1
|
Doghman-Bouguerra M, Finetti P, Durand N, Parise IZS, Sbiera S, Cantini G, Canu L, Hescot S, Figueiredo MMO, Komechen H, Sbiera I, Nesi G, Paci A, Al Ghuzlan A, Birnbaum D, Baudin E, Luconi M, Fassnacht M, Figueiredo BC, Bertucci F, Lalli E. Cancer-testis Antigen FATE1 Expression in Adrenocortical Tumors Is Associated with A Pervasive Autoimmune Response and Is A Marker of Malignancy in Adult, but Not Children, ACC. Cancers (Basel) 2020; 12:cancers12030689. [PMID: 32183347 PMCID: PMC7140037 DOI: 10.3390/cancers12030689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
The SF-1 transcription factor target gene FATE1 encodes a cancer-testis antigen that has an important role in regulating apoptosis and response to chemotherapy in adrenocortical carcinoma (ACC) cells. Autoantibodies directed against FATE1 were previously detected in patients with hepatocellular carcinoma. In this study, we investigated the prevalence of circulating anti-FATE1 antibodies in pediatric and adult patients with adrenocortical tumors using three different methods (immunofluorescence, ELISA and Western blot). Our results show that a pervasive anti-FATE1 immune response is present in those patients. Furthermore, FATE1 expression is a robust prognostic indicator in adult patients with ACC and is associated with increased steroidogenic and decreased immune response gene expression. These data can open perspectives for novel strategies in ACC immunotherapy.
Collapse
Affiliation(s)
- Mabrouka Doghman-Bouguerra
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS, 660 route des Lucioles-Sophia Antipolis, 06560 Valbonne, France; (M.D.-B.); (N.D.)
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
| | - Pascal Finetti
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, 232 Bd. Ste-Marguerite, 13009 Marseille, France; (P.F.); (D.B.); (F.B.)
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS, 660 route des Lucioles-Sophia Antipolis, 06560 Valbonne, France; (M.D.-B.); (N.D.)
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
| | - Ivy Zortéa S. Parise
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Department, Pelé Pequeno Principe Research Institute, 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 2 Josef-Schneider-Straße, 97080 Würzburg, Germany; (S.S.); (I.S.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 6 Josef-Schneider-Straße, 97080 Würzburg, Germany
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 6 viale Pieraccini, 50139 Florence, Italy; (G.C.); (L.C.); (M.L.)
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 6 viale Pieraccini, 50139 Florence, Italy; (G.C.); (L.C.); (M.L.)
| | - Ségolène Hescot
- Service de Médecine Nucléaire, Institut Curie, 35 rue Dailly, 92210 Saint Cloud, France;
| | - Mirna M. O. Figueiredo
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Department, Pelé Pequeno Principe Research Institute, 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil
| | - Heloisa Komechen
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Department, Pelé Pequeno Principe Research Institute, 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil
| | - Iuliu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 2 Josef-Schneider-Straße, 97080 Würzburg, Germany; (S.S.); (I.S.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 6 Josef-Schneider-Straße, 97080 Würzburg, Germany
| | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Health Sciences, University of Florence, 6 viale Pieraccini, 50139 Florence, Italy;
| | - Angelo Paci
- Department of Neuro-Endocrine Tumors, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800 Villejuif, France; (A.P.); (A.A.G.); (E.B.)
| | - Abir Al Ghuzlan
- Department of Neuro-Endocrine Tumors, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800 Villejuif, France; (A.P.); (A.A.G.); (E.B.)
| | - Daniel Birnbaum
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, 232 Bd. Ste-Marguerite, 13009 Marseille, France; (P.F.); (D.B.); (F.B.)
| | - Eric Baudin
- Department of Neuro-Endocrine Tumors, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800 Villejuif, France; (A.P.); (A.A.G.); (E.B.)
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 6 viale Pieraccini, 50139 Florence, Italy; (G.C.); (L.C.); (M.L.)
