1
|
Shahpasand-Kroner H, Siddique I, Malik R, Linares GR, Ivanova MI, Ichida J, Weil T, Münch J, Sanchez-Garcia E, Klärner FG, Schrader T, Bitan G. Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacol Rev 2023; 75:263-308. [PMID: 36549866 PMCID: PMC9976797 DOI: 10.1124/pharmrev.122.000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Collapse
Affiliation(s)
- Hedieh Shahpasand-Kroner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gabriel R Linares
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Magdalena I Ivanova
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Justin Ichida
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Tatjana Weil
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Jan Münch
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Gerrit Klärner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schrader
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Hartmann J, Zacharias M. Analysis of amyloidogenic transthyretin mutations using continuum solvent free energy calculations. Proteins 2022; 90:2080-2090. [PMID: 35841533 DOI: 10.1002/prot.26399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 12/28/2022]
Abstract
Many proteins can undergo pathological conformational changes that result in the formation of amyloidogenic fibril structures. Various neurodegenerative diseases are associated with such pathological fibril formation of specific proteins. Transthyretin (TTR) is a tetrameric globular transport protein in the blood plasma that can dissociate, unfold, and form long and stable fibrils. Many TTR mutations are known that promote (TTR) amyloidosis and cause severe diseases. TTR amyloidosis has been studied extensively using biochemical methods and structures of various mutations in the globular form have been characterized. Recently, also the structure of a TTR fibril has been determined. In an effort to better understand why some mutations increase or decrease the tendency of amyloid formation, we have applied a combined molecular dynamics and continuum solvent approach to calculate the energetic influence of residue changes in the globular versus fibril form. For 29 out of 36 tested TTR single residue mutations, the approach correctly predicts the increased or decreased tendency for amyloidosis allowing us also to elucidate the origins of the tendency. We find that indeed the destabilization of the globular monomer or changes in dimer and tetramer stability due to mutation has a dominant influence on the amyloidogenic tendency. The continuum solvent model predicts a significantly more favorable mean energy per residue of the fibril form compared to the globular form. This effect is only slightly modulated by single-point mutations preserving the energetic preference for fibril formation upon protein unfolding. It explains why no correlation between experimental amyloidosis and calculated change in fibril stability was observed.
Collapse
Affiliation(s)
- Julian Hartmann
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Bavaria, Germany
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Bavaria, Germany
| |
Collapse
|
3
|
Matsushima M, Yabe I, Tsuda M, Sakakibara M, Shimamura T, Sasaki H. Amyloid Polyneuropathy and Myocardial Amyloidosis 10 Years after Domino Liver Transplantation from a Patient with a Transthyretin Ser50Arg Mutation. Intern Med 2017; 56:3231-3235. [PMID: 28943540 PMCID: PMC5742399 DOI: 10.2169/internalmedicine.8434-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 54-year-old man with polycystic liver disease received a domino liver transplantation (DLT) from a patient of hereditary ATTR amyloidosis with the transthyretin Ser50Arg mutation. Ten years after transplantation, he felt a slight numbness in his toes, and cardiac amyloidosis was simultaneously suspected upon a heart function evaluation. Biopsy specimens from the myocardium revealed transthyretin amyloidosis with the Ser50Arg mutation. Oral tafamidis therapy has inhibited the progression of neurological and cardiovascular symptoms this far. We herein report this first case of amyloid polyneuropathy and myocardial amyloidosis after DLT from hereditary ATTR amyloidosis with a transthyretin Ser50Arg mutation and discuss similar cases of other mutations.
