high-sensitivity troponin T (P=0.035) and N-terminal pro-B-type natriuretic peptide (P=0.002) serum levels. Conclusions Extracellular spaces in cardiac amyloidosis are enlarged to a similar extent by amyloid deposits and fibrotic tissue. Their combination can better explain the increased extracellular volume at cardiac magnetic resonance and circulating biomarkers than amyloid extent alone.
Collapse
Affiliation(s)
| | - Alberto Aimo
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy.,Fondazione Toscana Gabriele Monasterio Pisa Italy
| | - Veronica Musetti
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy.,Fondazione Toscana Gabriele Monasterio Pisa Italy
| | - Andrea Barison
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy.,Fondazione Toscana Gabriele Monasterio Pisa Italy
| | - Giuseppe Vergaro
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy.,Fondazione Toscana Gabriele Monasterio Pisa Italy
| | | | | | - Silvia Masotti
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
| | | | | | | | | | | | | | - Cataldo Palmieri
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy.,Fondazione Toscana Gabriele Monasterio Pisa Italy
| | - Claudio Passino
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy.,Fondazione Toscana Gabriele Monasterio Pisa Italy
| | - Claudio Rapezzi
- Centro Cardiologico Universitario di Ferrara University of Ferrara Italy.,Maria Cecilia Hospital GVM Care & Research Cotignola Italy
| | - Michele Emdin
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy.,Fondazione Toscana Gabriele Monasterio Pisa Italy
| |
Collapse
|
13
|
Obici L, Mussinelli R. Current and Emerging Therapies for Hereditary Transthyretin Amyloidosis: Strides Towards a Brighter Future. Neurotherapeutics 2021; 18:2286-2302. [PMID: 34850359 PMCID: PMC8804119 DOI: 10.1007/s13311-021-01154-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
The past few years have witnessed an unprecedented acceleration in the clinical development of novel therapeutic options for hereditary transthyretin amyloidosis. Recently approved agents and drugs currently under investigation not only represent a major breakthrough in this field but also provide validation of the therapeutic potential of innovative approaches, like RNA interference and CRISPR-Cas9-mediated gene editing, in rare inherited disorders. In this review, we describe the evolving therapeutic landscape for hereditary transthyretin amyloidosis and discuss how this highly disabling and fatal condition is turning into a treatable disease. We also provide an overview of the molecular mechanisms involved in transthyretin (TTR) amyloid formation and regression, to highlight how a deeper understanding of these processes has contributed to the identification of novel treatment targets. Finally, we focus on major areas of uncertainty and unmet needs that deserve further efforts to improve long-term patients' outcomes and allow for a brighter future.
Collapse
Affiliation(s)
- Laura Obici
- Amyloidosis Research and Treatment Centre, IRCCS Fondazione Policlinico San Matteo, Viale Golgi, 19, 27100, Pavia, Italy.
| | - Roberta Mussinelli
- Amyloidosis Research and Treatment Centre, IRCCS Fondazione Policlinico San Matteo, Viale Golgi, 19, 27100, Pavia, Italy
| |
Collapse
|
14
|
Dittloff KT, Iezzi A, Zhong JX, Mohindra P, Desai TA, Russell B. Transthyretin amyloid fibrils alter primary fibroblast structure, function, and inflammatory gene expression. Am J Physiol Heart Circ Physiol 2021; 321:H149-H160. [PMID: 34018852 DOI: 10.1152/ajpheart.00073.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Age-related wild-type transthyretin amyloidosis (wtATTR) is characterized by systemic deposition of amyloidogenic fibrils of misfolded transthyretin (TTR) in the connective tissue of many organs. In the heart, this leads to cardiac dysfunction, which is a significant cause of age-related heart failure. The hypothesis tested is that TTR affects cardiac fibroblasts in ways that may contribute to fibrosis. When primary cardiac fibroblasts were cultured on TTR-deposited substrates, the F-actin cytoskeleton was disorganized, focal adhesion formation was decreased, and nuclear shape was flattened. Fibroblasts had faster collective and single-cell migration velocities on TTR-deposited substrates. In addition, fibroblasts cultured on microposts with TTR deposition had reduced attachment and increased proliferation above untreated. Transcriptomic and proteomic analyses of fibroblasts grown on glass covered with TTR showed significant upregulation of inflammatory genes after 48 h, indicative of progression in TTR-based diseases. Together, results suggest that TTR deposited in tissue extracellular matrix may affect the structure, function, and gene expression of cardiac