1
|
Nair B, Kamath AJ, Pradeep G, Devan AR, Sethi G, Nath LR. Unveiling the role of the Hedgehog signaling pathway in chronic liver disease: Therapeutic insights and strategies. Drug Discov Today 2024; 29:104064. [PMID: 38901671 DOI: 10.1016/j.drudis.2024.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The Hedgehog (Hh) signaling plays a crucial role in adult liver repair by promoting the expansion and differentiation of hepatic progenitor cells into mature hepatocytes and cholangiocytes. Elevated Hh signaling is associated with severe chronic liver diseases, making Hh inhibitors a promising therapeutic option. Sonidegib and vismodegib, both FDA-approved Smoothened (Smo) inhibitors for basal cell carcinoma (BCC), have shown potential for application in chronic liver disorders based on clinical evidence. We highlight the vital role of the Hh pathway in metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH), liver fibrosis, and hepatocellular carcinoma (HCC). Moreover, therapeutic strategies targeting the Hh pathway in chronic liver diseases have been discussed, providing a basis for improving disease management and outcomes.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Govind Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India.
| |
Collapse
|
2
|
Jeng KS, Chang CF, Tsang YM, Sheen IS, Jeng CJ. Reappraisal of the Roles of the Sonic Hedgehog Signaling Pathway in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1739. [PMID: 38730691 PMCID: PMC11083695 DOI: 10.3390/cancers16091739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
HCC remains one of the leading causes of cancer-related death globally. The main challenges in treatments of hepatocellular carcinoma (HCC) primarily arise from high rates of postoperative recurrence and the limited efficacy in treating advanced-stage patients. Various signaling pathways involved in HCC have been reported. Among them, the Sonic hedgehog (SHH) signaling pathway is crucial. The presence of SHH ligands is identified in approximately 60% of HCC tumor tissues, including tumor nests. PTCH-1 and GLI-1 are detected in more than half of HCC tissues, while GLI-2 is found in over 84% of HCC tissues. The SHH signaling pathway (including canonical and non-canonical) is involved in different aspects of HCC, including hepatocarcinogenesis, tumor growth, tumor invasiveness, progression, and migration. The SHH signaling pathway also contributes to recurrence, metastasis, modulation of the cancer microenvironment, and sustaining cancer stem cells. It also affects the resistance of HCC cells to chemotherapy, target therapy, and radiotherapy. Reappraisal of the roles of the SHH signaling pathway in HCC may trigger some novel therapies for HCC.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chiung-Fang Chang
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Yuk-Ming Tsang
- Department of Imaging Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - I-Shyan Sheen
- Department of Gastroenterology & Hepatology, Linkou Chang Memorial Hospital, Chang Gung Medical Foundation, Taoyuan City 333, Taiwan;
| | - Chi-Juei Jeng
- Graduate Institude of Clinical Medicine, National Taiwan University, College of Medicine, Taipei City 10617, Taiwan;
| |
Collapse
|
3
|
Ding J, Yang YY, Li PT, Ma Y, Zhang L, Zhou Y, Jin C, Li HY, Zhu YF, Liu XP, Liu ZJ, Jia HL, Liu PG, Wu J. TGF-β1/SMAD3-driven GLI2 isoform expression contributes to aggressive phenotypes of hepatocellular carcinoma. Cancer Lett 2024; 588:216768. [PMID: 38453045 DOI: 10.1016/j.canlet.2024.216768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Hedgehog signaling is activated in response to liver injury, and modulates organogenesis. However, the role of non-canonical hedgehog activation via TGF-β1/SMAD3 in hepatic carcinogenesis is poorly understood. TGF-β1/SMAD3-mediated non-canonical activation was found in approximately half of GLI2-positive hepatocellular carcinoma (HCC), and two new GLI2 isoforms with transactivating activity were identified. Phospho-SMAD3 interacted with active GLI2 isoforms to transactivate downstream genes in modulation of stemness, epithelial-mesenchymal transition, chemo-resistance and metastasis in poorly-differentiated hepatoma cells. Non-canonical activation of hedgehog signaling was confirmed in a transgenic HBV-associated HCC mouse model. Inhibition of TGF-β/SMAD3 signaling reduced lung metastasis in a mouse in situ hepatic xenograft model. In another cohort of 55 HCC patients, subjects with high GLI2 expression had a shorter disease-free survival than those with low expression. Moreover, co-positivity of GLI2 with SMAD3 was observed in 87.5% of relapsed HCC patients with high GLI2 expression, indicating an increased risk of post-resection recurrence of HCC. The findings underscore that suppressing the non-canonical hedgehog signaling pathway may confer a potential strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, 200040, China.
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Peng-Tao Li
- Department of Hepatobiliary & Pancreatic Surgery, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Yue Ma
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Zhang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui-Yan Li
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan-Fei Zhu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xiu-Ping Liu
- Department of Pathology and Laboratory Medicine, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Zheng-Jin Liu
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, 200041, China
| | - Ping-Guo Liu
- Department of Hepatobiliary & Pancreatic Surgery, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China; Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China; Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
4
|
Huang Y, Wang S, Zhang X, Yang C, Wang S, Cheng H, Ke A, Gao C, Guo K. Identification of Fasudil as a collaborator to promote the anti-tumor effect of lenvatinib in hepatocellular carcinoma by inhibiting GLI2-mediated hedgehog signaling pathway. Pharmacol Res 2024; 200:107082. [PMID: 38280440 DOI: 10.1016/j.phrs.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.