Collapse
Affiliation(s)
- Masaaki Matsushima
- Department of Neurology, Hokkaido University Graduate School of Medicine, Japan
| | - Ichiro Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine, Japan
| | - Masaya Tsuda
- Department of Cardiology, Hokkaido University Graduate School of Medicine, Japan
| | - Mamoru Sakakibara
- Department of Cardiology, Hokkaido University Graduate School of Medicine, Japan
| | | | - Hidenao Sasaki
- Department of Neurology, Hokkaido University Graduate School of Medicine, Japan
| |
Collapse
|
4
|
Nuvolone M, Merlini G. Emerging therapeutic targets currently under investigation for the treatment of systemic amyloidosis. Expert Opin Ther Targets 2017; 21:1095-1110. [PMID: 29076382 DOI: 10.1080/14728222.2017.1398235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Systemic amyloidosis occurs when one of a growing list of circulating proteins acquires an abnormal fold, aggregates and gives rise to extracellular amyloid deposits in different body sites, leading to organ dysfunction and eventually death. Current approaches are mainly aimed at lowering the supply of the amyloidogenic precursor or at stabilizing it in a non-amyloidogenic state, thus interfering with the initial phases of amyloid formation and toxicity. Areas covered: Improved understanding of the pathophysiology is indicating novel steps and molecules that could be therapeutically targeted. Here, we will review emerging molecular targets and therapeutic approaches against the main forms of systemic amyloidosis at the early preclinical level. Expert opinion: Conspicuous efforts in drug design and drug discovery have provided an unprecedented list of potential new drugs or therapeutic strategies, from gene-based therapies to small molecules and peptides, from novel monoclonal antibodies to engineered cell-based therapies. The challenge will now be to validate and optimize the most promising candidates, cross the bridge from the preclinical phase to the clinics and identify, through innovative trials design, the safest and most effective combination therapies, striving for a better care, possibly a definitive cure for these diseases.
Collapse
Affiliation(s)
- Mario Nuvolone
- a Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine , University of Pavia , Pavia , Italy
| | - Giampaolo Merlini
- a Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine , University of Pavia , Pavia , Italy
| |
Collapse
|
5
|
Affiliation(s)
- Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Pansieri J, Plissonneau M, Stransky-Heilkron N, Dumoulin M, Heinrich-Balard L, Rivory P, Morfin JF, Toth E, Saraiva MJ, Allémann E, Tillement O, Forge V, Lux F, Marquette C. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine (Lond) 2017. [PMID: 28635419 DOI: 10.2217/nnm-2017-0079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM Gadolinium-based nanoparticles were functionalized with either the Pittsburgh compound B or a nanobody (B10AP) in order to create multimodal tools for an early diagnosis of amyloidoses. MATERIALS & METHODS The ability of the functionalized nanoparticles to target amyloid fibrils made of β-amyloid peptide, amylin or Val30Met-mutated transthyretin formed in vitro or from pathological tissues was investigated by a range of spectroscopic and biophysics techniques including fluorescence microscopy. RESULTS Nanoparticles functionalized by both probes efficiently interacted with the three types of amyloid fibrils, with KD values in 10 micromolar and 10 nanomolar range for, respectively, Pittsburgh compound B and B10AP nanoparticles. Moreover, they allowed the detection of amyloid deposits on pathological tissues. CONCLUSION Such functionalized nanoparticles could represent promising flexible and multimodal imaging tools for the early diagnostic of amyloid diseases, in other words, Alzheimer's disease, Type 2 diabetes mellitus and the familial amyloidotic polyneuropathy.