fibroblasts. As therapies for wtATTR are cost-prohibitive and only slow disease progression, better understanding of cellular maladaptation may elucidate novel therapeutic targets.NEW & NOTEWORTHY Transthyretin (TTR) cardiac amyloidosis involves deposition of fibrils of misfolded TTR in the aging human heart, leading to cardiac dysfunction and heart failure. Our novel in vitro studies show that TTR fibrils alter primary cardiac fibroblast cytoskeletal and nuclear structure and focal adhesion formation. Furthermore, both fibrillar and tetrameric TTR significantly increased cellular migration velocity and caused upregulation of inflammatory genes determined by transcriptomic RNA and protein analysis. These findings may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Kyle T Dittloff
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Antonio Iezzi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Justin X Zhong
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California.,Department of Bioengineering, University of California, Berkeley, California
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Asiri MMH, Engelsman S, Eijkelkamp N, Höppener JWM. Amyloid Proteins and Peripheral Neuropathy. Cells 2020; 9:E1553. [PMID: 32604774 PMCID: PMC7349787 DOI: 10.3390/cells9061553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Painful peripheral neuropathy affects millions of people worldwide. Peripheral neuropathy develops in patients with various diseases, including rare familial or acquired amyloid polyneuropathies, as well as some common diseases, including type 2 diabetes mellitus and several chronic inflammatory diseases. Intriguingly, these diseases share a histopathological feature-deposits of amyloid-forming proteins in tissues. Amyloid-forming proteins may cause tissue dysregulation and damage, including damage to nerves, and may be a common cause of neuropathy in these, and potentially other, diseases. Here, we will discuss how amyloid proteins contribute to peripheral neuropathy by reviewing the current understanding of pathogenic mechanisms in known inherited and acquired (usually rare) amyloid neuropathies. In addition, we will discuss the potential role of amyloid proteins in peripheral neuropathy in some common diseases, which are not (yet) considered as amyloid neuropathies. We conclude that there are many similarities in the molecular and cell biological defects caused by aggregation of the various amyloid proteins in these different diseases and propose a common pathogenic pathway for "peripheral amyloid neuropathies".
Collapse
Affiliation(s)
- Mohammed M. H. Asiri
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- The National Centre for Genomic Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11461 Riyadh, Saudi Arabia
| | - Sjoukje Engelsman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Jo W. M. Höppener
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
16
|
Brzhozovskiy AG, Kononikhin AS, Pastushkova LC, Kashirina DN, Indeykina MI, Popov IA, Custaud MA, Larina IM, Nikolaev EN. The Effects of Spaceflight Factors on the Human Plasma Proteome, Including Both Real Space Missions and Ground-Based Experiments. Int J Mol Sci 2019; 20:E3194. [PMID: 31261866 PMCID: PMC6651200 DOI: 10.3390/ijms20133194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
The aim of the study was to compare proteomic data on the effects of spaceflight factors on the human body, including both real space missions and ground-based experiments. LC-MS/MS-based proteomic analysis of blood plasma samples obtained from 13 cosmonauts before and after long-duration (169-199 days) missions on the International Space Station (ISS) and for five healthy men included in 21-day-long head-down bed rest (HDBR) and dry immersion experiments were performed. The semi-quantitative label-free analysis revealed significantly changed proteins: 19 proteins were significantly different on the first (+1) day after landing with respect to background levels; 44 proteins significantly changed during HDBR and 31 changed in the dry immersion experiment. Comparative analysis revealed nine common proteins (A1BG, A2M, SERPINA1, SERPINA3, SERPING1, SERPINC1, HP, CFB, TF), which changed their levels after landing, as well as in both ground-based experiments. Common processes, such as platelet degranulation, hemostasis, post-translational protein phosphorylation and processes of protein metabolism, indicate common pathogenesis in ground experiments and during spaceflight. Dissimilarity in the lists of significantly changed proteins could be explained by the differences in the dynamics of effective development in the ground-based experiments. Data are available via ProteomeXchange using the identifier PXD013305.