Collapse
Affiliation(s)
- Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Siwei Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China; Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojun Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Hongxia Cheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Aiwu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| |
Collapse
|
5
|
Mohammed OA, Doghish AS, Saleh LA, Alghamdi M, Alamri MMS, Alfaifi J, Adam MIE, Alharthi MH, Alshahrani AM, Alhalafi AH, BinAfif WF, Rezigalla AA, Abdel-Reheim MA, El-Wakeel HS, Attia MA, Elmorsy EA, Al-Noshokaty TM, Nomier Y, Saber S. Itraconazole halts hepatocellular carcinoma progression by modulating sonic hedgehog signaling in rats: A novel therapeutic approach. Pathol Res Pract 2024; 253:155086. [PMID: 38176308 DOI: 10.1016/j.prp.2023.155086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Liver cancer stands as the fourth leading global cause of death, and its prognosis remains grim due to the limited effectiveness of current medical interventions. Among the various pathways implicated in the development of hepatocellular carcinoma (HCC), the hedgehog signaling pathway has emerged as a crucial player. Itraconazole, a relatively safe and cost-effective antifungal medication, has gained attention for its potential as an anticancer agent. Its primary mode of action involves inhibiting the hedgehog pathway, yet its impact on HCC has not been elucidated. The main objective of this study was to investigate the effect of itraconazole on diethylnitrosamine-induced early-stage HCC in rats. Our findings revealed that itraconazole exhibited a multifaceted arsenal against HCC by downregulating the expression of key components of the hedgehog pathway, shh, smoothened (SMO), and GLI family zinc finger 1 (GLI1), and GLI2. Additionally, itraconazole extended survival and improved liver tissue structure, attributed mainly to its inhibitory effects on hedgehog signaling. Besides, itraconazole demonstrated a regulatory effect on Notch1, and Wnt/β-catenin signaling molecules. Consequently, itraconazole displayed diverse anticancer properties, including anti-inflammatory, antiangiogenic, antiproliferative, and apoptotic effects, as well as the potential to induce autophagy. Moreover, itraconazole exhibited a promise to impede the transformation of epithelial cells into a more mesenchymal-like phenotype. Overall, this study emphasizes the significance of targeting the hedgehog pathway with itraconazole as a promising avenue for further exploration in clinical studies related to HCC treatment.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology and Toxicology, Collage of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hend S El-Wakeel
- Physiology Department, Benha Faculty of Medicine, Benha University, Qalubyia 13518, Egypt; Physiology Department, Al-Baha Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia.
| | - Mohammed A Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences , College of Medicine Almaarefa University Diriyiah, 13713, Riyadh, Saudi Arabia.
| | - Elsayed A Elmorsy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Therapeutics Department, Qassim College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| |
Collapse
|
6
|
Jing F, Li X, Jiang H, Sun J, Guo Q. Combating drug resistance in hepatocellular carcinoma: No awareness today, no action tomorrow. Biomed Pharmacother 2023; 167:115561. [PMID: 37757493 DOI: 10.1016/j.biopha.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the sixth most common cancer worldwide, is associated with a high degree of malignancy and poor prognosis. Patients with early HCC may benefit from surgical resection to remove tumor tissue and a margin of healthy tissue surrounding it. Unfortunately, most patients with HCC are diagnosed at an advanced or distant stage, at which point resection is not feasible. Systemic therapy is now routinely prescribed to patients with advanced HCC; however, drug resistance has become a major obstacle to the treatment of HCC and exploring purported mechanisms promoting drug resistance remains a challenge. Here, we focus on the determinants of drug resistance from the perspective of non-coding RNAs (ncRNAs), liver cancer stem cells (LCSCs), autophagy, epithelial-mesenchymal transition (EMT), exosomes, ferroptosis, and the tumor microenvironment (TME), with the aim to provide new insights into HCC treatment.
Collapse
Affiliation(s)
- Fanbo Jing
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Li
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Jiang
- Qingdao Haici Hospital, Qingdao 266000, China
| | - Jialin Sun
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Miller JS, Bennett NE, Rhoades JA. Targeting hedgehog-driven mechanisms of drug-resistant cancers. Front Mol Biosci 2023; 10:1286090. [PMID: 37954979 PMCID: PMC10634604 DOI: 10.3389/fmolb.2023.1286090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Due to the cellular plasticity that is inherent to cancer, the acquisition of resistance to therapy remains one of the biggest obstacles to patient care. In many patients, the surviving cancer cell subpopulation goes on to proliferate or metastasize, often as the result of dramatically altered cell signaling and transcriptional pathways. A notable example is the Hedgehog (Hh) signaling pathway, which is a driver of several cancer subtypes and aberrantly activated in a wide range of malignancies in response to therapy. This review will summarize the field's current understanding of the many roles played by Hh signaling in drug resistance and will include topics such as non-canonical activation of Gli proteins, amplification of genes which promote tolerance to chemotherapy, the use of hedgehog-targeted drugs and tool compounds, and remaining gaps in our knowledge of the transcriptional mechanisms at play.
Collapse
Affiliation(s)
- Jade S. Miller
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Pharmacology Training Program, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Natalie E. Bennett
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Julie A. Rhoades
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Pharmacology Training Program, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
8
|
Jeng KS, Chang CF, Sheen IS, Jeng CJ, Wang CH. Cellular and Molecular Biology of Cancer Stem Cells of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:1417. [PMID: 36674932 PMCID: PMC9861908 DOI: 10.3390/ijms24021417] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death globally. The cancer stem cells (CSCs) of HCC are responsible for tumor growth, invasion, metastasis, recurrence, chemoresistance, target therapy resistance and radioresistance. The reported main surface markers used to identify liver CSCs include epithelial cell adhesion/activating molecule (EpCAM), cluster differentiation 90 (CD90), CD44 and CD133. The main molecular signaling pathways include the Wnt/β-catenin, transforming growth factors-β (TGF-β), sonic hedgehog (SHH), PI3K/Akt/mTOR and Notch. Patients with EpCAM-positive alpha-fetoprotein (AFP)-positive HCC are usually young but have advanced tumor-node-metastasis (TNM) stages. CD90-positive HCCs are usually poorly differentiated with worse prognosis. Those with CD44-positive HCC cells develop early metastases. Those with CD133 expression have a higher recurrence rate and a shorter overall survival. The Wnt/β-catenin signaling pathway triggers angiogenesis, tumor infiltration and metastasis through the enhancement of angiogenic factors. All CD133+ liver CSCs, CD133+/EpCAM+ liver CSCs and CD44+ liver CSCs contribute to sorafenib resistance. SHH signaling could protect HCC cells against ionizing radiation in an autocrine manner. Reducing the CSC population of HCC is crucial for the improvement of the therapy of advanced HCC. However, targeting CSCs of HCC is still challenging.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - I-Shyang Sheen