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 2 Josef-Schneider-Straße, 97080 Würzburg, Germany; (S.S.); (I.S.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 6 Josef-Schneider-Straße, 97080 Würzburg, Germany
| | - Bonald C. Figueiredo
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Department, Pelé Pequeno Principe Research Institute, 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil
| | - François Bertucci
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, 232 Bd. Ste-Marguerite, 13009 Marseille, France; (P.F.); (D.B.); (F.B.)
| | - Enzo Lalli
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles - Sophia Antipolis, 06560 Valbonne, France
- Correspondence: ; Tel.: +33-(0)4-9395-7755
| |
Collapse
|
2
|
Doghman-Bouguerra M, Lalli E. ER-mitochondria interactions: Both strength and weakness within cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:650-662. [PMID: 30668969 DOI: 10.1016/j.bbamcr.2019.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022]
Abstract
ER-mitochondria contact sites represent hubs for signaling that control mitochondrial biology related to several aspects of cellular survival, metabolism, cell death sensitivity and metastasis, which all contribute to tumorigenesis. Altered ER-mitochondria contacts can deregulate Ca2+ homeostasis, phospholipid metabolism, mitochondrial morphology and dynamics. MAM represent both a hot spot in cancer onset and progression and an Achilles' heel of cancer cells that can be exploited for therapeutic perspectives. Over the past years, an increasing number of cancer-related proteins, including oncogenes and tumor suppressors, have been localized in MAM and exert their pro- or antiapoptotic functions through the regulation of Ca2+ transfer and signaling between the two organelles. In this review, we highlight the central role of ER-mitochondria contact sites in tumorigenesis and focus on chemotherapeutic drugs or potential targets that act on MAM properties for new therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Mabrouka Doghman-Bouguerra
- Université Côte d'Azur, Valbonne 06560, France; CNRS UMR 7275, Sophia Antipolis, Valbonne 06560, France; EXPOGEN-CANCER CNRS International Associated Laboratory, Valbonne 06560, France; Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne 06560, France.
| | - Enzo Lalli
- Université Côte d'Azur, Valbonne 06560, France; CNRS UMR 7275, Sophia Antipolis, Valbonne 06560, France; EXPOGEN-CANCER CNRS International Associated Laboratory, Valbonne 06560, France; Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne 06560, France.
| |
Collapse
|
3
|
Kerkhofs M, Bittremieux M, Morciano G, Giorgi C, Pinton P, Parys JB, Bultynck G. Emerging molecular mechanisms in chemotherapy: Ca 2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis 2018; 9:334. [PMID: 29491433 PMCID: PMC5832420 DOI: 10.1038/s41419-017-0179-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Inter-organellar communication often takes the form of Ca2+ signals. These Ca2+ signals originate from the endoplasmic reticulum (ER) and regulate different cellular processes like metabolism, fertilization, migration, and cell fate. A prime target for Ca2+ signals are the mitochondria. ER-mitochondrial Ca2+ transfer is possible through the existence of mitochondria-associated ER membranes (MAMs), ER structures that are in the proximity of the mitochondria. This creates a micro-domain in which the Ca2+ concentrations are manifold higher than in the cytosol, allowing for rapid mitochondrial Ca2+ uptake. In the mitochondria, the Ca2+ signal is decoded differentially depending on its spatiotemporal characteristics. While Ca2+ oscillations stimulate metabolism and constitute pro-survival signaling, mitochondrial Ca2+ overload results in apoptosis. Many chemotherapeutics depend on efficient ER-mitochondrial Ca2+ signaling to exert their function. However, several oncogenes and tumor suppressors present in the MAMs can alter Ca2+ signaling in cancer cells, rendering chemotherapeutics ineffective. In this review, we will discuss recent studies that connect ER-mitochondrial Ca2+ transfer, tumor suppressors and oncogenes at the MAMs, and chemotherapy.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Mart Bittremieux
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium.
