1
|
Huang Z, Zhou L, Duan J, Qin S, Jiang J, Chen H, Wang K, Liu R, Yuan M, Tang X, Nice EC, Wei Y, Zhang W, Huang C. Oxidative Stress Promotes Liver Cancer Metastasis via RNF25-Mediated E-Cadherin Protein Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306929. [PMID: 38286671 PMCID: PMC10987140 DOI: 10.1002/advs.202306929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/25/2023] [Indexed: 01/31/2024]
Abstract
Loss of E-cadherin (ECAD) is required in tumor metastasis. Protein degradation of ECAD in response to oxidative stress is found in metastasis of hepatocellular carcinoma (HCC) and is independent of transcriptional repression as usually known. Mechanistically, protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344. The activation of PKA kinase activity subsequently induces RNF25 phosphorylation at Ser450 to initiate RNF25-catalyzed degradation of ECAD. Functionally, RNF25 repression induces ECAD protein expression and inhibits HCC metastasis in vitro and in vivo. Altogether, these results indicate that RNF25 is a critical regulator of ECAD protein turnover, and PKA is a necessary redox sensor to enable this process. This study provides some mechanistic insight into how oxidative stress-induced ECAD degradation promotes tumor metastasis of HCC.
Collapse
Affiliation(s)
- Zhao Huang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Jiufei Duan
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Siyuan Qin
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengdu610041China
| | - Haining Chen
- Colorectal Cancer CenterDepartment of General SurgeryWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesResearch Unit of Oral Carcinogenesis and ManagementChinese Academy of Medical SciencesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Minlan Yuan
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Biomedical Big Data CenterWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiangdong Tang
- Sleep Medicine CenterDepartment of Respiratory and Critical Care MedicineMental Health CenterTranslational Neuroscience CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVIC3167Australia
| | - Yuquan Wei
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Wei Zhang
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengdu610212China
- Medical Big Data CenterSichuan UniversityChengdu610041China
| | - Canhua Huang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengdu610212China
| |
Collapse
|
2
|
Suman TY, Kim SY, Yeom DH, Jang Y, Jeong TY, Jeon J. Transcriptome and computational approaches highlighting the molecular regulation of Zacco platypus induced by mesocosm exposure to common disinfectant chlorine. CHEMOSPHERE 2023; 319:137989. [PMID: 36736481 DOI: 10.1016/j.chemosphere.2023.137989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Chlorine (Cl2) is a disinfectant often used in swimming pools and water treatment facilities. However, it is released into aquatic ecosystems, where it may harm non-targeted organisms. Here, we performed a mesocosm experiment exposing Zacco platypus (Z. platypus) to biocide Cl2 for 30 days (30 d) at two days' time points 15 days (15 d) and 30 d samples were collected. Here, Z. platypus was exposed to a sublethal concentration (0.1 mg/L) of Cl2, and comparative transcriptomics analyses were performed to determine their response mechanisms at the molecular level. According to RNA sequencing of the whole-body transcriptome, 860 and 1189 differentially expressed genes (DEGs) were identified from the 15 d and 30 d responses to Cl2, respectively. After enrichment analysis of GO (Gene Ontology) functions and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, identified DEGs were demonstrated to be associated with a variety of functions, including "ion binding and transmembrane transporters". Cl2 also induced oxidative stress in Z. platypus by increasing the levels of reactive oxygen species (ROS) while decreasing the catalase (CAT) content and the levels of solute carrier family 22 member 11 (slc22a11), Caspase-8 (casp-8), inducible nitric oxide synthase (NOS2), cytosolic phospholipase A2 gamma (PLA2G4). However, Z. platypus still allows recovery during stress suspension by increasing the expression levels of solute carrier family proteins. The GO and KEGG annotation results revealed that the expression of DEGs were related to the detoxification process, immune response, and antioxidant mechanism. Additionally, protein-protein interaction networks (PPI) and cytoHubba analyses identified sixteen hub genes and their interaction. These findings elucidate the regulation of various DEGs and signaling pathways in response to Cl2 exposure, which will improve our knowledge and laid foundation for further investigation of the toxicity of Cl2 to Z. platypus.