- Department of Hepato Gastroenterology, Linkou Medical Center, Chang-Gung University, Taoyuan City 33305, Taiwan
| | - Chi-Juei Jeng
- Postgraduate of Institute of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Wang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| |
Collapse
|
9
|
Sharma U, Tuli HS, Uttam V, Choudhary R, Sharma B, Sharma U, Prakash H, Jain A. Role of Hedgehog and Hippo signaling pathways in cancer: A special focus on non-coding RNAs. Pharmacol Res 2022; 186:106523. [DOI: 10.1016/j.phrs.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
|
10
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
11
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
12
|
Zhou X, Huang JM, Li TM, Liu JQ, Wei ZL, Lan CL, Zhu GZ, Liao XW, Ye XP, Peng T. Clinical Significance and Potential Mechanisms of ATP Binding Cassette Subfamily C Genes in Hepatocellular Carcinoma. Front Genet 2022; 13:805961. [PMID: 35342392 PMCID: PMC8948437 DOI: 10.3389/fgene.2022.805961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
The purpose of this investigation was to assess the diagnostic and prognostic significance of ATP binding cassette subfamily C (ABCC) genes in hepatocellular carcinoma (HCC). The Student t-test was used to compare the expression level of ABCCs between HCC and paraneoplastic tissues. Receiver operating characteristic curve (ROC) analysis was applied for diagnostic efficiency assessment. The Kaplan-Meier method and Cox proportional hazards model were respectively applied for survival analysis. Genes with prognostic significance were subsequently used to construct prognostic models. From the perspective of genome-wide enrichment analysis, the mechanisms of prognosis-related ABCC genes were attempted to be elaborated by gene set enrichment analysis (GSEA). It was observed in the TCGA database that ABCC1, ABCC4, ABCC5, and ABCC10 were significantly upregulated in tumor tissues, while ABCC6 and ABCC7 were downregulated in HCC tissues. Receiver operating characteristic analysis revealed that ABCC7 might be a potential diagnostic biomarker in HCC. ABCC1, ABCC4, ABCC5, and ABCC6 were significantly related to the prognosis of HCC in the TCGA database. The prognostic significance of ABCC1, ABCC4, ABCC5, and ABCC6 was also observed in the Guangxi cohort. In the Guangxi cohort, both polymerase chain reaction and IHC (immunohistochemical) assays demonstrated higher expression of ABCC1, ABCC4, and ABCC5 in HCC compared to liver tissues, while the opposite was true for ABCC6. GSEA analysis indicated that ABCC1 was associated with tumor differentiation, nod-like receptor signal pathway, and so forth. It also revealed that ABCC4 might play a role in HCC by regulating epithelial-mesenchymal transition, cytidine analog pathway, met pathway, and so forth. ABCC5 might be associated with the fatty acid metabolism and KRT19 in HCC. ABCC6 might impact the cell cycle in HCC by regulating E2F1 and myc. The relationship between ABCC genes and immune infiltration was explored, and ABCC1,4,5 were found to be positively associated with infiltration of multiple immune cells, while ABCC6 was found to be the opposite. In conclusion, ABCC1, ABCC4, ABCC5, and ABCC6 might be prognostic biomarkers in HCC. The prognostic models constructed with ABCC1, ABCC4, ABCC5, and ABCC6 had satisfactory efficacy.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Jia-Mi Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Tian-Man Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Jun-Qi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Zhong-Liu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Chen-Lu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xin-Ping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
13
|
Kotulova J, Lonova K, Kubickova A, Vrbkova J, Kourilova P, Hajduch M, Dzubak P. 2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines. Int J Mol Med 2022; 49:31. [PMID: 35039871 PMCID: PMC8788926 DOI: 10.3892/ijmm.2022.5086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Specific A3 adenosine receptor (A3AR) agonist, 2-chloro-N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine (2-Cl-IB-MECA), demonstrates anti-proliferative effects on various types of tumor. In the present study, the cytotoxicity of 2-Cl-IB-MECA was analyzed in a panel of tumor and non-tumor cell lines and its anticancer mechanisms in JoPaca-1 pancreatic and Hep-3B hepatocellular carcinoma cell lines were also investigated. Initially, decreased tumor cell proliferation, cell accumulation in the G1 phase and inhibition of DNA and RNA synthesis was found. Furthermore, western blot analysis showed decreased protein expression level of β-catenin, patched1 (Ptch1) and glioma-associated oncogene homolog zinc finger protein 1 (Gli1), which are components of the Wnt/β-catenin and Sonic hedgehog/Ptch/Gli transduction pathways. In concordance with these findings, the protein expression levels of cyclin D1 and c-Myc were reduced. Using a luciferase assay, it was revealed for the first time a decrease in β-catenin transcriptional activity, as an early event following 2-Cl-IB-MECA treatment. In addition, the protein expression levels of multidrug resistance-associated protein 1 and P-glycoprotein (P-gp) were reduced and the P-gp xenobiotic efflux function was also reduced. Next, the enhancing effects of 2-Cl-IB-MECA on the cytotoxicity of conventional chemotherapy was investigated. It was found that 2-Cl-IB-MECA enhanced carboplatin and doxorubicin cytotoxic effects in the JoPaca-1 and Hep-3B cell lines, and a greater synergy was found in the highly tumorigenic JoPaca-1 cell line. This provides a novel in vitro rationale for the utiliza- tion of 2-Cl-IB-MECA in combination with chemotherapeutic agents, not only for hepatocellular carcinoma, but also for pancreatic cancer. Other currently used conventional chemo- therapeutics, fluorouracil and gemcitabine, showed synergy only when combined with high doses of 2-Cl-IB-MECA. Notably, experiments with A3AR-specific antagonist, N-[9-Chloro-2-(2-furanyl)(1,2,4)-triazolo(1,5-c)quinazolin-5-yl] benzene acetamide, revealed that 2-Cl-IB-MECA had antitumor effects via both A3AR-dependent and -independent pathways. In conclusion, the present study identified novel antitumor mechanisms of 2-Cl-IB-MECA in pancreatic and hepatocellular carcinoma in vitro that further underscores the importance of A3AR agonists in cancer therapy.