Collapse
Affiliation(s)
- Alexander G Brzhozovskiy
- Institute of Biomedical Problems, Russian Federation State Scientific Research Center, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of mass spectrometry, CDISE, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Alexey S Kononikhin
- Institute of Biomedical Problems, Russian Federation State Scientific Research Center, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of mass spectrometry, CDISE, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Lyudmila Ch Pastushkova
- Institute of Biomedical Problems, Russian Federation State Scientific Research Center, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Daria N Kashirina
- Institute of Biomedical Problems, Russian Federation State Scientific Research Center, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria I Indeykina
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physic of RAS, 119334 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Igor A Popov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physic of RAS, 119334 Moscow, Russia
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| | | | - Irina M Larina
- Institute of Biomedical Problems, Russian Federation State Scientific Research Center, Russian Academy of Sciences, 119991 Moscow, Russia.
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia.
| | - Evgeny N Nikolaev
- Laboratory of mass spectrometry, CDISE, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physic of RAS, 119334 Moscow, Russia.
| |
Collapse
|
17
|
Maleki B, Tabandeh F, Soheili ZS, Morshedi D. Application of proteinous nanofibrils to culture retinal pigmented epithelium cells: A versatile biomaterial. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Fella E, Sokratous K, Papacharalambous R, Kyriacou K, Phillips J, Sanderson S, Panayiotou E, Kyriakides T. Pharmacological Stimulation of Phagocytosis Enhances Amyloid Plaque Clearance; Evidence from a Transgenic Mouse Model of ATTR Neuropathy. Front Mol Neurosci 2017; 10:138. [PMID: 28539873 PMCID: PMC5423984 DOI: 10.3389/fnmol.2017.00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022] Open
Abstract
Hereditary ATTR V30M amyloidosis is a lethal autosomal dominant sensorimotor and autonomic neuropathy caused by deposition of aberrant transthyretin (TTR). Immunohistochemical examination of sural nerve biopsies in patients with amyloidotic neuropathy show co-aggregation of TTR with several proteins; including apolipoprotein E, serum amyloid P and components of the complement cascade. Complement activation and macrophages are increasingly recognized to play a crucial role in amyloidogenesis at the tissue bed level. In the current study we test the effect of two C5a receptor agonists and a C5a receptor antagonist (PMX53) on disease phenotype in ATTR V30M mice. Our results indicate that amyloid deposition was significantly reduced following treatment with the C5a receptor agonists, while treatment with the antagonist resulted in a significant increase of amyloid load. Administration of the C5a receptor agonists triggered increased recruitment of phagocytic cells resulting in clearance of amyloid deposits.
Collapse
Affiliation(s)
- Eleni Fella
- Neurology Clinic A, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus.,Cyprus School of Molecular MedicineNicosia, Cyprus
| | - Kleitos Sokratous
- Electron Microscopy and Molecular Pathology Department, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus.,Bioinformatics Group, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus
| | | | - Kyriacos Kyriacou
- Cyprus School of Molecular MedicineNicosia, Cyprus.,Electron Microscopy and Molecular Pathology Department, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus
| | - Joy Phillips
- Donald P. Shiley Bioscience Center, San Diego State UniversitySan Diego, CA, USA
| | - Sam Sanderson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical CenterOmaha, NE, USA
| | - Elena Panayiotou
- Neurology Clinic A, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus
| | - Theodoros Kyriakides
- Neurology Clinic A, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus.,Cyprus School of Molecular MedicineNicosia, Cyprus
| |
Collapse
|
19
|
Gonçalves P, Martins H, Costelha S, Maia LF, Saraiva MJ. Efficiency of silencing RNA for removal of transthyretin V30M in a TTR leptomeningeal animal model. Amyloid 2016; 23:249-253. [PMID: 27884058 DOI: 10.1080/13506129.2016.1256282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Some TTR mutants target the central nervous system (CNS). Familial amyloid polyneuropathy (FAP) with leptomeningeal involvement has been described in 9% of transthyretin (TTR) mutations and in valine for methionine at position 30 (V30M) patients. These individuals present dementia, ataxia, brain hemorrhages and focal neurological episodes (FNEs). FNEs occurred also in V30M FAP patients with longer disease duration, who have undergone liver transplant to remove the source of plasma mutant TTR as a form of treatment. It is thus to expect that as better treatments for FAP emerge and prolong survival, meningeal-vascular CNS deposition will increase and need special therapies. Recently, we detected TTR meningeal-vascular deposition in a V30M TTR transgenic mouse model, opening new avenues of research to investigate selective treatments of this condition. Since pre-clinical studies with TTR siRNA therapeutics were shown to promote clearance of TTR non-fibrillar deposits in several organs and tissues, we investigated its effect on TTR meningeal-vascular deposition. We show that systemically administered TTR siRNA promoted TTR clearance in the extracellular matrix of meninges and brain blood vessels. Surprisingly, despite the striking decline of blood TTR, cerebrospinal fluid TTR levels were unaffected. Though this is reassuring because siRNA will not interfere with the neuroprotective role of TTR in the CNS, it raises new questions on therapeutical approaches for CNS ATTR.