Collapse
Affiliation(s)
- Jonathan Pansieri
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Marie Plissonneau
- Nano-H S.A.S, 38070 Saint Quentin Fallavier, France.,Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Nathalie Stransky-Heilkron
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Pharmaceutical technology, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Mireille Dumoulin
- Laboratory of Enzymology & Protein Folding, Centre for Protein Engineering, InBioS, University of Liege Sart Tilman, 4000 Liege, Belgium
| | - Laurence Heinrich-Balard
- University of Lyon, University of Claude Bernard Lyon 1, ISPB Faculté de Pharmacie, MATEIS UMR CNRS 5510, 69373 Lyon, France
| | - Pascaline Rivory
- University of Lyon, University of Claude Bernard Lyon 1, ISPB Faculté de Pharmacie, MATEIS UMR CNRS 5510, 69373 Lyon, France
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Eva Toth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Maria Joao Saraiva
- Instituto de Inovação e Investigação em Saúde (I3S), University of Porto, Portugal; Molecular Neurobiology Group, IBMC - Institute for Molecular & Cell Biology, University of Porto, 4150-180 Porto, Portugal
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Pharmaceutical technology, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Olivier Tillement
- Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Vincent Forge
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - François Lux
- Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Christel Marquette
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
7
|
Hosoi A, Su Y, Torikai M, Jono H, Ishikawa D, Soejima K, Higuchi H, Guo J, Ueda M, Suenaga G, Motokawa H, Ikeda T, Senju S, Nakashima T, Ando Y. Novel Antibody for the Treatment of Transthyretin Amyloidosis. J Biol Chem 2016; 291:25096-25105. [PMID: 27758856 DOI: 10.1074/jbc.m116.738138] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
Familial amyloidotic polyneuropathy (FAP) is a systemic amyloidosis mainly caused by amyloidogenic transthyretin (ATTR). This incurable disease causes death ∼10 years after onset. Although it has been widely accepted that conformational change of the monomeric form of transthyretin (TTR) is very important for amyloid formation and deposition in the organs, no effective therapy targeting this step is available. In this study, we generated a mouse monoclonal antibody, T24, that recognized the cryptic epitope of conformationally changed TTR. T24 inhibited TTR accumulation in FAP model rats, which expressed human ATTR V30M in various tissues and exhibited non-fibrillar deposits of ATTR in the gastrointestinal tracts. Additionally, humanized T24 (RT24) inhibited TTR fibrillation and promoted macrophage phagocytosis of aggregated TTR. This antibody did not recognize normal serum TTR functioning properly in the blood. These results demonstrate that RT24 would be an effective novel therapeutic antibody for FAP.
Collapse
Affiliation(s)
- Akihiko Hosoi
- From the Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), 1314-1 Kyokushi Kawabe Kikuchi Kumamoto, 869-1298
| | - Yu Su
- the Departments of Neurology and
| | - Masaharu Torikai
- From the Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), 1314-1 Kyokushi Kawabe Kikuchi Kumamoto, 869-1298
| | - Hirofumi Jono
- the Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, and.,the Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Daisuke Ishikawa
- From the Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), 1314-1 Kyokushi Kawabe Kikuchi Kumamoto, 869-1298
| | - Kenji Soejima
- From the Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), 1314-1 Kyokushi Kawabe Kikuchi Kumamoto, 869-1298
| | - Hirofumi Higuchi
- From the Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), 1314-1 Kyokushi Kawabe Kikuchi Kumamoto, 869-1298
| | | | | | | | | | - Tokunori Ikeda
- Immunogenetics, Graduate School of Medical Sciences, and
| | - Satoru Senju
- Immunogenetics, Graduate School of Medical Sciences, and
| | - Toshihiro Nakashima
- From the Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), 1314-1 Kyokushi Kawabe Kikuchi Kumamoto, 869-1298,
| | | |
Collapse
|
8
|
Higaki JN, Chakrabartty A, Galant NJ, Hadley KC, Hammerson B, Nijjar T, Torres R, Tapia JR, Salmans J, Barbour R, Tam SJ, Flanagan K, Zago W, Kinney GG. Novel conformation-specific monoclonal antibodies against amyloidogenic forms of transthyretin. Amyloid 2016; 23:86-97. [PMID: 26981744 PMCID: PMC4898150 DOI: 10.3109/13506129.2016.1148025] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Transthyretin amyloidosis (ATTR amyloidosis) is caused by the misfolding and deposition of the transthyretin (TTR) protein and results in progressive multi-organ dysfunction. TTR epitopes exposed by dissociation and misfolding are targets for immunotherapeutic antibodies. We developed and characterized antibodies that selectively bound to misfolded, non-native conformations of TTR. METHODS Antibody clones were generated by immunizing mice with an antigenic peptide comprising a cryptotope within the TTR sequence and screened for specific binding to non-native TTR conformations, suppression of in vitro TTR fibrillogenesis, promotion of antibody-dependent phagocytic uptake of mis-folded TTR and specific immunolabeling of ATTR amyloidosis patient-derived tissue. RESULTS Four identified monoclonal antibodies were characterized. These antibodies selectively bound the target epitope on monomeric and non-native misfolded forms of TTR and strongly suppressed TTR fibril formation in vitro. These antibodies bound fluorescently tagged aggregated TTR, targeting it for phagocytic uptake by macrophage THP-1 cells, and amyloid-positive TTR deposits in heart tissue from patients with ATTR amyloidosis, but did not bind to other types of amyloid deposits or normal tissue. CONCLUSIONS Conformation-specific anti-TTR antibodies selectively bind amyloidogenic but not native TTR. These novel antibodies may be therapeutically useful in preventing deposition and promoting clearance of TTR amyloid and in diagnosing TTR amyloidosis.