| |
Collapse
|
4
|
Ren B, Zou G, Xu F, Huang Y, Xu G, He J, Li Y, Zhu H, Yu P. Serum levels of anti-sperm-associated antigen 9 antibody are elevated in patients with hepatocellular carcinoma. Oncol Lett 2017; 14:7608-7614. [PMID: 29344208 DOI: 10.3892/ol.2017.7152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
At present, there is a high incidence of viral hepatitis and high mortality rates due to hepatocellular carcinoma (HCC) in China. In the current study, the quantification of antibodies against the cancer-testis antigen sperm-associated antigen 9 (SPAG9), alone and combined with α-fetoprotein (AFP), were evaluated as biomarkers for the diagnosis of HCC. The levels of anti-SPAG9 antibody and AFP were quantified in serum samples from patients with HCC and hepatitis or cirrhosis, as well as healthy volunteers. The results revealed that the serum levels of anti-SPAG9 immunoglobulin G antibody in patients with HCC were significantly higher compared with those in patients with hepatitis/cirrhosis and healthy controls. Using receiver operator characteristic curves, the area under the curve (AUC, 0.870) of SPAG9 as a diagnostic marker of HCC was significant [P<0.001; 95% confidence interval (CI), 0.793-0.947], whereas the AUC of AFP was 0.832 (P<0.001; 95% CI, 0.736-0.928). Serum anti-SPAG9 antibody levels exhibited significant potential for the differential diagnosis of HCC, with an AUC value of 0.729, (P=0.008; 95% CI, 0.559-0.899). Similarly, serum AFP levels exhibited significant value for the differential diagnosis of HCC, with an AUC value of 0.842 (P<0.001; 95% CI, 0.732-0.953). When combined with quantification of AFP, the diagnostic sensitivity and specificity of anti-SPAG9 levels were increased. In summary, the results suggested that anti-SPAG9 antibody is a potential early diagnostic marker of HCC.
Collapse
Affiliation(s)
- Biqiong Ren
- Clinical Laboratory, Hunan Provincial Second People's Hospital, Changsha, Hunan 410007, P.R. China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China.,Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guoying Zou
- Clinical Laboratory, Hunan Provincial Second People's Hospital, Changsha, Hunan 410007, P.R. China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China.,Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Fei Xu
- Clinical Laboratory, Hunan Provincial Second People's Hospital, Changsha, Hunan 410007, P.R. China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Yiran Huang
- Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Guofeng Xu
- Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China.,Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Junyu He
- Clinical Laboratory, Hunan Provincial Second People's Hospital, Changsha, Hunan 410007, P.R. China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China.,Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yong Li
- Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China.,Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Haowen Zhu
- Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China.,Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ping Yu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
5
|
Doghman-Bouguerra M, Lalli E. The ER-mitochondria couple: In life and death from steroidogenesis to tumorigenesis. Mol Cell Endocrinol 2017; 441:176-184. [PMID: 27594532 DOI: 10.1016/j.mce.2016.08.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Steroidogenesis is a multistep process where interorganelle communications between the endoplasmic reticulum and mitochondria are critical. These intimate interactions physically occur through the Mitochondria-Associated ER membranes called MAMs. MAMs play important roles in mitochondrial morphology and in many cellular functions ranging from lipid metabolism, to calcium signaling and apoptosis together with a critical effect on steroidogenesis. Moreover, our recent characterization of new MAM resident proteins in adrenocortical cells extends the function of MAM in the mechanism of resistance of cancer cells to apoptotic stimuli and offers new perspectives in targeted therapeutic approaches for adrenocortical tumorigenesis.
Collapse
Affiliation(s)
- Mabrouka Doghman-Bouguerra
- Université Côte d'Azur, France; CNRS UMR 7275, France; NEOGENEX CNRS International Associated Laboratory, France; Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), France.