Collapse
Affiliation(s)
- Jana Kotulova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Katerina Lonova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Agata Kubickova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Jana Vrbkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Pavla Kourilova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
14
|
Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L, Huang W, He G, Liao H, Cai L, Tang Y, Zhao L, Pan M. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia 2021; 23:1227-1239. [PMID: 34768109 PMCID: PMC8591347 DOI: 10.1016/j.neo.2021.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sorafenib is a first-line molecular-target drug for advanced hepatocellular carcinoma (HCC), and reducing sorafenib resistance is an important issue to be resolved for the clinical treatment of HCC. In the current study, we identified that ABCC5 is a critical regulator and a promising therapeutic target of acquired sorafenib resistance in human hepatocellular carcinoma cells. The expression of ABCC5 was dramatically induced in sorafenib-resistant HCC cells and was remarkably associated with poor clinical prognoses. The down-regulation of ABCC5 expression could significantly reduce the resistance of sorafenib to HCC cells. Importantly, activation of PI3K/AKT/NRF2 axis was essential for sorafenib to induce ABCC5 expression. ABCC5 increased intracellular glutathione (GSH) and attenuated lipid peroxidation accumulation by stabilizing SLC7A11 protein, which inhibited ferroptosis. Additionally, the inhibition of ABCC5 enhanced the anti-cancer activity of sorafenib in vitro and in vivo. These findings demonstrate a novel molecular mechanism of acquired sorafenib resistance and also suggest that ABCC5 is a new regulator of ferroptosis in HCC cells.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Kunling Chen
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yishi Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Donghui Zhang
- Department of Pathology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuan Cheng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Liuran Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Weimei Huang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangyu Liao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Lei Cai
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yujun Tang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Chai JY, Sugumar V, Alshanon AF, Wong WF, Fung SY, Looi CY. Defining the Role of GLI/Hedgehog Signaling in Chemoresistance: Implications in Therapeutic Approaches. Cancers (Basel) 2021; 13:4746. [PMID: 34638233 PMCID: PMC8507559 DOI: 10.3390/cancers13194746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Insight into cancer signaling pathways is vital in the development of new cancer treatments to improve treatment efficacy. A relatively new but essential developmental signaling pathway, namely Hedgehog (Hh), has recently emerged as a major mediator of cancer progression and chemoresistance. The evolutionary conserved Hh signaling pathway requires an in-depth understanding of the paradigm of Hh signaling transduction, which is fundamental to provide the necessary means for the design of novel tools for treating cancer related to aberrant Hh signaling. This review will focus substantially on the canonical Hh signaling and the treatment strategies employed in different studies, with special emphasis on the molecular mechanisms and combination treatment in regard to Hh inhibitors and chemotherapeutics. We discuss our views based on Hh signaling's role in regulating DNA repair machinery, autophagy, tumor microenvironment, drug inactivation, transporters, epithelial-to-mesenchymal transition, and cancer stem cells to promote chemoresistance. The understanding of this Achilles' Heel in cancer may improve the therapeutic outcome for cancer therapy.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Ahmed F. Alshanon
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad 10072, Iraq;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| |
Collapse
|
16
|
Lv D, Chen L, Du L, Zhou L, Tang H. Emerging Regulatory Mechanisms Involved in Liver Cancer Stem Cell Properties in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:691410. [PMID: 34368140 PMCID: PMC8339910 DOI: 10.3389/fcell.2021.691410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide. A growing body of evidence supports the hypothesis that HCC is driven by a population of cells called liver cancer stem cells (LCSCs). LCSCs have been proposed to contribute to malignant HCC progression, including promoting tumor occurrence and growth, mediating tumor metastasis, and treatment resistance, but the regulatory mechanism of LCSCs in HCC remains unclear. Understanding the signaling pathways responsible for LCSC maintenance and survival may provide opportunities to improve patient outcomes. Here, we review the current literature about the origin of LCSCs and the niche composition, describe the current evidence of signaling pathways that mediate LCSC stemness, then highlight several mechanisms that modulate LCSC properties in HCC progression, and finally, summarize the new developments in therapeutic strategies targeting LCSCs markers and regulatory pathways.
Collapse
Affiliation(s)
- Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Center of Infectious Diseases, Division of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Babao Dan Reverses Multiple-Drug Resistance in Gastric Cancer Cells via Triggering Apoptosis and Autophagy and Inhibiting PI3K/AKT/mTOR Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5631942. [PMID: 34306145 PMCID: PMC8285167 DOI: 10.1155/2021/5631942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Multidrug resistance (MDR) is a critical reason for cancer chemotherapy failure. Babaodan (BBD) is a famous traditional Chinese patent medicine reported to have antigastric cancer activity. However, the roles and molecular mechanisms of the reversal of MDR of gastric cancer by BBD have not been well described until now. Therefore, the purpose of this study was to elucidate further the role of BBD in reversing the MDR of gastric cancer cells and its specific regulatory mechanism via in vitro experiments. To verify our results, MTT, Doxorubicin (DOX) staining, Rhodamin123 (Rho123) staining, DAPI staining, Annexin V-FITC, propidium iodide (PI), Cyto-ID, and western blot assays were performed. To determine whether BBD triggers apoptosis and autophagy through the PI3K/AKT/mTOR signaling, we also applied 3-methyladenine (3-MA), chloroquine (CQ), and 740Y-P (an activator of PI3K). The results showed that BBD reversed the MDR and induced apoptosis and autophagy of SGC7901/DDP cells. Pathway analyses suggested BBD inhibits PI3K/AKT/mTOR pathway activity and subsequent apoptosis-autophagy induction. Inhibition of autophagy with 3-MA and chloroquine (CQ) was performed to confirm that BBD promoted autophagy. PI3K agonist, 740Y-P, further verified BBD inhibition of PI3K/AKT/mTOR pathway activation. In conclusion, BBD may reverse the MDR of gastric cancer cells, induce apoptosis, and promote autophagy via inactivation of the PI3K/AKT/mTOR signaling pathway.
Collapse
|
18
|
Ren Y, Deng R, Cai R, Lu X, Luo Y, Wang Z, Zhu Y, Yin M, Ding Y, Lin J. TUSC3 induces drug resistance and cellular stemness via Hedgehog signaling pathway in colorectal cancer. Carcinogenesis 2021; 41:1755-1766. [PMID: 32338281 DOI: 10.1093/carcin/bgaa038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor candidate 3 (TUSC3) is a coding gene responsible for N-glycosylation of many critical proteins. TUSC3 gene plays an oncogenic role in colorectal cancer (CRC), however, the role of TUSC3 in drug resistance of CRC is still unclear. The aim of this study is to investigate the biological function and molecular mechanism of TUSC3 in CRC drug resistance. The expression of TUSC3 in CRC is positively correlated to tumor stage in 90 paired clinical samples, and negatively associated with overall survival and disease-free survival of CRC patients. In vitro, TUSC3 promotes the formation of stemness and induces the drug resistance to 5-fluorouracil and cis-dichlorodiammineplatinum(II) in CRC cells. The tissue microarray assay and bioinformatic analysis indicate that TUSC3 may promote the expression of CD133 and ABCC1 via Hedgehog signaling pathway. Treatment of Hedgehog signaling pathway agonist or inhibitor in TUSC3-silenced or TUSC3-overexpressed cells reverse the effects of TUSC3 in cellular stemness phenotype and drug resistance. Meanwhile, coimmunoprecipitation and immunofluorescence assays indicate a tight relationship between TUSC3 and SMO protein. Our data suggest that TUSC3 promotes the formation of cellular stemness and induces drug resistance via Hedgehog signaling pathway in CRC.