Collapse
Affiliation(s)
| | - Avi Chakrabartty
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada , and
| | - Natalie J Galant
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada , and
| | - Kevin C Hadley
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada , and
| | | | | | - Ronald Torres
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Jose R Tapia
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Joshua Salmans
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Robin Barbour
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Stephen J Tam
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Ken Flanagan
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Wagner Zago
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Gene G Kinney
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| |
Collapse
|
9
|
Abstract
Amyloidosis is mainly a systemic disease belonging to protein-folding diseases. The past 10 years have shown significant progress in typing and the clinical management of amyloidosis, in the identification of novel prognostic markers for risk-stratification, and also in the development of new therapeutic agents. Biological molecular techniques are now able to type amyloidosis which were unidentified. Cardiac MRI and biomarkers allow a precise risk-stratification, especially in AL amyloidosis. If necessary, this prognostic evaluation may lead to rapid changes in the chemotherapy treatment. Emerging treatments rely on biotherapies, gene therapy, immunotherapy and blocking analogous agents. They give hope about an increase of survival of patients with systemic amyloidosis.
Collapse
|
10
|
Sekijima Y. Transthyretin (ATTR) amyloidosis: clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry 2015; 86:1036-43. [PMID: 25604431 DOI: 10.1136/jnnp-2014-308724] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/25/2014] [Indexed: 11/04/2022]
Abstract
Transthyretin (ATTR) amyloidosis is a life-threatening, gain-of-toxic-function disease characterised by extracellular deposition of amyloid fibrils composed of transthyretin (TTR). TTR protein destabilised by TTR gene mutation is prone to dissociate from its native tetramer to monomer, and to then misfold and aggregate into amyloid fibrils, resulting in autosomal dominant hereditary amyloidosis, including familial amyloid polyneuropathy, familial amyloid cardiomyopathy and familial leptomeningeal amyloidosis. Analogous misfolding of wild-type TTR results in senile systemic amyloidosis, now termed wild-type ATTR amyloidosis, characterised by acquired amyloid disease in the elderly. With the availability of genetic, biochemical and immunohistochemical diagnostic tests, patients with ATTR amyloidosis have been found in many nations; however, misdiagnosis is still common and considerable time is required before correct diagnosis in many cases. The current standard first-line treatment for hereditary ATTR amyloidosis is liver transplantation, which allows suppression of the main source of variant TTR. However, large numbers of patients are not suitable transplant candidates. Recently, the clinical effects of TTR tetramer stabilisers, diflunisal and tafamidis, were demonstrated in randomised clinical trials, and tafamidis has been approved for treatment of hereditary ATTR amyloidosis in European countries and in Japan. Moreover, antisense oligonucleotides and small interfering RNAs for suppression of variant and wild-type TTR synthesis are promising therapeutic approaches to ameliorate ATTR amyloidosis and are currently in phase III clinical trials. These newly developed therapies are expected to be effective for not only hereditary ATTR amyloidosis but also wild-type ATTR amyloidosis.