| | - Enzo Lalli
- Université Côte d'Azur, France; CNRS UMR 7275, France; NEOGENEX CNRS International Associated Laboratory, France; Inserm, France; Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), France
| |
Collapse
|
6
|
Doghman-Bouguerra M, Granatiero V, Sbiera S, Sbiera I, Lacas-Gervais S, Brau F, Fassnacht M, Rizzuto R, Lalli E. FATE1 antagonizes calcium- and drug-induced apoptosis by uncoupling ER and mitochondria. EMBO Rep 2016; 17:1264-80. [PMID: 27402544 PMCID: PMC5007562 DOI: 10.15252/embr.201541504] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 11/09/2022] Open
Abstract
Several stimuli induce programmed cell death by increasing Ca(2+) transfer from the endoplasmic reticulum (ER) to mitochondria. Perturbation of this process has a special relevance in pathologies as cancer and neurodegenerative disorders. Mitochondrial Ca(2+) uptake mainly takes place in correspondence of mitochondria-associated ER membranes (MAM), specialized contact sites between the two organelles. Here, we show the important role of FATE1, a cancer-testis antigen, in the regulation of ER-mitochondria distance and Ca(2+) uptake by mitochondria. FATE1 is localized at the interface between ER and mitochondria, fractionating into MAM FATE1 expression in adrenocortical carcinoma (ACC) cells under the control of the transcription factor SF-1 decreases ER-mitochondria contact and mitochondrial Ca(2+) uptake, while its knockdown has an opposite effect. FATE1 also decreases sensitivity to mitochondrial Ca(2+)-dependent pro-apoptotic stimuli and to the chemotherapeutic drug mitotane. In patients with ACC, FATE1 expression in their tumor is inversely correlated with their overall survival. These results show that the ER-mitochondria uncoupling activity of FATE1 is harnessed by cancer cells to escape apoptotic death and resist the action of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Mabrouka Doghman-Bouguerra
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Sophia Antipolis, Valbonne, France NEOGENEX CNRS International Associated Laboratory, Valbonne, France University of Nice - Sophia Antipolis, Valbonne, France
| | - Veronica Granatiero
- Department of Biomedical Sciences, University of Padova, Padova, Italy CNR Neuroscience Institute, Padova, Italy
| | - Silviu Sbiera
- Department of Internal Medicine I - Endocrine Unit, University Hospital University of Würzburg, Würzburg, Germany
| | - Iuliu Sbiera
- Department of Internal Medicine I - Endocrine Unit, University Hospital University of Würzburg, Würzburg, Germany
| | | | - Frédéric Brau
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Sophia Antipolis, Valbonne, France University of Nice - Sophia Antipolis, Valbonne, France
| | - Martin Fassnacht
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy CNR Neuroscience Institute, Padova, Italy
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Sophia Antipolis, Valbonne, France NEOGENEX CNRS International Associated Laboratory, Valbonne, France University of Nice - Sophia Antipolis, Valbonne, France
| |
Collapse
|
7
|
Hu Q, Fu J, Luo B, Huang M, Guo W, Lin Y, Xie X, Xiao S. OY-TES-1 may regulate the malignant behavior of liver cancer via NANOG, CD9, CCND2 and CDCA3: a bioinformatic analysis combine with RNAi and oligonucleotide microarray. Oncol Rep 2015; 33:1965-75. [PMID: 25673160 DOI: 10.3892/or.2015.3792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/26/2015] [Indexed: 01/30/2023] Open
Abstract
Given its tumor-specific expression, including liver cancer, OY-TES-1 is a potential molecular marker for the diagnosis and immunotherapy of liver cancers. However, investigations of the mechanisms and the role of OY-TES-1 in liver cancer are rare. In the present study, based on a comprehensive bioinformatic analysis combined with RNA interference (RNAi) and oligonucleotide microarray, we report for the first time that downregulation of OY-TES-1 resulted in significant changes in expression of NANOG, CD9, CCND2 and CDCA3 in the liver cancer cell line BEL-7404. NANOG, CD9, CCND2 and CDCA3 may be involved in cell proliferation, migration, invasion and apoptosis, yet also may be functionally related to each other and OY-TES-1. Among these molecules, we identified that NANOG, containing a Kazal-2 binding motif and homeobox, may be the most likely candidate protein interacting with OY-TES-1 in liver cancer. Thus, the present study may provide important information for further investigation of the roles of OY-TES-1 in liver cancer.