Collapse
Affiliation(s)
- Yansong Ren
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Ruxia Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Rui Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Xiansheng Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Yuejun Luo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Ziyuan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Yuchen Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Mengyuan Yin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, PR China.,Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
19
|
Zarębska I, Gzil A, Durślewicz J, Jaworski D, Antosik P, Ahmadi N, Smolińska-Świtała M, Grzanka D, Szylberg Ł. The clinical, prognostic and therapeutic significance of liver cancer stem cells and their markers. Clin Res Hepatol Gastroenterol 2021; 45:101664. [PMID: 33667731 DOI: 10.1016/j.clinre.2021.101664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/24/2020] [Accepted: 02/17/2021] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of death among cancers. The poor prognosis of HCC might be caused by a population of cancer stem cells (CSC). CSC have similar characteristics to normal stem cells and are responsible for cancer recurrence, chemoresistance, radioresistance and metastasis. Liver cancer stem cells (LCSC) are identified via specific surface markers, such as CD44, CD90, CD133, and EpCAM (CD326). Recent studies suggested a complex interaction between mentioned LCSC markers and clinical features of HCC. A high expression of CSC is correlated with a negative prognostic factor after surgical resection of HCC and is connected with more aggressive tumor behavior. Moreover, LCSC might be responsible for increasing resistance to sorafenib, a kinase inhibitor drug. A reduction in the LCSC population may be crucial to successful advanced HCC therapy.
Collapse
Affiliation(s)
- Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland.
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Navid Ahmadi
- Chair and Department of Oncologic Pathology and Prophylactics, Greater Poland Cancer Center, Poznan University of Medical Sciences, Poland
| | - Marta Smolińska-Świtała
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094 Bydgoszcz, Poland; Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
20
|
Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, Dwarakanath BS. The Role of Notch, Hedgehog, and Wnt Signaling Pathways in the Resistance of Tumors to Anticancer Therapies. Front Cell Dev Biol 2021; 9:650772. [PMID: 33968932 PMCID: PMC8100510 DOI: 10.3389/fcell.2021.650772] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Resistance to therapy is the major hurdle in the current cancer management. Cancer cells often rewire their cellular process to alternate mechanisms to resist the deleterious effect mounted by different therapeutic approaches. The major signaling pathways involved in the developmental process, such as Notch, Hedgehog, and Wnt, play a vital role in development, tumorigenesis, and also in the resistance to the various anticancer therapies. Understanding how cancer utilizes these developmental pathways in acquiring the resistance to the multi-therapeutic approach cancer can give rise to a new insight of the anti-therapy resistance mechanisms, which can be explored for the development of a novel therapeutic approach. We present a brief overview of Notch, Hedgehog, and Wnt signaling pathways in cancer and its role in providing resistance to various cancer treatment modalities such as chemotherapy, radiotherapy, molecular targeted therapy, and immunotherapy. Understanding the importance of these molecular networks will provide a rational basis for novel and safer combined anticancer therapeutic approaches for the improvement of cancer treatment by overcoming drug resistance.
Collapse
Affiliation(s)
- Vivek Kumar
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Mohit Vashishta
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiaodong Wu
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Chandan Guha
- Albert Einstein College of Medicine, The Bronx, NY, United States
| | - B S Dwarakanath
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
21
|
Estevinho MM, Fernandes C, Silva JC, Gomes AC, Afecto E, Correia J, Carvalho J. Role of ATP-binding Cassette Transporters in Sorafenib Therapy for Hepatocellular Carcinoma: an overview. Curr Drug Targets 2021; 23:21-32. [PMID: 33845738 DOI: 10.2174/1389450122666210412125018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Molecular therapy with sorafenib remains the mainstay for advanced-stage hepatocellular carcinoma. Notwithstanding, treatment efficacy is low, with few patients obtaining long-lasting benefits due to the high chemoresistance rate. OBJECTIVE To perform, for the first time, an overview of the literature concerning the role of adenosine triphosphate-binding cassette (ABC) transporters in sorafenib therapy for hepatocellular carcinoma. METHODS Three online databases (PubMed, Web of Science and Scopus) were searched, from inception to October 2020. Studies selection, analysis and data collection was independently performed by two authors. RESULTS The search yielded 224 results; 29 were selected for inclusion. Most studies were pre-clinical, using HCC cell lines; three used human samples. Studies highlight the effect of sorafenib in decreasing ABC transporters expression. Conversely, it is described the role of ABC transporters, particularly multidrug resistance protein 1 (MDR-1), multidrug resistance-associated proteins 1 and 2 (MRP-1 and MRP-2) and ABC subfamily G member 2 (ABCG2) in sorafenib pharmacokinetics and pharmacodynamics, being key resistance factors. Combination therapy with naturally available or synthetic compounds that modulate ABC transporters may revert sorafenib resistance, by increasing absorption and intracellular concentration. CONCLUSION A deeper understanding of ABC transporters' mechanisms may provide guidance for developing innovative approaches for hepatocellular carcinoma. Further studies are warranted to translate the current knowledge into practice and paving the way to individualized therapy.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - Carlos Fernandes
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - João Carlos Silva
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - Ana Catarina Gomes
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - Edgar Afecto
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - João Correia
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - João Carvalho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| |
Collapse
|
22
|
Abstract
Therapy resistance is a major problem when treating cancer patients as cancer cells develop mechanisms that counteract the effect of therapeutic compounds, leading to fit and more aggressive clones that contribute to poor prognosis. Therapy resistance can be both intrinsic and/or acquired. These are multifactorial events, and some are related to factors including adaptations in cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), deregulation of key signaling pathways, drug efflux through ABC transporters, acquired mutations, evading apoptosis, and activation of DNA damage response among others. Among these factors, CSCs represent the major source of therapy resistance. CSCs are a subset of tumor cells that are capable of self-renewal and multilineage progenitor expansion that are known to be intrinsically resistant to anticancer treatments. Multiple clones of CSCs pre-exist, and some can adopt and expand easily to changes in the tumor microenvironment (TME) and/or in response to radio- and chemotherapy. A combination of both intrinsic and extrinsic factors contributes to CSC-mediated therapy resistance. In this review, we will focus on CSCs and therapy resistance as well as suggest strategies to eliminate CSCs and, therefore, overcome resistance. Video abstract.
Collapse
Affiliation(s)
- Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001 People’s Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001 People’s Republic of China
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
| |
Collapse
|
23
|
Ding J, Li HY, Zhang L, Zhou Y, Wu J. Hedgehog Signaling, a Critical Pathway Governing the Development and Progression of Hepatocellular Carcinoma. Cells 2021; 10:cells10010123. [PMID: 33440657 PMCID: PMC7826706 DOI: 10.3390/cells10010123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
Hedgehog (Hh) signaling is a classic morphogen in controlling embryonic development and tissue repairing. Aberrant activation of Hh signaling has been well documented in liver cancer, including hepatoblastoma, hepatocellular carcinoma (HCC) and cholangiocarcinoma. The present review aims to update the current understanding on how abnormal Hh signaling molecules modulate initiation, progression, drug resistance and metastasis of HCC. The latest relevant literature was reviewed with our recent findings to provide an overview regarding the molecular interplay and clinical relevance of the Hh signaling in HCC management. Hh signaling molecules are involved in the transformation of pre-carcinogenic lesions to malignant features in chronic liver injury, such as nonalcoholic steatohepatitis. Activation of GLI target genes, such as ABCC1 and TAP1, is responsible for drug resistance in hepatoma cells, with a CD133−/EpCAM− surface molecular profile, and GLI1 and truncated GLI1 account for the metastatic feature of the hepatoma cells, with upregulation of matrix metalloproteinases. A novel bioassay for the Sonic Hh ligand in tissue specimens may assist HCC diagnosis with negative α-fetoprotein and predict early microvascular invasion. In-depth exploration of the Hh signaling deepens our understanding of its molecular modulation in HCC initiation, drug sensitivity and metastasis, and guides precise management of HCC on an individual basis.