Collapse
Affiliation(s)
- Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|
11
|
Dubrey S, Ackermann E, Gillmore J. The transthyretin amyloidoses: advances in therapy. Postgrad Med J 2015; 91:439-48. [PMID: 26048914 DOI: 10.1136/postgradmedj-2014-133224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/20/2015] [Indexed: 11/04/2022]
Abstract
There are two forms of transthyretin (TTR) amyloidosis: non-hereditary and hereditary. The non-hereditary form (ATTRwt) is caused by native or wild-type TTR and was previously referred to as senile systemic amyloidosis. The hereditary form (ATTRm) is caused by variant TTR which results from a genetic mutation of TTR. The predominant effect of ATTRwt amyloidosis is on the heart, with patients having a greater left ventricular wall thickness at presentation than the devastating form which is light chain (AL) amyloidosis. ATTRm amyloidosis is broadly split into two categories: a type that predominantly affects the nervous system (often called familial amyloid polyneuropathy (FAP)) and one with a predilection for the heart (often called familial amyloid cardiomyopathy (FAC)). Approximately half of all TTR mutations known to express a clinical phenotype cause a cardiomyopathy. Since the introduction of orthotopic liver transplantation for ATTRm amyloidosis in 1991, several additional therapies have been developed. These therapies aim to provide a reduction or elimination of TTR from the plasma (through genetic approaches), stabilisation of the TTR molecule (to prevent deposition) and dissolution of the amyloid matrix. We describe the latest developments in these approaches to management, many of which are also applicable to wild-type amyloidosis.
Collapse
Affiliation(s)
- Simon Dubrey
- Department of Cardiology, Hillingdon & Mount Vernon Hospitals NHS Trust, Uxbridge, Middlesex, UK
| | | | - Julian Gillmore
- Division of Medicine, National Amyloidosis Centre, University College London, London, UK
| |
Collapse
|
12
|
Ueda M, Ando Y. Recent advances in transthyretin amyloidosis therapy. Transl Neurodegener 2014; 3:19. [PMID: 25228988 PMCID: PMC4165622 DOI: 10.1186/2047-9158-3-19] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/10/2014] [Indexed: 01/11/2023] Open
Abstract
Mutant (MT) forms of transthyretin (TTR) cause the most common type of autosomal-dominant hereditary systemic amyloidosis-familial amyloidotic polyneuropathy (FAP). Until 20 years ago, FAP was thought to be an endemic disease, but FAP is known to occur worldwide. To date, more than 130 mutations in the TTR gene have been reported. Genotype-phenotype correlations are seen in FAP, and some variation in clinical presentation is often observed in individual kindreds with the same mutation and even among family members. Of the pathogenic TTR mutations, Val30Met was the first to be identified and is the most frequent known mutation found throughout the world. Studies of patients with FAP amyloidogenic TTR (ATTR) Val30Met documented sensorimotor polyneuropathy, autonomic dysfunction, heart and kidney failure, gastrointestinal tract (GI) disorders, and other symptoms leading to death, usually within 10 years of the onset of disease. Diagnosis is sometimes delayed, especially in patients without a clear family history and typical clinical manifestations, since diagnosis requires various studies and techniques such as histopathology, genetic testing, and mass spectrometry. For treatment of FAP, liver transplantation (LT) reportedly halts the progression of clinical manifestations. Exchange of an FAP patient's diseased liver with a healthy liver causes MT TTR in the body to be replaced by wild-type (WT) TTR. Although clinical evaluations indicated that progression of other clinical symptoms such as peripheral neuropathy, GI symptoms, and renal involvement usually halted after LT in FAP ATTR Val30Met patients, recent studies suggested that LT failed to prevent progression of cardiac amyloidosis in FAP ATTR Val30Met patients after LT, with this failure reportedly being due to continued formation of amyloid that derived mainly from WT TTR secreted from the transplanted non-mutant liver graft. In recent years, many therapeutic strategies have been proposed, and several ongoing therapeutic trials involve, for example, stabilizers of TTR tetramers (tafamidis and diflunisal) and gene therapies to suppress TTR expression (antisense methods and use of small interfering RNAs). These novel therapies may prove to prevent progression of FAP.