Collapse
Affiliation(s)
- Paula Gonçalves
- a Instituto de Inovação e Investigação em Saúde (I3S) and Neurobiologia Molecular - Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto , Porto , Portugal and
| | - Helena Martins
- a Instituto de Inovação e Investigação em Saúde (I3S) and Neurobiologia Molecular - Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto , Porto , Portugal and
| | - Susete Costelha
- a Instituto de Inovação e Investigação em Saúde (I3S) and Neurobiologia Molecular - Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto , Porto , Portugal and
| | - Luis F Maia
- a Instituto de Inovação e Investigação em Saúde (I3S) and Neurobiologia Molecular - Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto , Porto , Portugal and.,b Serviço de Neurologia and Unidade Corino de Andrade, Departamento de Neurociências, Hospital de Santo António, Centro Hospitalar do Porto , Porto , Portugal
| | - Maria Joao Saraiva
- a Instituto de Inovação e Investigação em Saúde (I3S) and Neurobiologia Molecular - Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto , Porto , Portugal and
| |
Collapse
|
20
|
Suenaga G, Ikeda T, Komohara Y, Takamatsu K, Kakuma T, Tasaki M, Misumi Y, Ueda M, Ito T, Senju S, Ando Y. Involvement of Macrophages in the Pathogenesis of Familial Amyloid Polyneuropathy and Efficacy of Human iPS Cell-Derived Macrophages in Its Treatment. PLoS One 2016; 11:e0163944. [PMID: 27695122 PMCID: PMC5047455 DOI: 10.1371/journal.pone.0163944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/26/2016] [Indexed: 01/15/2023] Open
Abstract
We hypothesized that tissue-resident macrophages in familial amyloid polyneuropathy (FAP) patients will exhibit qualitative or quantitative abnormalities, that may accelerate transthyretin (TTR)-derived amyloid deposition. To evaluate this, we examined the number and subset of tissue-resident macrophages in heart tissue from amyloid-deposited FAP and control patients. In both FAP and control patients, tissue-resident macrophages in heart tissue were all Iba+/CD163+/CD206+ macrophages. However, the number of macrophages was significantly decreased in FAP patients compared with control patients. Furthermore, the proportion of intracellular TTR in CD14+ monocytes was reduced in peripheral blood compared with healthy donors. Based on these results, we next examined degradation and endocytosis of TTR in human induced pluripotent stem (iPS) cell-derived myeloid lineage cells (MLs), which function like macrophages. iPS-MLs express CD163 and CD206, and belong to the inhibitory macrophage category. In addition, iPS-MLs degrade both native and aggregated TTR in a cell-dependent manner in vitro. Further, iPS-MLs endocytose aggregated, and especially polymerized, TTR. These results suggest that decreased tissue-localized macrophages disrupt clearance of TTR-derived amyloid deposits, leading to progression of a pathological condition in FAP patients. To improve this situation, clinical application of pluripotent stem cell-derived MLs may be useful as an approach for FAP therapy.