Collapse
Affiliation(s)
- Qiping Hu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Fu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Miao Huang
- Department of Radiology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenwen Guo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongda Lin
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shaowen Xiao
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
8
|
Combined analysis of serum alpha-fetoprotein and MAGE-A3-specific cytotoxic T lymphocytes in peripheral blood for diagnosis of hepatocellular carcinoma. DISEASE MARKERS 2014; 35:915-23. [PMID: 24427779 PMCID: PMC3881391 DOI: 10.1155/2013/907394] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We investigated the feasibility of the combined detection of HLA-A2/MAGE-A3 epitope-specific cytotoxic T lymphocytes (CTLs) and serum alpha-fetoprotein (AFP) for specific diagnosis of hepatocellular carcinoma (HCC). We detected the frequency of MAGE-A3 epitopes (p112–120, KVAELVHFL) in spontaneous CTLs in the peripheral blood of HCC patients, liver cirrhosis patients, and healthy subjects with HLA-A2/polypeptide complex (pentamer) detection technology. Eighty-five HCC cases, 38 liver cirrhosis cases, and 50 healthy cases who were HLA-A2-positive were selected from 175 HCC patients, 80 patients with liver cirrhosis, and 105 healthy volunteers, respectively. The frequency of HLA-A2-specific MAGE-A3+ CTLs in the HCC group was significantly higher than that in the other groups. Combined detection of MAGE-A3+ CTL frequency and serum AFP value had a higher specificity than either of the two indicators alone. The pentamer technique is helpful in distinguishing benign lesions and malignant lesions in the liver. Combined with serum AFP, it can improve the diagnosis performance for HCC, especially for AFP-negative cancer.
Collapse
|
9
|
Djureinovic D, Fagerberg L, Hallström B, Danielsson A, Lindskog C, Uhlén M, Pontén F. The human testis-specific proteome defined by transcriptomics and antibody-based profiling. Mol Hum Reprod 2014; 20:476-88. [PMID: 24598113 DOI: 10.1093/molehr/gau018] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The testis' function is to produce haploid germ cells necessary for reproduction. Here we have combined a genome-wide transcriptomics analysis with immunohistochemistry-based protein profiling to characterize the molecular components of the testis. Deep sequencing (RNA-Seq) of normal human testicular tissue from seven individuals was performed and compared with 26 other normal human tissue types. All 20 050 putative human genes were classified into categories based on expression patterns. The analysis shows that testis is the tissue with the most tissue-specific genes by far. More than 1000 genes show a testis-enriched expression pattern in testis when compared with all other analyzed tissues. Highly testis enriched genes were further characterized with respect to protein localization within the testis, such as spermatogonia, spermatocytes, spermatids, sperm, Sertoli cells and Leydig cells. Here we present an immunohistochemistry-based analysis, showing the localization of corresponding proteins in different cell types and various stages of spermatogenesis, for 62 genes expressed at >50-fold higher levels in testis when compared with other tissues. A large fraction of these genes were unexpectedly expressed in early stages of spermatogenesis. In conclusion, we have applied a genome-wide analysis to identify the human testis-specific proteome using transcriptomics and antibody-based protein profiling, providing lists of genes expressed in a tissue-enriched manner in the testis. The majority of these genes and proteins were previously poorly characterised in terms of localization and function, and our list provides an important starting point to increase our molecular understanding of human reproductive biology and disease.
Collapse
Affiliation(s)
- D Djureinovic
- Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| | - L Fagerberg
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-171 21, Sweden
| | - B Hallström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-171 21, Sweden
| | - A Danielsson
- Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| | - C Lindskog
- Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| | - M Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-171 21, Sweden
| | - F Pontén
- Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| |
Collapse
|
10
|
Stouffs K, Lissens W. X chromosomal mutations and spermatogenic failure. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1864-72. [DOI: 10.1016/j.bbadis.2012.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/24/2012] [Accepted: 05/14/2012] [Indexed: 01/11/2023]
|
11
|
Tu X, Zhuang J, Wang W, Zhao L, Zhao L, Zhao J, Deng C, Qiu S, Zhang Y. Screening and identification of a renal carcinoma specific peptide from a phage display peptide library. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:105. [PMID: 22071019 PMCID: PMC3227595 DOI: 10.1186/1756-9966-30-105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/10/2011] [Indexed: 01/23/2023]
Abstract
Background Specific peptide ligands to cell surface receptors have been extensively used in tumor research and clinical applications. Phage display technology is a powerful tool for the isolation of cell-specific peptide ligands. To screen and identify novel markers for renal cell carcinoma, we evaluated a peptide that had been identified by phage display technology. Methods A renal carcinoma cell line A498 and a normal renal cell line HK-2 were used to carry out subtractive screening in vitro with a phage display peptide library. After three rounds of panning, there was an obvious enrichment for the phages specifically binding to the A498 cells, and the output/input ratio of phages increased about 100 fold. A group of peptides capable of binding specifically to the renal carcinoma cells were obtained, and the affinity of these peptides to the targeting cells and tissues was studied. Results Through a cell-based ELISA, immunocytochemical staining, immunohistochemical staining, and immunofluorescence, the Phage ZT-2 and synthetic peptide ZT-2 were shown to specifically bind to the tumor cell surfaces of A498 and incision specimens, but not to normal renal tissue samples. Conclusion A peptide ZT-2, which binds specifically to the renal carcinoma cell line A498 was selected from phage display peptide libraries. Therefore, it provides a potential tool for early diagnosis of renal carcinoma or targeted drug delivery in chemotherapy.