Collapse
Affiliation(s)
- Jia Ding
- Department of Gastroenterology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Hui-Yan Li
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Li Zhang
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Yuan Zhou
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-215-423-7705; Fax: +86-216-422-7201
| |
Collapse
|
24
|
Targeting Hedgehog Pathway and DNA Methyltransferases in Uterine Leiomyosarcoma Cells. Cells 2020; 10:cells10010053. [PMID: 33396427 PMCID: PMC7824187 DOI: 10.3390/cells10010053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Uterine leiomyosarcoma (LMS) is an aggressive tumor that presents poor prognosis, high rates of recurrence and metastasis. Because of its rarity, there is no information available concerning LMS molecular mechanisms of origin and development. Here, we assessed the expression profile of Hedgehog (HH) signaling pathway markers and the effects of their pharmacological inhibition on uterine smooth muscle (UTSM), leiomyoma and LMS cells. Additionally, we also evaluated the effects of DNMTs inhibition on LMS cells behavior. Cell proliferation, migration and apoptosis rates were evaluated by MTT, Scratch and Annexin V assays, respectively. RNA expression and protein levels were assessed by qRT-PCR and Western blot. We found that SMO and GLIs (1, 2 and 3) expression was upregulated in LMS cells, with increased nuclear levels of GLI proteins. Treatment with LDE225 (SMOi) and Gant61 (GLIi) resulted in a significant reduction in Glis protein levels in LMS (p < 0.05). Additionally, the expression of DNMT (1, 3a, and 3b), as well as GLI1 nuclear expression, was significantly decreased after treatment with HH inhibitor in LMS cells. Our results showed that blocking of SMO, GLI and DNMTs is able to inhibit LMS proliferation, migration and invasion. Importantly, the combination of those treatments exhibited a potentiated effect on LMS malignant features due to HH pathway deactivation.
Collapse
|
25
|
Novel aptasensor-based assay of sonic hedgehog ligand for detection of portal vein invasion of hepatocellular carcinoma. Biosens Bioelectron 2020; 174:112738. [PMID: 33257185 DOI: 10.1016/j.bios.2020.112738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
The high expression of sonic hedgehog ligand (SHh) is closely correlated to the metastasis, drug resistance and poor prognosis of hepatocellular carcinoma (HCC). Therefore, sensitive, specific and efficient detection methods for SHh are needed for the early diagnosis and assessment of prognosis. Herein, an aptamer, AP32 that specifically binds to SHh (KD = 25.7 ± 4.1 nM) was obtained by SELEX technology with further optimization. In vivo experiments confirmed that AP32 has the potential to be an imaging probe for Huh-7 cell-derived xenograft. The interaction mode in 3-dimensional configuration between the aptamer and SHh was established by molecular simulation and confirmed by mutations at key sites of the aptamer. An aptasensor-based assay was successfully developed by conjugating Texas-Red-labeled AP32 to microbeads, and was used to analyze SHh content in hepatoma cell lysates, serum and HCC specimens. The method exhibited a broad detection range from 0.07 to 62.5 nM with a low detection limit of 69 pM, and a recovery rate of 104.6 ± 3.9% in serum. When the assay was used to measure SHh content in tissue lysates, the results demonstrated that it possessed 57.1% positivity, 100% specificity in distinguishing 28 HCC specimens from normal tissues, and was compensatory for detection of HCC in AFP-negative cases. Moreover, elevated SHh levels are indicative of portal vein invasion at 77.8% positive rate. This novel aptasensor-based SHh assay may offer a reliable means in predicting early metastasis and poor prognosis in hepatocellular carcinoma.
Collapse
|
26
|
Zhang H, Hu L, Cheng M, Wang Q, Hu X, Chen Q. The Hedgehog signaling pathway promotes chemotherapy resistance via multidrug resistance protein 1 in ovarian cancer. Oncol Rep 2020; 44:2610-2620. [PMID: 33125122 PMCID: PMC7640363 DOI: 10.3892/or.2020.7798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Various studies have revealed that the Hedgehog (Hh) signaling pathway promotes ovarian cancer invasion, migration and drug resistance. Previous studies by our group have identified a set of genes, including multidrug resistance gene 1 (MDR1), that are regulated by Hh signaling in ovarian cancer. However, the association between Hh signaling activation and MDR1 expression requires further validation. In the present study, reverse transcription-quantitative PCR or western blot assays were used to evaluate the mRNA and protein expression levels of MDR1, Sonic Hh (Shh), glioma-associated oncogene 2 (Gli2), Gli1 and γ-phosphorylated H2A.X variant histone (γ-H2AX). MTT and colony-formation assays were performed to determine the effect of cisplatin (DDP) after inhibiting the Hh pathway in ovarian cancer cells. The results indicated that MDR1, Gli2 and Shh levels were much higher in SK-OV-3 cells with acquired DDP resistance than in native SK-OV-3 cells. ES-2 cells with overexpression of Gli2 were capable of efficiently forming colonies in the presence of low DDP concentrations. By contrast, Gli2 knockdown in SK-OV-3 cells decreased the colony-forming ability under the same concentration of DDP. As determined by MTT assays, knockdown of Gli2 or targeting of the Hh signaling pathway with either Gli-antagonist 61 (GANT61) or cyclopamine, in combination with DDP treatment, diminished the viability of ES-2 and SK-OV-3 cells, whereas Gli2 overexpression increased the viability of ES-2 cells in the presence of DDP. Knockdown of Gli2 or targeting the Hh signaling pathway with GANT61 also increased γ-H2AX levels but decreased the expression of MDR1 in the presence of DDP. MDR1 expression is regulated by the Hh signaling pathway and is likely a downstream transcription factor of Gli2. In conclusion, targeting the Hh signaling pathway increases the sensitivity of ovarian cancer to DDP. MDR1 is a target gene of the Hh signaling pathway and this pathway may affect chemoresistance of ovarian cancer to DDP via MDR1.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lanyan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinyue Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
27
|
Lu X, Wang Z, Huang H, Wang H. Hedgehog signaling promotes multidrug resistance by regulation of ABC transporters in oral squamous cell carcinoma. J Oral Pathol Med 2020; 49:897-906. [DOI: 10.1111/jop.13050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangwan Lu
- School of Life Sciences Sun Yat‐sen University Guangzhou China
| | | | - Hongxing Huang
- School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Hua Wang
- Department of Oral and Maxillofacial Surgery Guanghua School of Stomotology Sun Yat‐sen University Guangzhou China
| |
Collapse
|
28
|