Collapse
MESH Headings
- Adult
- Aged
- Amyloid/metabolism
- Amyloid Neuropathies, Familial/etiology
- Amyloid Neuropathies, Familial/metabolism
- Amyloid Neuropathies, Familial/pathology
- Amyloid Neuropathies, Familial/therapy
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biomarkers
- Case-Control Studies
- Cell Differentiation
- Cell Line, Tumor
- Cell Survival
- Female
- Humans
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Lectins, C-Type/metabolism
- Leukocytes, Mononuclear/metabolism
- Macrophages/cytology
- Macrophages/metabolism
- Macrophages/transplantation
- Male
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Middle Aged
- Myocardium/metabolism
- Myocardium/pathology
- Phenotype
- Prealbumin/metabolism
- Protein Aggregation, Pathological
- Proteolysis
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Genki Suenaga
- Department of Neurology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Neurology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Clinical Research Support Center, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- * E-mail: (TI); (YA)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koutaro Takamatsu
- Department of Neurology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tatsuyuki Kakuma
- Department of Biostatistics Center, Kurume University, School of Medicine, Kurume, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yohei Misumi
- Department of Neurology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- * E-mail: (TI); (YA)
| |
Collapse
|
21
|
Impairment of autophagy by TTR V30M aggregates: in vivo reversal by TUDCA and curcumin. Clin Sci (Lond) 2016; 130:1665-75. [DOI: 10.1042/cs20160075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/05/2016] [Indexed: 01/03/2023]
Abstract
Transthyretin (TTR)-related amyloidoses are diseases characterized by extracellular deposition of amyloid fibrils and aggregates in tissues composed of insoluble misfolded TTR that becomes toxic. Previous studies have demonstrated the ability of small compounds in preventing and reversing TTR V30M deposition in transgenic mice gastrointestinal (GI) tract as well as lowering biomarkers associated with cellular stress and apoptotic mechanisms. In the present study we aimed to study TTR V30M aggregates effect in autophagy, a cellular mechanism crucial for cell survival that has been implicated in the development of several neurodegenerative diseases. We were able to demonstrate in cell culture that TTR V30M aggregates cause a partial impairment of the autophagic machinery as shown by p62 accumulation, whereas early steps of the autophagic flux remain unaffected as shown by autophagosome number evaluation and LC3 turnover assay. Our studies performed in TTR V30M transgenic animals demonstrated that tauroursodeoxycholic acid (TUDCA) and curcumin effectively reverse p62 accumulation in the GI tract pointing to the ability of both compounds to modulate autophagy additionally to mitigate apoptosis. Overall, our in vitro and in vivo studies establish an association between TTR V30M aggregates and autophagy impairment and suggest the use of autophagy modulators as an additional and alternative therapeutic approach for the treatment of TTR V30M-related amyloidosis.
Collapse
|
22
|
Ferreira N, Gonçalves NP, Saraiva MJ, Almeida MR. Curcumin: A multi-target disease-modifying agent for late-stage transthyretin amyloidosis. Sci Rep 2016; 6:26623. [PMID: 27197872 PMCID: PMC4873750 DOI: 10.1038/srep26623] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Transthyretin amyloidoses encompass a variety of acquired and hereditary diseases triggered by systemic extracellular accumulation of toxic transthyretin aggregates and fibrils, particularly in the peripheral nervous system. Since transthyretin amyloidoses are typically complex progressive disorders, therapeutic approaches aiming multiple molecular targets simultaneously, might improve therapy efficacy and treatment outcome. In this study, we evaluate the protective effect of physiologically achievable doses of curcumin on the cytotoxicity induced by transthyretin oligomers in vitro by showing reduction of caspase-3 activity and the levels of endoplasmic reticulum-resident chaperone binding immunoglobulin protein. When given to an aged Familial Amyloidotic Polyneuropathy mouse model, curcumin not only reduced transthyretin aggregates deposition and toxicity in both gastrointestinal tract and dorsal root ganglia but also remodeled congophilic amyloid material in tissues. In addition, curcumin enhanced internalization, intracellular transport and degradation of transthyretin oligomers by primary macrophages from aged Familial Amyloidotic Polyneuropathy transgenic mice, suggesting an impaired activation of naïve phagocytic cells exposed to transthyretin toxic intermediate species. Overall, our results clearly support curcumin or optimized derivatives as promising multi-target disease-modifying agent for late-stage transthyretin amyloidosis.