Collapse
Affiliation(s)
- Xiangan Tu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, Guangdong, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zang L, Shi L, Guo J, Pan Q, Wu W, Pan X, Wang J. Screening and identification of a peptide specifically targeted to NCI-H1299 from a phage display peptide library. Cancer Lett 2009; 281:64-70. [PMID: 19327883 DOI: 10.1016/j.canlet.2009.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/10/2009] [Accepted: 02/13/2009] [Indexed: 01/28/2023]
Abstract
In this study, a NCI-H1299 (Non-Small Cell Lung Cancer, NSCLC) and a normal lung cell line (Small Airway Epithelial Cells, SAEC) were used for the subtractive screening in vitro with a phage display-12 peptide library. After three rounds of panning, there was an obvious enrichment for the phages specifically binding to the NCI-H1299 cells, and the output/input ratio of phages increased about 875-fold (from 0.4x10(4) to 3.5x10(6)). A group of peptides being capable of binding specifically to the NCI-H1299 cells were obtained, and the affinity of these peptides to bind to the targeted cells and tissues was studied. Through a cell-based ELISA, immunocytochemical staining, immunohistochemical staining, and immunofluorescence, a M13 phage isolated and identified from the above screenings, and a synthetic peptide ZS-1 (sequence EHMALTYPFRPP) corresponded to the sequence of the surface protein of the M13 phage were demonstrated to be capable of binding to the tumor cell surfaces of NCI-H1299 and A549 cell lines and biopsy specimens, but not to normal lungs tissue samples, other different cancer cells, or nontumor surrounding lung tissues. In conclusion, the peptide ZS-1 may be a potential candidate of biomarker ligands used for targeted drug delivery in therapy of lung cancer.
Collapse
Affiliation(s)
- Linquan Zang
- Department of Pharmacology, Novel Drug Screening Center, Guangdong Pharmaceutical University, Guangzhou, PR China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang B, Zhang Y, Wang J, Zhang Y, Chen J, Pan Y, Ren L, Hu Z, Zhao J, Liao M, Wang S. Screening and identification of a targeting peptide to hepatocarcinoma from a phage display peptide library. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007. [PMID: 17622312 DOI: 10.2119/2006-00115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ligands specific to cell surface receptors have been heavily investigated in cancer research. Phage display technology is a powerful tool in this field and may impact clinical issues including functional diagnosis and targeted drug delivery. In this study, a hepatocellular carcinoma cell line (HepG2) and a normal hepatocyte line (L-02) were used to carry out subtractive screening in vitro with a phage display-7 peptide library. After four rounds of panning, there was an obvious enrichment for the phages specifically binding to the HepG2 cells, and the output/input ratio of phages increased about 976-fold (from 0.3x10(-7) to 292.8x10(-7)). A group of peptides capable of binding specifically to the hepatoma cells were obtained, and the affinity of these peptides to the targeting cells and tissues was studied. Through a cell-based ELISA, immunocytochemical staining, immunohistochemical staining, and immunofluorescence, the S1 phage and synthetic peptide HCBP1 (sequence FQHPSFI) were shown to bind to the tumor cell surfaces of two hepatoma cell lines and biopsy specimens, but not to normal hepatocytes, other different cancer cells, or nontumor liver tissues. In conclusion, the peptide HCBP1 may be a potential candidate for targeted drug delivery in therapy of hepatoma cancer.