Zhou XT, Ding J, Li HY, Zuo JL, Ge SY, Jia HL, Wu J. Hedgehog signalling mediates drug resistance through targeting TAP1 in hepatocellular carcinoma. J Cell Mol Med 2020; 24:4298-4311. [PMID: 32108992 PMCID: PMC7171417 DOI: 10.1111/jcmm.15090] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance is one of the reasons for low survival of advanced hepatocellular carcinoma (HCC). Our previous studies indicate that the hedgehog signalling is involved in hepatic carcinogenesis, metastasis and chemo‐resistance. The present study aims to uncover molecular mechanisms underlying hepatoma chemo‐resistance. TAP1 and GLI1/2 gene expression was assessed in both poorly differentiated hepatoma cells and HCC specimens. Potential GLI‐binding site in the TAP1 promoter sequence was validated by molecular assays. Approximately 75% HCC specimens exhibited an elevated expression of hedgehog GLI1 transcription factor compared with adjacent liver tissue. Both GLI1/2 and TAP1 protein levels were significantly elevated in poorly differentiated hepatoma cells. Both Huh‐7‐trans and Huh‐7‐DN displayed more karyotypic abnormalities and differential gene expression profiles than their native Huh‐7 cells. Sensitivity to Sorafenib, doxorubicin and cisplatin was remarkably improved after either GLI1 or TAP1 gene was inhibited by an RNAi approach or by a specific GLI1/2 inhibitor, GANT61. Further experiments confirmed that hedgehog transcription factor GLI1/2 binds to the TAP1 promoter, indicating that TAP1 is one of GLI1/2 target genes. In conclusion, TAP1 is under direct transcriptional control of the hedgehog signalling. Targeting hedgehog signalling confers a novel insight into alleviating drug resistance in the treatment of refractory HCC.
Collapse
Affiliation(s)
- Xiao-Tian Zhou
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Hui-Yan Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie-Liang Zuo
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Sheng-Yang Ge
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Jian Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Zhang YB, Fei HX, Guo J, Zhang XJ, Wu SL, Zhong LL. Dauricine suppresses the growth of pancreatic cancer in vivo by modulating the Hedgehog signaling pathway. Oncol Lett 2019; 18:4403-4414. [PMID: 31611949 PMCID: PMC6781764 DOI: 10.3892/ol.2019.10790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is a highly malignant cancer associated with high expression levels of sonic hedgehog signaling molecule (Shh), patched 1 (Ptch1), smoothened frizzled class receptor (Smo) and glioma-associated oncogene family zinc finger 1 (Gli1) in the hedgehog (Hh) signaling pathway. Inhibition of the Hh signaling pathway is a potential therapeutic target for pancreatic cancer. The aim of the present study was to investigate the effects of dauricine in a pancreatic cancer BxPC-3 ×enograft animal model and examine the underlying molecular mechanisms through Hh signaling pathway. High-and low-dose dauricine treatment significantly suppressed tumor growth with no concomitant effect on the spleen index. In addition, dauricine induced apoptosis and cell cycle arrest in pancreatic cancer BxPC-3 cells. The inhibitory effects of dauricine on pancreatic cancer may be mediated by the suppression of the Hh signaling pathway, as indicated by the decreases in the gene and protein expression levels of Shh, Ptch1, Smo and Gli1. The effects of dauricine were similar to those of 5-fluorouracil. Dauricine, a naturally occurring alkaloid, may be a potential anticancer agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ying-Bo Zhang
- Ultramicropathology Experimental Center, Pathology College, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hong-Xin Fei
- Department of Basic Medicine, School of Nursing and Rehabilitation, Xinyu University, Xinyu, Jiangxi 338004, P.R. China
| | - Jia Guo
- Pathogenic Biology and Immunology Experimental Teaching Center, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xiao-Jie Zhang
- Ultramicropathology Experimental Center, Pathology College, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shu-Liang Wu
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Li-Li Zhong
- Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
30
|
Li K, Fang D, Xiong Z, Luo R. Inhibition of the hedgehog pathway for the treatment of cancer using Itraconazole. Onco Targets Ther 2019; 12:6875-6886. [PMID: 31692536 PMCID: PMC6711563 DOI: 10.2147/ott.s223119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/07/2019] [Indexed: 01/16/2023] Open
Abstract
Itraconazole (ITZ) is an anti-fungal drug that has been used in clinical practice for nearly 35 years. Recently, numerous experiments have shown that ITZ possesses anti-cancer properties. The Hedgehog (Hh) pathway plays a pivotal role in fundamental processes, including embryogenesis, structure, morphology and proliferation in various species. This pathway is typically silent in adult cells, and inappropriate activity is linked to various tumor types. The most important mechanism of ITZ in the treatment of cancer is inhibition of the Hh pathway through the inhibition of smoothened receptors (SMO), glioma-associated oncogene homologs (GLI), and their downstream targets. In this review, we discuss the mechanisms of ITZ in the treatment of cancer through inhibition of the Hh pathway, which includes anti-inflammation, prevention of tumor growth, induction of cell cycle arrest, induction of apoptosis and autophagy, prevention of angiogenesis, and drug resistance. We also discuss the clinical use of ITZ in many types of cancers. We hope this review will provide more information to support future studies on ITZ in the treatment of various cancers.
Collapse
Affiliation(s)
- Ke Li
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Dengyang Fang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Zuming Xiong
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Runlan Luo
- Department of Ultrasound, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| |
Collapse
|
31
|
Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, Yang S, Gong Z, Lai PBS, Chen GG. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther Adv Med Oncol 2018; 10:1758835918816287. [PMID: 30622654 PMCID: PMC6304707 DOI: 10.1177/1758835918816287] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
The poor clinical outcome of hepatocellular carcinoma (HCC) patients is ascribed to the resistance of HCC cells to traditional treatments and tumor recurrence after curative therapies. Cancer stem cells (CSCs) have been identified as a small subset of cancer cells which have high capacity for self-renewal, differentiation and tumorigenesis. Recent advances in the field of liver CSCs (LCSCs) have enabled the identification of CSC surface markers and the isolation of CSC subpopulations from HCC cells. Given their central role in cancer initiation, metastasis, recurrence and therapeutic resistance, LCSCs constitute a therapeutic opportunity to achieve cure and prevent relapse of HCC. Thus, it is necessary to develop therapeutic strategies to selectively and efficiently target LCSCs. Small molecular inhibitors targeting the core stemness signaling pathways have been actively pursued and evaluated in preclinical and clinical studies. Other alternative therapeutic strategies include targeting LCSC surface markers, interrupting the CSC microenvironment, and altering the epigenetic state. In this review, we summarize the properties of CSCs in HCC and discuss novel therapeutic strategies that can be used to target LCSCs.