Collapse
Affiliation(s)
- Thodhal Yoganandham Suman
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Soo-Yeon Kim
- Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju-si, 52834, Republic of Korea
| | - Dong-Hyuk Yeom
- Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju-si, 52834, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Tae-Yong Jeong
- Department of Environmental Science, Hankuk University of Foreign Studies, 81, Oedae-ro, Mohyeon-eup,Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea.
| |
Collapse
|
3
|
Protective role of Decylubiquinone against secondary melanoma at lung in B16F10 induced mice by reducing E-cadherin expression and ameliorating ROCKII-Limk1/2-Cofiliin mediated metastasis. Cell Signal 2023; 101:110486. [PMID: 36208704 DOI: 10.1016/j.cellsig.2022.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Melanoma is one of the most consequential skin cancer with a rising death incidences. Silent but belligerent nature of metastatic sprouting is the leading cause of melanoma related mortality. Invasion of metastatic cells and re-expression of E-Cadherin play the crucial role in the establishment of secondary tumor at distal sites. Thus, manipulation of tumor cell invasion in parallel to regulation of E-Cadherin expression can be considered as potential anti-metastatic strategy. Evidences suggested key role of reactive oxygen species associated ROCK activities in the modulation of metastatic invasion via F-actin stabilization. Here, we first-time report Decylubiquinone, a dietary Coenzyme Q10 analog, as an effective attenuator of pulmonary metastatic melanoma in C57BL/6 mice. Current study depicted detailed molecular interplay associated with Decylubiquinone mediated phosphorylation of ROCKII at Tyr722 along with reduced phosphorylation of ROCKII Ser1366 leading to suppression of Limk1/2-Cofilin-F-actin stabilization axis that finally restricted B16F10 melanoma cell invasion at metastatic site. Analysis further deciphered the role of HNF4α as its nuclear translocation modulated E-Cadherin expression, the effect of reactive oxygen species dependent ROCKII activity in secondarily colonized B16F10 melanoma cells at lungs. Thus unbosoming of related signal orchestra represented Decylubiquinone as a potential remedial agent against secondary lung melanoma.
Collapse
|
4
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
5
|
Park CG, Ryu CS, Sung B, Manz A, Kong H, Kim YJ. Transcriptomic and physiological analysis of endocrine disrupting chemicals Impacts on 3D Zebrafish liver cell culture system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106105. [PMID: 35151072 DOI: 10.1016/j.aquatox.2022.106105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, extensive efforts have focused on developing in vitro platforms mimicking fish livers to better understand the acute or chronic effects of toxicants on lower aquatic vertebrates. Fish liver cell lines have emerged as a promising culture system for these in vitro platforms because they complement the currently limited in vitro tools that mostly consist of mammalian cell lines and adhere to the 3Rs: replacement, reduction, and refinement of living animal tests. However, monolayer cell lines have lower transcriptional and physiological responses upon exposure to toxic chemicals than freshly isolated primary cells. To overcome this challenge, we utilized a three-dimensional (3D) spheroid-based in vitro platform, in which hepatocyte cells had self-organized into spheroid forms via E-cadherin bonds. This platform exhibited augmented transcriptomic and phenotypic regulation of liver cells in comparison to monolayer cells. We examined the organoid platform using the zebrafish liver (ZFL) cell line as a model system. ZFL cells spontaneously clustered into 3D spheroids with long-term viability by optimizing cell seeding density on a non-adherent substrate. Interestingly, 3D ZFL spheroids treated with estrogenic chemicals were activated to synthesize a higher level of vitellogenin (Vtg) than monolayer cells. Whole-transcriptome sequencing analysis confirmed that 3D ZFL spheroids had greater transcriptional regulation of genes related to reproductive toxicological response and liver functions, such as the urea cycle, estrogen receptors, and vitellogenin, compared to monolayer cells. These results may contribute to the engineering of novel 3D in vitro platforms for screening harmful chemicals and improving understanding of the underlying liver toxicity mechanisms at the molecular and cellular levels.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Department of Systems Engineering, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Baeckkyoung Sung