Collapse
Affiliation(s)
- Nelson Ferreira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal
| | - Nádia P Gonçalves
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050 - 313 Porto, Portugal
| | - Maria J Saraiva
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050 - 313 Porto, Portugal
| | - Maria R Almeida
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050 - 313 Porto, Portugal
| |
Collapse
|
23
|
Saelices L, Johnson LM, Liang WY, Sawaya MR, Cascio D, Ruchala P, Whitelegge J, Jiang L, Riek R, Eisenberg DS. Uncovering the Mechanism of Aggregation of Human Transthyretin. J Biol Chem 2015; 290:28932-43. [PMID: 26459562 PMCID: PMC4661406 DOI: 10.1074/jbc.m115.659912] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 11/06/2022] Open
Abstract
The tetrameric thyroxine transport protein transthyretin (TTR) forms amyloid fibrils upon dissociation and monomer unfolding. The aggregation of transthyretin has been reported as the cause of the life-threatening transthyretin amyloidosis. The standard treatment of familial cases of TTR amyloidosis has been liver transplantation. Although aggregation-preventing strategies involving ligands are known, understanding the mechanism of TTR aggregation can lead to additional inhibition approaches. Several models of TTR amyloid fibrils have been proposed, but the segments that drive aggregation of the protein have remained unknown. Here we identify β-strands F and H as necessary for TTR aggregation. Based on the crystal structures of these segments, we designed two non-natural peptide inhibitors that block aggregation. This work provides the first characterization of peptide inhibitors for TTR aggregation, establishing a novel therapeutic strategy.
Collapse
Affiliation(s)
- Lorena Saelices
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570, Swiss Federal Institute of Technology in Zürich (ETH), Physical Chemistry, ETH Hönggerberg, 8093 Zürich, Switzerland, and
| | - Lisa M Johnson
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Wilson Y Liang
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Michael R Sawaya
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Duilio Cascio
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Piotr Ruchala
- the Department of Psychiatry and Biobehavioral Sciences, UCLA and The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, Los Angeles, California 90024
| | - Julian Whitelegge
- the Department of Psychiatry and Biobehavioral Sciences, UCLA and The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, Los Angeles, California 90024
| | - Lin Jiang
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Roland Riek
- Swiss Federal Institute of Technology in Zürich (ETH), Physical Chemistry, ETH Hönggerberg, 8093 Zürich, Switzerland, and
| | - David S Eisenberg
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570,
| |
Collapse
|
24
|
Mangione PP, Deroo S, Ellmerich S, Bellotti V, Kolstoe S, Wood SP, Robinson CV, Smith MD, Tennent GA, Broadbridge RJ, Council CE, Thurston JR, Steadman VA, Vong AK, Swain CJ, Pepys MB, Taylor GW. Bifunctional crosslinking ligands for transthyretin. Open Biol 2015; 5:150105. [PMID: 26400472 PMCID: PMC4593668 DOI: 10.1098/rsob.150105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wild-type and variant forms of transthyretin (TTR), a normal plasma protein, are amyloidogenic and can be deposited in the tissues as amyloid fibrils causing acquired and hereditary systemic TTR amyloidosis, a debilitating and usually fatal disease. Reduction in the abundance of amyloid fibril precursor proteins arrests amyloid deposition and halts disease progression in all forms of amyloidosis including TTR type. Our previous demonstration that circulating serum amyloid P component (SAP) is efficiently depleted by administration of a specific small molecule ligand compound, that non-covalently crosslinks pairs of SAP molecules, suggested that TTR may be also amenable to this approach. We first confirmed that chemically crosslinked human TTR is rapidly cleared from the circulation in mice. In order to crosslink pairs of TTR molecules, promote their accelerated clearance and thus therapeutically deplete plasma TTR, we prepared a range of bivalent specific ligands for the thyroxine binding sites of TTR. Non-covalently bound human TTR-ligand complexes were formed that were stable in vitro and in vivo, but they were not cleared from the plasma of mice in vivo more rapidly than native uncomplexed TTR. Therapeutic depletion of circulating TTR will require additional mechanisms.