Collapse
Affiliation(s)
- Nuozhou Wang
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck
Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of
Wales Hospital, Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, Faculty of Medicine, The
Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,
China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| | - Bao-guang Hu
- Department of Gastrointestinal Surgery, The
Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong,
China
| | - Li-ping Liu
- Department of Hepatobiliary and Pancreas
Surgery, The Second Clinical Medical College of Jinan University (Shenzhen
People’s Hospital), Shenzhen, Guangdong Province, China
| | - Sheng-li Yang
- Cancer Center, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan
District People’s Hospital of Shenzhen, Shenzhen, Guangdong Province,
China
| | - Zhongqin Gong
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Paul B. S. Lai
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
| | - George G. Chen
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Sabol M, Trnski D, Musani V, Ozretić P, Levanat S. Role of GLI Transcription Factors in Pathogenesis and Their Potential as New Therapeutic Targets. Int J Mol Sci 2018; 19:E2562. [PMID: 30158435 PMCID: PMC6163343 DOI: 10.3390/ijms19092562] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023] Open
Abstract
GLI transcription factors have important roles in intracellular signaling cascade, acting as the main mediators of the HH-GLI signaling pathway. This is one of the major developmental pathways, regulated both canonically and non-canonically. Deregulation of the pathway during development leads to a number of developmental malformations, depending on the deregulated pathway component. The HH-GLI pathway is mostly inactive in the adult organism but retains its function in stem cells. Aberrant activation in adult cells leads to carcinogenesis through overactivation of several tightly regulated cellular processes such as proliferation, angiogenesis, EMT. Targeting GLI transcription factors has recently become a major focus of potential therapeutic protocols.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
33
|
miR-1268a regulates ABCC1 expression to mediate temozolomide resistance in glioblastoma. J Neurooncol 2018; 138:499-508. [DOI: 10.1007/s11060-018-2835-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
34
|
Fu ZY. Role of ATP-binding cassette transporters, apoptosis, and long non-coding RNAs in gastric cancer multidrug resistance. Shijie Huaren Xiaohua Zazhi 2017; 25:2838-2850. [DOI: 10.11569/wcjd.v25.i32.2838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer multidrug resistance refers to the cross resistance of cancer cells to a variety of anticancer drugs, which can be primary or secondary. Several mechanisms attribute to cancer multidrug resistance. In this paper, the recent progress in the understanding of the mechanisms of multi-drug resistance of gastric cancer cells with regard to the role of adenosine triphosphate binding cassette transporters, apoptosis, and long non-coding RNAs is reviewed.
Collapse
Affiliation(s)
- Zhao-Ying Fu
- Institute of Molecular Biology and Immunology, Medical School of Yan'an University, Yan'an 716000, Shaanxi Province, China
| |
Collapse
|
35
|
Ubenimex suppresses Pim-3 kinase expression by targeting CD13 to reverse MDR in HCC cells. Oncotarget 2017; 8:72652-72665. [PMID: 29069816 PMCID: PMC5641159 DOI: 10.18632/oncotarget.20194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most serious cancers, with rapid progression and high mortality. However, chemotherapy of HCC is hindered by multi-drug resistance (MDR). It is urgent, therefore, to explore new approaches for overcoming MDR of HCC cells. Ubenimex, an inhibitor of CD13, has been used as an immuno-enhancer for treating hematological neoplasms and other solid tumors. Here, we demonstrate that Ubenimex can also reverse MDR in the HCC cell lines HepG2/5-FU and Bel7402/5-FU. Ubenimex inhibits the expression of the proto-oncogene, Pim-3, which is accompanied by decreased expression of BCL-2 and BCL-XL, decreased phosphorylation of Bad, and increased tumor apoptosis. Moreover, Ubenimex decreases expression of the MDR-associated proteins P-gp, MRP3 and MRP2 to enhance intracellular accumulation of Cisplatin, for which down-regulation of Pim-3 is essential. Our results reveal a previously uncharacterized function of Ubenimex in mediating drug resistance in HCC, which suggests that Ubenimex may provide a new strategy to reverse MDR and improve HCC sensitivity to chemotherapeutic drugs via its effects on Pim-3.
Collapse
|
36
|
JCAD Promotes Progression of Nonalcoholic Steatohepatitis to Liver Cancer by Inhibiting LATS2 Kinase Activity. Cancer Res 2017; 77:5287-5300. [DOI: 10.1158/0008-5472.can-17-0229] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/31/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
|
37
|
Beretta GL, Cassinelli G, Pennati M, Zuco V, Gatti L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem 2017; 142:271-289. [PMID: 28851502 DOI: 10.1016/j.ejmech.2017.07.062] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Resistance to conventional and target specific antitumor drugs still remains one of the major cause of treatment failure and patience death. This condition often involves ATP-binding cassette (ABC) transporters that, by pumping the drugs outside from cancer cells, attenuate the potency of chemotherapeutics and negatively impact on the fate of anticancer therapy. In recent years, several tyrosine kinase inhibitors (TKIs) (e.g., imatinib, nilotinib, dasatinib, ponatinib, gefitinib, erlotinib, lapatinib, vandetanib, sunitinib, sorafenib) have been reported to interact with ABC transporters (e.g., ABCB1, ABCC1, ABCG2, ABCC10). This finding disclosed a very complex scenario in which TKIs may behave as substrates or inhibitors depending on the expression of specific pumps, drug concentration, affinity for transporters and types of co-administered agents. In this context, in-depth investigation on TKI chemosensitizing functions might provide a strong rationale for combining TKIs and conventional therapeutics in specific malignancies. The reposition of TKIs as antagonists of ABC transporters opens a new way towards anticancer therapy and clinical strategies aimed at counteracting drug resistance. This review will focus on some paradigmatic examples of the complex and not yet fully elucidated interaction between clinical available TKIs (e.g. BCR-ABL, EGFR, VEGFR inhibitors) with the main ABC transporters implicated in multidrug resistance.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Laura Gatti
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| |
Collapse
|