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea
| | - Andreas Manz
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Department of Systems Engineering, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Jeong S, Kim S, Choi Y, Jung HN, Lee K, Park MH. Development of Glycerol-Rose Bengal-Polidocanol (GRP) foam for enhanced sclerosis of a cyst for cystic diseases. PLoS One 2021; 16:e0244635. [PMID: 33400697 PMCID: PMC7785218 DOI: 10.1371/journal.pone.0244635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder that results in a proliferating and enlarging cyst and ultimately leads to loss of kidney function. Because an enlarged cyst is a primary factor for limited kidney function, the large cyst is surgically removed by laparoscopic deroofing or sclerosant. This a relatively nascent treatment method entails complications and sometimes fail due to the cyst fluid refilling and infection. This study proposes using a more stable and effective polidocanol foam with glycerol and Rose Bengal (GRP form) to prevent cyst regeneration and irritation, which is caused by the required body movement during the treatment. Specifically, the foam retention time and viscosity were increased by adding glycerol up to 10% (w/v). The GRP form inhibited cellular proliferation and disrupted cellular junctions, e-cadherin, and cyst formation, demonstrated by the LDH, Live and Dead, and re-plating culture assays. The GRP foam was shown to be a safe and effective treatment as a commercial grade polidocanol foam form by an in vivo study in which subcutaneously injected mice injected with commercial 3% polidocanol, and the GRP foam showed no difference in inflammation. Thus, this study provides an advanced polidocanol form by adding glycerol and Rose-Bengal to help existing sclerotherapy.
Collapse
Affiliation(s)
- Soohyun Jeong
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sujin Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Youngjoo Choi
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Han Na Jung
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Kangwon Lee
- Program in Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Min Hee Park
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, Cheo-ngju, Republic of Korea
| |
Collapse
|
7
|
Mongelli A, Atlante S, Barbi V, Bachetti T, Martelli F, Farsetti A, Gaetano C. Treating Senescence like Cancer: Novel Perspectives in Senotherapy of Chronic Diseases. Int J Mol Sci 2020; 21:ijms21217984. [PMID: 33121118 PMCID: PMC7663758 DOI: 10.3390/ijms21217984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
The WHO estimated around 41 million deaths worldwide each year for age-related non-communicable chronic diseases. Hence, developing strategies to control the accumulation of cell senescence in living organisms and the overall aging process is an urgently needed problem of social relevance. During aging, many biological processes are altered, which globally induce the dysfunction of the whole organism. Cell senescence is one of the causes of this modification. Nowadays, several drugs approved for anticancer therapy have been repurposed to treat senescence, and others are under scrutiny in vitro and in vivo to establish their senomorphic or senolytic properties. In some cases, this research led to a significant increase in cell survival or to a prolonged lifespan in animal models, at least. Senomorphics can act to interfere with a specific pathway in order to restore the appropriate cellular function, preserve viability, and to prolong the lifespan. On the other hand, senolytics induce apoptosis in senescent cells allowing the remaining non–senescent population to preserve or restore tissue function. A large number of research articles and reviews recently addressed this topic. Herein, we would like to focus attention on those chemical agents with senomorphic or senolytic properties that perspectively, according to literature, suggest a potential application as senotherapeutics for chronic diseases.
Collapse
Affiliation(s)
- Alessia Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Sandra Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Tiziana Bachetti
- Direzione Scientifica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy;
| | - Fabio Martelli
- Laboratorio di Cardiologia Molecolare, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milano; Italy,
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), 00185 Rome, Italy
- Correspondence: (A.F.); (C.G.)
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
- Correspondence: (A.F.); (C.G.)