Collapse
Affiliation(s)
- Mitsuharu Ueda
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, 860-0811 Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, 860-0811 Kumamoto, Japan
| |
Collapse
|
13
|
Cotrina EY, Pinto M, Bosch L, Vilà M, Blasi D, Quintana J, Centeno NB, Arsequell G, Planas A, Valencia G. Modulation of the Fibrillogenesis Inhibition Properties of Two Transthyretin Ligands by Halogenation. J Med Chem 2013; 56:9110-21. [DOI: 10.1021/jm401061w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ellen Y. Cotrina
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| | - Marta Pinto
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| | - Lluís Bosch
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| | - Marta Vilà
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| | - Daniel Blasi
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| | - Jordi Quintana
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| | - Nuria B. Centeno
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| | - Gemma Arsequell
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| | - Gregorio Valencia
- Laboratory of Biochemistry, Bioengineering
Department, Institut Químic de Sarrià, Universitat Ramon Llull, ‡Pharmacoinformatics Group, Research
Programme on Biomedical Informatics (GRIB), Department of Experimental
and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)-Universitat Pompeu Fabra, §Institut de Química Avançada de Catalunya
(IQAC−CSIC), ⊥Drug Discovery Platform, Parc Científic de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Koike H, Sobue G. Diagnosis of familial amyloid polyneuropathy: wide-ranged clinicopathological features. ACTA ACUST UNITED AC 2013; 4:323-31. [PMID: 23496148 DOI: 10.1517/17530059.2010.495384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Owing to the recent development of biochemical and molecular analyses, familial amyloid polyneuropathy (FAP) is not considered to be as rare as was previously thought. Transthyretin (TTR) Val30Met-associated FAP (FAP ATTR Val30Met) is the most common form of FAP. Although patients with FAP ATTR Val30Met had been considered to be concentrated in geographically restricted areas of Japan, Portugal and Sweden, a late-onset form of this type of FAP was discovered in non-endemic areas and revealed to be widely distributed throughout the world. Therefore, there is an increasing necessity to characterize the variability in the clinical, electrophysiological and histopathological features of this disease. AREAS COVERED IN THIS REVIEW Recent progress in the diagnostic techniques for FAP is described, focusing especially on those for FAP ATTR Val30Met. Clinical, electrophysiological and histopathological features in early-onset FAP ATTR Val30Met cases from endemic foci and those in late-onset cases from non-endemic areas in Japan are comparatively described. WHAT THE READER WILL GAIN Patients with FAP ATTR Val30Met from endemic foci and those from non-endemic areas show different clinical, electrophysiological and histopathological features. As compared with the classic FAP phenotype, the clinicopathological features of patients from the non-endemic areas tend to be nonspecific. TAKE HOME MESSAGE Awareness of the possibility of sporadic late-onset FAP ATTR Val30Met is needed at the time of the initial clinical and electrophysiological evaluation of neuropathy with an undetermined etiology to avoid a missed diagnosis.
