1
|
Stanley J, Hui H, Erber W, Clynick B, Fuller K. Analysis of human chromosomes by imaging flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 100:541-553. [PMID: 34033226 DOI: 10.1002/cyto.b.22023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/18/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022]
Abstract
Chromosomal analysis is traditionally performed by karyotyping on metaphase spreads, or by fluorescent in situ hybridization (FISH) on interphase cells or metaphase spreads. Flow cytometry was introduced as a new method to analyze chromosomes number (ploidy) and structure (telomere length) in the 1970s with data interpretation largely based on fluorescence intensity. This technology has had little uptake for human cytogenetic applications primarily due to analytical challenges. The introduction of imaging flow cytometry, with the addition of digital images to standard multi-parametric flow cytometry quantitative tools, has added a new dimension. The ability to visualize the chromosomes and FISH signals overcomes the inherent difficulties when the data is restricted to fluorescence intensity. This field is now moving forward with methods being developed to assess chromosome number and structure in whole cells (normal and malignant) in suspension. A recent advance has been the inclusion of immunophenotyping such that antigen expression can be used to identify specific cells of interest for specific chromosomes and their abnormalities. This capability has been illustrated in blood cancers, such as chronic lymphocytic leukemia and plasma cell myeloma. The high sensitivity and specificity achievable highlights the potential imaging flow cytometry has for cytogenomic applications (i.e., diagnosis and disease monitoring). This review introduces and describes the development, current status, and applications of imaging flow cytometry for chromosomal analysis of human chromosomes.
Collapse
Affiliation(s)
- Jason Stanley
- Translational Cancer Pathology Laboratory, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Henry Hui
- Translational Cancer Pathology Laboratory, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Wendy Erber
- Translational Cancer Pathology Laboratory, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Britt Clynick
- Institute for Respiratory Health, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Kathy Fuller
- Translational Cancer Pathology Laboratory, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
2
|
Circulating monocyte subsets and heart failure prognosis. PLoS One 2018; 13:e0204074. [PMID: 30240448 PMCID: PMC6150659 DOI: 10.1371/journal.pone.0204074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/31/2018] [Indexed: 01/06/2023] Open
Abstract
Monocytes are a heterogeneous population of effector cells with key roles in tissue integrity restoration and maintenance. Here, we explore the association of monocyte subsets and prognosis in patients with ambulatory heart failure (HF). Monocyte subsets were classified as classical (CD14++/CD16-), intermediate (CD14++/CD16+), or non-classical (CD14+/CD16++). Percentage distribution and absolute cell count were assessed in each subset, and multivariable Cox regression analyses were performed with all-cause death, HF-related hospitalization, and the composite end-point of both as dependent variables. 400 patients were consecutively included (72.8% male, age 69.4±12.2 years, 45.5% from ischemic aetiology, left ventricle ejection fraction (LVEF) 41.6% ±14.5, New York Heart Association (NYHA) class II 62.8% and III 30.8%). During a mean follow-up of 2.6±0.9 years, 107 patients died, 99 had a HF-related hospitalization and 160 suffered the composite end-point of all-cause death or HF-related hospitalization. Monocyte subsets assessed in percentages were not independently associated to any of the end-points. When considering number of cells/μL, intermediate subset was independently associated with an increase of all-cause death (HR 1.25 [95% CI 1,02-1.52], p = 0.03), and the composite end-point HR 1.20 [95% CI 1,03-1.40], p = 0.02). The presented findings show that absolute cell count of monocyte subsets was preferred over monocyte percentage for prognosis stratification for outpatients with HF. The intermediate monocyte subset provides information on increased risk of all-cause death and the composite end-point.
Collapse
|
3
|
Teubel I, Elchinova E, Roura S, Fernández MA, Gálvez-Montón C, Moliner P, de Antonio M, Lupón J, Bayés-Genís A. Telomere attrition in heart failure: a flow-FISH longitudinal analysis of circulating monocytes. J Transl Med 2018; 16:35. [PMID: 29463269 PMCID: PMC5819711 DOI: 10.1186/s12967-018-1412-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/15/2018] [Indexed: 11/11/2022] Open
Abstract
Background Cross-sectional investigations report shorter telomeres in patients with heart failure (HF); however, no studies describe telomere length (TL) trajectory and its relationship with HF progression. Here we aimed to investigate telomere shortening over time and its relationship to outcomes. Methods Our study cohort included 101 ambulatory patients with HF. Blood samples were collected at baseline (n = 101) and at the 1-year follow-up (n = 54). Using flow-FISH analysis of circulating monocytes, we simultaneously measured three monocyte subsets—classical (CD14++CD16−), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++)—and their respective TLs based on FITC-labeled PNA probe hybridization. The primary endpoints were all-cause death and the composite of all-cause death or HF-related hospitalization, assessed at 2.3 ± 0.6 years. All statistical analyses were executed by using the SPSS 15.0 software, and included Student’s t test and ANOVA with post hoc Scheffe analysis, Pearson or Spearman rho correlation and univariate Cox regression when applicable. Results We found high correlations between TL values of different monocyte subsets: CD14++CD16+ vs. CD14++CD16−, R = 0.95, p < 0.001; CD14++CD16+ vs. CD14+CD16++, R = 0.90, p < 0.001; and CD14++CD16− vs. CD14+CD16++, R = 0.89, p < 0.001. Mean monocyte TL exhibited significant attrition from baseline to the 1-year follow-up (11.1 ± 3.3 vs. 8.3 ± 2.1, p < 0.001). TL did not significantly differ between monocyte subsets at either sampling time-point (all p values > 0.1). Cox regression analyses did not indicate that TL or ΔTL was associated with all-cause death or the composite endpoint. Conclusions Overall, this longitudinal study demonstrated a ~ 22% reduction of TL in monocytes from ambulatory patients with HF within 1 year. TL and ΔTL were not related to outcomes over long-term follow-up. Electronic supplementary material The online version of this article (10.1186/s12967-018-1412-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iris Teubel
- Flow Cytometry Facility, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Elena Elchinova
- Cardiology Service, Germans Trias i Pujol University Hospital, Carretera del Canyet s/n, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Center of Regenerative Medicinein Barcelona, Barcelona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Moliner
- Cardiology Service, Germans Trias i Pujol University Hospital, Carretera del Canyet s/n, 08916, Badalona, Spain
| | - Marta de Antonio
- Cardiology Service, Germans Trias i Pujol University Hospital, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Lupón
- Cardiology Service, Germans Trias i Pujol University Hospital, Carretera del Canyet s/n, 08916, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Cardiology Service, Germans Trias i Pujol University Hospital, Carretera del Canyet s/n, 08916, Badalona, Spain. .,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. .,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|