1
|
Klimontova M, Zhang H, Campos-Laborie F, Webster N, Andrews B, Kim Chung KC, Hili R, Kouzarides T, Bannister AJ. THUMPD3 regulates alternative splicing of ECM transcripts in human lung cancer cells and promotes proliferation and migration. PLoS One 2024; 19:e0314655. [PMID: 39656728 DOI: 10.1371/journal.pone.0314655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
RNA-modifying enzymes have recently garnered considerable attention due to their relevance in cancer biology, identifying them as potential targets for novel therapeutic intervention. THUMPD3 was recently identified as an RNA methyltransferase catalysing N2-methylguanosine (m2G) within certain tRNAs. In this study, we unveil a novel role for THUMPD3 in lung cancer cells. Depletion of the enzyme from lung cancer cells significantly impairs their fitness, negatively impacting key cellular processes such as proliferation and migration. Notably, exogenous expression of THUMPD3 in normal lung fibroblasts stimulates their proliferation rate. Additionally, transcriptome-wide analyses reveal that depletion of THUMPD3 from lung cancer cells induces substantial changes in the expression of cell surface proteins, including those comprising the extracellular matrix (ECM). We further demonstrate that THUMPD3 maintains expression of an extra-domain B (EDB) containing pro-tumour isoform of Fibronectin-1 mRNA, encoding FN1, an important ECM protein. Crucially, depletion of THUMPD3 promotes an alternative splicing event that removes the EDB-encoding exon from Fibronectin-1. This is consistent with THUMPD3 depletion reducing cellular proliferation and migration. Moreover, depletion of THUMPD3 selectively and preferentially affects the alternative splicing of ECM and cell adhesion molecule encoding transcripts, as well as those encoding neurodevelopmental proteins. Overall, these findings highlight THUMPD3 as an important player in regulating cancer-relevant alternative splicing and they provide a rationale for further investigations into THUMPD3 as a candidate target in anti-cancer therapy.
Collapse
Affiliation(s)
- Marie Klimontova
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- STORM Therapeutics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Han Zhang
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francisco Campos-Laborie
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Natalie Webster
- STORM Therapeutics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Byron Andrews
- STORM Therapeutics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Kimberley Chung Kim Chung
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
| | - Ryan Hili
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
| | - Tony Kouzarides
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Bannister
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Huang B, Han R, Tan H, Zhu W, Li Y, Jiang F, Xie C, Ren Z, Shi R. Scutellarin ameliorates diabetic nephropathy via TGF-β1 signaling pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:25. [PMID: 38656633 PMCID: PMC11043297 DOI: 10.1007/s13659-024-00446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Breviscapine, a natural flavonoid mixture derived from the traditional Chinese herb Erigeron breviscapus (Vant.) Hand-Mazz, has demonstrated a promising potential in improving diabetic nephropathy (DN). However, the specific active constituent(s) responsible for its therapeutic effects and the underlying pharmacological mechanisms remain unclear. In this study, we aimed to investigate the impact of scutellarin, a constituent of breviscapine, on streptozotocin-induced diabetic nephropathy and elucidate its pharmacological mechanism(s). Our findings demonstrate that scutellarin effectively ameliorates various features of DN in vivo, including proteinuria, glomerular expansion, mesangial matrix accumulation, renal fibrosis, and podocyte injury. Mechanistically, scutellarin appears to exert its beneficial effects through modulation of the transforming growth factor-β1 (TGF-β1) signaling pathway, as well as its interaction with the extracellular signal-regulated kinase (Erk) and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Bangrui Huang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education)Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Rui Han
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Hong Tan
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Wenzhuo Zhu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Yang Li
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Fakun Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education)Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Chun Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education)Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Zundan Ren
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Rou Shi
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China.