Collapse
Affiliation(s)
- P Patrizia Mangione
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Stéphanie Deroo
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Stephan Ellmerich
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Simon Kolstoe
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Stephen P Wood
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Martin D Smith
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Glenys A Tennent
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Robert J Broadbridge
- Peptide Protein Research Ltd, Claylands Road, Bishops Waltham, Southampton, Hampshire SO32 1QD, UK
| | - Claire E Council
- Peptide Protein Research Ltd, Claylands Road, Bishops Waltham, Southampton, Hampshire SO32 1QD, UK
| | - Joanne R Thurston
- Peptide Protein Research Ltd, Claylands Road, Bishops Waltham, Southampton, Hampshire SO32 1QD, UK
| | | | | | - Christopher J Swain
- Cambridge MedChem Consulting, 8 Mangers Lane, Duxford, Cambridge CB22 4RN, UK
| | - Mark B Pepys
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
25
|
Lavatelli F, Imperlini E, Orrù S, Rognoni P, Sarnataro D, Palladini G, Malpasso G, Soriano ME, Di Fonzo A, Valentini V, Gnecchi M, Perlini S, Salvatore F, Merlini G. Novel mitochondrial protein interactors of immunoglobulin light chains causing heart amyloidosis. FASEB J 2015. [PMID: 26220173 DOI: 10.1096/fj.15-272179] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In immunoglobulin (Ig) light-chain (LC) (AL) amyloidosis, AL deposition translates into life-threatening cardiomyopathy. Clinical and experimental evidence indicates that soluble cardiotoxic LCs are themselves harmful for cells, by which they are internalized. Hypothesizing that interaction of soluble cardiotoxic LCs with cellular proteins contributes to damage, we characterized their interactome in cardiac cells. LCs were purified from patients with AL amyloidosis cardiomyopathy or multiple myeloma without amyloidosis (the nonamyloidogenic/noncardiotoxic LCs served as controls) and employed at concentrations in the range observed in AL patients' sera. A functional proteomic approach, based on direct and inverse coimmunoprecipitation and mass spectrometry, allowed identifying LC-protein complexes. Findings were validated by colocalization, fluorescence lifetime imaging microscopy (FLIM)-fluorescence resonance energy transfer (FRET), and ultrastructural studies, using human primary cardiac fibroblasts (hCFs) and stem cell-derived cardiomyocytes. Amyloidogenic cardiotoxic LCs interact in vitro with specific intracellular proteins involved in viability and metabolism. Imaging confirmed that, especially in hCFs, cardiotoxic LCs (not controls) colocalize with mitochondria and spatially associate with selected interactors: mitochondrial optic atrophy 1-like protein and peroxisomal acyl-coenzyme A oxidase 1 (FLIM-FRET efficiencies 11 and 6%, respectively). Cardiotoxic LC-treated hCFs display mitochondrial ultrastructural changes, supporting mitochondrial involvement. We show that cardiotoxic LCs establish nonphysiologic protein-protein contacts in human cardiac cells, offering new clues on the pathogenesis of AL cardiomyopathy.
Collapse
Affiliation(s)
- Francesca Lavatelli
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Esther Imperlini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Stefania Orrù
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Paola Rognoni
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniela Sarnataro
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Giuseppina Palladini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Giuseppe Malpasso
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Maria Eugenia Soriano
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrea Di Fonzo
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Veronica Valentini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Massimiliano Gnecchi
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Stefano Perlini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Francesco Salvatore
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Giampaolo Merlini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Gonçalves NP, Costelha S, Saraiva MJ. Glial cells in familial amyloidotic polyneuropathy. Acta Neuropathol Commun 2014; 2:177. [PMID: 25519307 PMCID: PMC4280682 DOI: 10.1186/s40478-014-0177-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/08/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Transthyretin V30M mutation is the most common variant leading to Familial Amyloidotic Polyneuropathy. In this genetic disorder, Transthyretin accumulates preferentially in the extracellular matrix of peripheral and autonomic nervous systems leading to cell death and dysfunction. Thus, knowledge regarding important biological systems for Transthyretin clearance might unravel novel insights into Familial Amyloidotic Polyneuropathy pathophysiology. Herein, our aim was to evaluate the ability of glial cells from peripheral and autonomic nervous systems in Transthyretin uptake and degradation. We assessed the role of glial cells in Familial Amyloidotic Polyneuropathy pathogenesis with real-time polymerase chain reaction, immunohistochemistry, interference RNA and confocal microscopy. RESULTS Histological examination revealed that Schwann cells and satellite cells, from an Familial Amyloidotic Polyneuropathy mouse model, internalize and degrade non-fibrillar Transthyretin. Immunohistochemical studies of human nerve biopsies from V30M patients and disease controls showed intracellular Transthyretin immunoreactivity in Schwann cells, corroborating animal data. Additionally, we found Transthyretin expression in colon of this Familial Amyloidotic Polyneuropathy mouse model, probably being synthesized by satellite cells of the myenteric plexus. CONCLUSIONS Glial cells from the peripheral and autonomic nervous systems are able to internalize Transthyretin. Overall, these findings bring to light the closest relationship between Transthyretin burden and clearance from the nervous system extracellular milieu.
Collapse
|