Collapse
Affiliation(s)
- Binghua Zhang
- Department of Pathogenic Microbiology, Xinjiang Medical University, Urumqi, Xinjiang, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang B, Zhang Y, Wang J, Zhang Y, Chen J, Pan Y, Ren L, Hu Z, Zhao J, Liao M, Wang S. Screening and identification of a targeting peptide to hepatocarcinoma from a phage display peptide library. Mol Med 2007. [PMID: 17622312 DOI: 10.2119/2006-00115.zhang] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligands specific to cell surface receptors have been heavily investigated in cancer research. Phage display technology is a powerful tool in this field and may impact clinical issues including functional diagnosis and targeted drug delivery. In this study, a hepatocellular carcinoma cell line (HepG2) and a normal hepatocyte line (L-02) were used to carry out subtractive screening in vitro with a phage display-7 peptide library. After four rounds of panning, there was an obvious enrichment for the phages specifically binding to the HepG2 cells, and the output/input ratio of phages increased about 976-fold (from 0.3x10(-7) to 292.8x10(-7)). A group of peptides capable of binding specifically to the hepatoma cells were obtained, and the affinity of these peptides to the targeting cells and tissues was studied. Through a cell-based ELISA, immunocytochemical staining, immunohistochemical staining, and immunofluorescence, the S1 phage and synthetic peptide HCBP1 (sequence FQHPSFI) were shown to bind to the tumor cell surfaces of two hepatoma cell lines and biopsy specimens, but not to normal hepatocytes, other different cancer cells, or nontumor liver tissues. In conclusion, the peptide HCBP1 may be a potential candidate for targeted drug delivery in therapy of hepatoma cancer.
Collapse
Affiliation(s)
- Binghua Zhang
- Department of Pathogenic Microbiology, Xinjiang Medical University, Urumqi, Xinjiang, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Doghman M, Karpova T, Rodrigues GA, Arhatte M, De Moura J, Cavalli LR, Virolle V, Barbry P, Zambetti GP, Figueiredo BC, Heckert LL, Lalli E. Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol Endocrinol 2007; 21:2968-87. [PMID: 17761949 DOI: 10.1210/me.2007-0120] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Steroidogenic factor-1 (SF-1/Ad4BP; NR5A1), a nuclear receptor transcription factor, has a pivotal role in adrenal and gonadal development in humans and mice. A frequent feature of childhood adrenocortical tumors is SF-1 amplification and overexpression. Here we show that an increased SF-1 dosage can by itself augment human adrenocortical cell proliferation through concerted actions on the cell cycle and apoptosis. This effect is dependent on an intact SF-1 transcriptional activity. Gene expression profiling showed that an increased SF-1 dosage regulates transcripts involved in steroid metabolism, the cell cycle, apoptosis, and cell adhesion to the extracellular matrix. Consistent with these results, increased SF-1 levels selectively modulate the steroid secretion profile of adrenocortical cells, reducing cortisol and aldosterone production and maintaining dehydroepiandrosterone sulfate secretion. As a model to understand the mechanisms of transcriptional regulation by increased SF-1 dosage, we studied FATE1, coding for a cancer-testis antigen implicated in the control of cell proliferation. Increased SF-1 levels increase its binding to a consensus site in FATE1 promoter and stimulate its activity through modulation of the recruitment of specific cofactors. On the other hand, sphingosine, which can compete with phospholipids for binding to SF-1, had no effect on the SF-1 dosage-dependent increase of adrenocortical cell proliferation and expression of the FATE1 promoter. In mice, increased Sf-1 dosage produces adrenocortical hyperplasia and formation of tumors expressing gonadal markers (Amh, Gata-4), which originate from the subcapsular region of the adrenal cortex. Gene expression profiling revealed that genes involved in cell adhesion and the immune response and transcription factor signal transducer and activator of transcription-3 (Stat3) are differentially expressed in Sf-1 transgenic mouse adrenals compared with wild-type adrenals. Our studies reveal a critical role for SF-1 dosage in adrenocortical tumorigenesis and constitute a rationale for the development of drugs targeting SF-1 transcriptional activity for adrenocortical tumor therapy.
Collapse
Affiliation(s)
- Mabrouka Doghman
- Institut de Pharmacologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique Unité Mixte de Recherche 6097, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|