| |
Collapse
|
3
|
Hilsabeck TAU, Liu-Bryan R, Guo T, Wilson KA, Bose N, Raftery D, Beck JN, Lang S, Jin K, Nelson CS, Oron T, Stoller M, Promislow D, Brem RB, Terkeltaub R, Kapahi P. A fly GWAS for purine metabolites identifies human FAM214 homolog medusa, which acts in a conserved manner to enhance hyperuricemia-driven pathologies by modulating purine metabolism and the inflammatory response. GeroScience 2022; 44:2195-2211. [PMID: 35381951 PMCID: PMC9616999 DOI: 10.1007/s11357-022-00557-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/25/2022] [Indexed: 01/14/2023] Open
Abstract
Elevated serum urate (hyperuricemia) promotes crystalline monosodium urate tissue deposits and gout, with associated inflammation and increased mortality. To identify modifiers of uric acid pathologies, we performed a fly Genome-Wide Association Study (GWAS) on purine metabolites using the Drosophila Genetic Reference Panel strains. We tested the candidate genes using the Drosophila melanogaster model of hyperuricemia and uric acid crystallization ("concretion formation") in the kidney-like Malpighian tubule. Medusa (mda) activity increased urate levels and inflammatory response programming. Conversely, whole-body mda knockdown decreased purine synthesis precursor phosphoribosyl pyrophosphate, uric acid, and guanosine levels; limited formation of aggregated uric acid concretions; and was sufficient to rescue lifespan reduction in the fly hyperuricemia and gout model. Levels of mda homolog FAM214A were elevated in inflammatory M1- and reduced in anti-inflammatory M2-differentiated mouse bone marrow macrophages, and influenced intracellular uric acid levels in human HepG2 transformed hepatocytes. In conclusion, mda/FAM214A acts in a conserved manner to regulate purine metabolism, promotes disease driven by hyperuricemia and associated tissue inflammation, and provides a potential novel target for uric acid-driven pathologies.
Collapse
Affiliation(s)
- Tyler A U Hilsabeck
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, 90007, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California San Diego, San Diego, CA, 92093, USA
| | - Tracy Guo
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California San Diego, San Diego, CA, 92093, USA
| | - Kenneth A Wilson
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Neelanjan Bose
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer N Beck
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA, 94143, USA
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Christopher S Nelson
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Tal Oron
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Marshall Stoller
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA, 94143, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Rachel B Brem
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, 90007, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California San Diego, San Diego, CA, 92093, USA
| | - Pankaj Kapahi
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, 90007, USA.
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA, 94143, USA.
| |
Collapse
|
4
|
Urae S, Harita Y, Udagawa T, Ode KL, Nagahama M, Kajiho Y, Kanda S, Saito A, Ueda HR, Nangaku M, Oka A. A cellular model of albumin endocytosis uncovers a link between membrane and nuclear proteins. J Cell Sci 2020; 133:jcs242859. [PMID: 32482797 DOI: 10.1242/jcs.242859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cubilin (CUBN) and amnionless (AMN), expressed in kidney and intestine, form a multiligand receptor complex called CUBAM that plays a crucial role in albumin absorption. To date, the mechanism of albumin endocytosis mediated by CUBAM remains to be elucidated. Here, we describe a quantitative assay to evaluate albumin uptake by CUBAM using cells expressing full-length CUBN and elucidate the crucial roles of the C-terminal part of CUBN and the endocytosis signal motifs of AMN in albumin endocytosis. We also demonstrate that nuclear valosin-containing protein-like 2 (NVL2), an interacting protein of AMN, is involved in this process. Although NVL2 was mainly localized in the nucleolus in cells without AMN expression, it was translocated to the extranuclear compartment when coexpressed with AMN. NVL2 knockdown significantly impaired internalization of the CUBN-albumin complex in cultured cells, demonstrating an involvement of NVL2 in endocytic regulation. These findings uncover a link between membrane and nucleolar proteins that is involved in endocytic processes.
Collapse
Affiliation(s)
- Seiya Urae
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohiro Udagawa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Yuko Kajiho
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shoichiro Kanda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata-shi, Niigata 951-8510, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Wako-shi, Saitama 351-0198, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
5
|
Lee EJ, Kang MK, Kim YH, Kim DY, Oh H, Kim SI, Oh SY, Kang YH. Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy. Nutrients 2019; 11:E127. [PMID: 30634545 PMCID: PMC6705957 DOI: 10.3390/nu11010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/16/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced glycation end products (AGE) play a causative role in the development of aberrant phenotypes of intraglomerular mesangial cells, contributing to acute/chronic glomerulonephritis. The aim of this study was to explore mechanistic effects of the flavonoid chrysin present in bee propolis and herbs on actin dynamics, focal adhesion, and the migration of AGE-exposed mesangial cells. The in vitro study cultured human mesangial cells exposed to 33 mM glucose and 100 μg/mL AGE-bovine serum albumin (AGE-BSA) for up to 5 days in the absence and presence of 1⁻20 μM chrysin. The in vivo study employed db/db mice orally administrated for 10 weeks with 10 mg/kg chrysin. The presence of ≥10 μM chrysin attenuated mesangial F-actin induction and bundle formation enhanced by AGE. Chrysin reduced the mesangial induction of α-smooth muscle actin (α-SMA) by glucose, and diminished the tissue α-SMA level in diabetic kidneys, indicating its blockade of mesangial proliferation. The treatment of chrysin inhibited the activation of vinculin and paxillin and the induction of cortactin, ARP2/3, fascin-1, and Ena/VASP-like protein in AGE-exposed mesangial cells. Oral administration of chrysin diminished tissue levels of cortactin and fascin-1 elevated in diabetic mouse kidneys. Mesangial cell motility was enhanced by AGE, which was markedly attenuated by adding chrysin to cells. On the other hand, chrysin dampened the induction of autophagy-related genes of beclin-1, LC3 I/II, Atg3, and Atg7 in mesangial cells exposed to AGE and in diabetic kidneys. Furthermore, chrysin reduced the mTOR activation in AGE-exposed mesangial cells and diabetic kidneys. The induction of mesangial F-actin, cortactin, and fascin-1 by AGE was deterred by the inhibition of autophagy and mTOR. Thus, chrysin may encumber diabetes-associated formation of actin bundling and focal adhesion and mesangial cell motility through disturbing autophagy and mTOR pathway.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea.