| |
Collapse
|
8
|
Up-Regulation of Superoxide Dismutase 2 in 3D Spheroid Formation Promotes Therapeutic Potency of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Antioxidants (Basel) 2020; 9:antiox9010066. [PMID: 31940867 PMCID: PMC7023074 DOI: 10.3390/antiox9010066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are accessible, available in abundance, and have been shown to be a promising source that can regenerate cartilage in patients with osteoarthritis or other orthopedic diseases. Recently, a three-dimensional (3D) cell culture system was developed to mimic the naive tissue microenvironment. However, the efficacy of cells generated from the 3D spheroid culture system has not yet been elucidated. In the present study, we demonstrate the changes in superoxide dismutase 2 (SOD2) gene expression, an indicator of oxidative stress, on 3D spheroid MSCs. Moreover, siRNA transfection and neutralizing antibody investigations were performed to confirm the function of SOD2 and E-cadherin. Overall, we found that SOD2 siRNA transfection in the spheroid form of MSCs increases the expression of apoptotic genes and decreases the clearance of mitochondrial reactive oxygen species (ROS). As a result, we confirm that 3D spheroid formation increases E-cadherin and SOD2 expression, ultimately regulating the phosphoinositide 3-kinase (PI3K/pAkt/pNrf2 and pERK/pNrf2 signaling pathway. Additionally, we show that SOD2 expression on 3D spheroid MSCs affects the regeneration rates of destructive cartilage in an osteoarthritic model. We postulate that the impact of SOD2 expression on 3D spheroid MSCs reduces oxidative stress and apoptosis, and also promotes cartilage regeneration.
Collapse
|
9
|
Milczarek M, Rossowska J, Klopotowska D, Stachowicz M, Kutner A, Wietrzyk J. Tacalcitol increases the sensitivity of colorectal cancer cells to 5-fluorouracil by downregulating the thymidylate synthase. J Steroid Biochem Mol Biol 2019; 190:139-151. [PMID: 30923017 DOI: 10.1016/j.jsbmb.2019.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 12/18/2022]
Abstract
5-Fluorouracil (5-FU) is an anticancer drug that is most frequently used to treat colorectal cancer (CRC) patients, but unfortunately it shows limited efficacy. We recently demonstrated that vitamin D analogs (VDAs), particularly tacalcitol (coded as PRI-2191), potentiate its anticancer activity in an in vivo mouse and human CRC model. The purpose of this study was to explain the mechanism underlying the enhancement of 5-FU efficacy by PRI-2191 towards human HT-29 CRC cells. We showed that PRI-2191 induces the CDKN1A (gene encoding p21Waf1/Cip1) expression directly through vitamin D receptor (VDR) in a p53-independent manner and thus decreases the thymidylate synthase expression both at the mRNA and protein level. It is the main mechanism by which PRI-2191 improves the anticancer efficacy of 5-FU towards HT-29 cells. Additionally, we indicated that the VDR also participates in 5-FU mechanism of action. 5-FU significantly increased TYMS (gene encoding thymidylate synthase (TS)) and BIRC5 (gene encoding survivin) level in HT-29 cells with silenced VDR. Furthermore, PRI-2191 induced E-cadherin and ZO-1 expression and thus reduced the level of BIRC5 in HT-29 cells. The induction of E-cadherin expression may also contribute to the reduction of c-Myc level and consequently the downregulation of TS. Our results also indicate that calcium-sensing receptor (CaSR) plays a role in the activity of PRI-2191 but has no influence on the 5-FU mechanism of action. In conclusion, we suggest that both VDR and CaSR might be useful as molecular markers for predicting treatment outcomes and identifying the CRC patient subgroups who might benefit from 5-FU-based chemotherapy combined with vitamin D analog.
Collapse
Affiliation(s)
- Magdalena Milczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla, 53-114, Wroclaw, Poland.
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla, 53-114, Wroclaw, Poland
| | - Dagmara Klopotowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla, 53-114, Wroclaw, Poland
| | - Martyna Stachowicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla, 53-114, Wroclaw, Poland
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha, 02-097, Warsaw, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla, 53-114, Wroclaw, Poland
| |
Collapse
|
10
|
Abstract
Survivin (also known as BIRC5) is an evolutionarily conserved eukaryotic protein that is essential for cell division and can inhibit cell death. Normally it is only expressed in actively proliferating cells, but is upregulated in most, if not all cancers; consequently, it has received significant attention as a potential oncotherapeutic target. In this Cell Science at a Glance article and accompanying poster, we summarise our knowledge of survivin 21 years on from its initial discovery. We describe the structure, expression and function of survivin, highlight its interactome and conclude by describing anti-survivin strategies being trialled.
Collapse
Affiliation(s)
- Sally P Wheatley
- Department of Biochemistry, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Dario C Altieri
- The Wistar Institute Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|