| | - Min-Kyung Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea.
| | - Yun-Ho Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea.
| | - Dong Yeon Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea.
| | - Hyeongjoo Oh
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea.
| | - Soo-Il Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea.
| | - Su Yeon Oh
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea.
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea.
| |
Collapse
|
6
|
Faralla C, Bastounis EE, Ortega FE, Light SH, Rizzuto G, Gao L, Marciano DK, Nocadello S, Anderson WF, Robbins JR, Theriot JA, Bakardjiev AI. Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing. PLoS Pathog 2018; 14:e1007094. [PMID: 29847585 PMCID: PMC6044554 DOI: 10.1371/journal.ppat.1007094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/13/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
During pregnancy, the placenta protects the fetus against the maternal immune response, as well as bacterial and viral pathogens. Bacterial pathogens that have evolved specific mechanisms of breaching this barrier, such as Listeria monocytogenes, present a unique opportunity for learning how the placenta carries out its protective function. We previously identified the L. monocytogenes protein Internalin P (InlP) as a secreted virulence factor critical for placental infection. Here, we show that InlP, but not the highly similar L. monocytogenes internalin Lmo2027, binds to human afadin (encoded by AF-6), a protein associated with cell-cell junctions. A crystal structure of InlP reveals several unique features, including an extended leucine-rich repeat (LRR) domain with a distinctive Ca2+-binding site. Despite afadin's involvement in the formation of cell-cell junctions, MDCK epithelial cells expressing InlP displayed a decrease in the magnitude of the traction stresses they could exert on deformable substrates, similar to the decrease in traction exhibited by AF-6 knock-out MDCK cells. L. monocytogenes ΔinlP mutants were deficient in their ability to form actin-rich protrusions from the basal face of polarized epithelial monolayers, a necessary step in the crossing of such monolayers (transcytosis). A similar phenotype was observed for bacteria expressing an internal in-frame deletion in inlP (inlP ΔLRR5) that specifically disrupts its interaction with afadin. However, afadin deletion in the host cells did not rescue the transcytosis defect. We conclude that secreted InlP targets cytosolic afadin to specifically promote L. monocytogenes transcytosis across the basal face of epithelial monolayers, which may contribute to the crossing of the basement membrane during placental infection.
Collapse
Affiliation(s)
- Cristina Faralla
- Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
| | - Effie E. Bastounis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Fabian E. Ortega
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Samuel H. Light
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabrielle Rizzuto
- Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Lei Gao
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Denise K. Marciano
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Salvatore Nocadello
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jennifer R. Robbins
- Department of Biology, Xavier University, Cincinnati, Ohio, United States of America
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anna I. Bakardjiev
- Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
Maruo T, Mandai K, Miyata M, Sakakibara S, Wang S, Sai K, Itoh Y, Kaito A, Fujiwara T, Mizoguchi A, Takai Y. NGL-3-induced presynaptic differentiation of hippocampal neurons in an afadin-dependent, nectin-1-independent manner. Genes Cells 2017; 22:742-755. [DOI: 10.1111/gtc.12510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
| | - Shujie Wang
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Kousyoku Sai
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yu Itoh
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| | - Aika Kaito
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Takeshi Fujiwara
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Akira Mizoguchi
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe 650-0047 Japan
| |
Collapse
|
8
|
Cell biology of mesangial cells: the third cell that maintains the glomerular capillary. Anat Sci Int 2016; 92:173-186. [PMID: 26910209 DOI: 10.1007/s12565-016-0334-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
Abstract
The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.
Collapse
|