Collapse
Affiliation(s)
- Haruki Koike
- Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya 466-8550, Japan +81 52 744 2385 ; +81 52 744 2384 ;
| | | |
Collapse
|
15
|
Obayashi K, Tasaki M, Jono H, Ueda M, Shinriki S, Misumi Y, Yamashita T, Oshima T, Nakamura T, Ikemizu S, Anan I, Suhr O, Ando Y. Impact of antibodies against amyloidogenic transthyretin (ATTR) on phenotypes of patients with familial amyloidotic polyneuropathy (FAP) ATTR Valine30Methionine. Clin Chim Acta 2013; 419:127-31. [PMID: 23462670 DOI: 10.1016/j.cca.2013.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND This study investigated whether a relationship exists between the presence of de novo antibodies and the clinical manifestations of familial amyloidotic polyneuropathy (FAP). METHODS Serum samples were collected from 25 Japanese and 6 Swedish FAP amyloidogenic transthyretin (ATTR) Valine30Methionine (V30M) patients, 4 asymptomatic Japanese ATTR V30M gene carriers, and 24 Japanese healthy volunteers. Study methods included enzyme-linked immunosorbent assay (ELISA) and mass spectrometry. RESULTS Three Japanese and 5 Swedish patients had significantly higher levels of antibodies against ATTR than did healthy volunteers and asymptomatic gene carriers (P<0.05). All 8 patients with higher antibody levels were late-onset cases. The ratio of wild-type TTR to ATTR V30M in serum from the high-antibody group was higher than that of the low-antibody group. ELISA results revealed two epitopes at positions 24-35 and 105-115 of ATTR V30M. We found a significant positive correlation between levels of the antibody at positions 24-35 and the age at FAP onset (r=0.751, P<0.05). An age-dependent increase in the occurrence of antibodies was observed in these patients with an epitope at positions 24-35. CONCLUSIONS These findings may help explain the differences in early- and late-onset FAP and/or the progression of FAP.
Collapse
Affiliation(s)
- Konen Obayashi
- Diagnostic Unit for Amyloidosis, Department of Laboratory Medicine, Kumamoto University Hospital, 1-1-1 Honjo, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Koike H, Hashimoto R, Tomita M, Kawagashira Y, Iijima M, Nakamura T, Watanabe H, Kamei H, Kiuchi T, Sobue G. Impact of aging on the progression of neuropathy after liver transplantation in transthyretin Val30Met amyloidosis. Muscle Nerve 2012; 46:964-70. [DOI: 10.1002/mus.23480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 11/09/2022]
|
17
|
Almeida MR, Saraiva MJ. Clearance of extracellular misfolded proteins in systemic amyloidosis: Experience with transthyretin. FEBS Lett 2012; 586:2891-6. [DOI: 10.1016/j.febslet.2012.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/22/2022]
|
18
|
Hund E. Familial amyloidotic polyneuropathy: current and emerging treatment options for transthyretin-mediated amyloidosis. APPLICATION OF CLINICAL GENETICS 2012; 5:37-41. [PMID: 23776379 PMCID: PMC3681191 DOI: 10.2147/tacg.s19903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a fatal clinical disorder characterized by extracellular deposition of abnormal fibrils derived from misfolded, normally soluble transthyretin (TTR) molecules. The disease is most commonly caused by a point mutation within the TTR gene inherited in an autosomal dominant fashion. Over 100 of such mutations have been identified, leading to destabilization of the physiological TTR tetramer. As a result, many monomers originate with a tendency for spontaneous conformational changes and self-aggregation. The main clinical feature of TTR-FAP is progressive sensorimotor and autonomic neuropathy. In the beginning, this polyneuropathy predominantly involves small unmyelinated nerve fibers with the result of dissociated sensory loss disproportionately affecting sensation of pain and temperature. Autonomic neuropathy typically accompanies sensory deficits early in the disease course. The symptoms include orthostatic hypotension, constipation alternating with diarrhea, erectile dysfunction, anhydrosis, and urinary retention or incontinence. Later, involvement of motor fibers causes rapidly progressive weakness and gait disturbances. In addition to the peripheral nervous system, the heart and the gut are frequently affected. Onset of symptoms is bimodal, with one peak at age 33 years (early onset) and another distinct peak in the sixth decade of life (late onset). The course of TTR-FAP is uniformly progressive and fatal. Death occurs an average of 10.8 years after the onset of symptoms in Portuguese patients, and 7.3 years in late-onset Japanese patients. Common causes include cachexia, cardiac failure, arrhythmia, and secondary infections. Liver transplantation is the standard therapy for patients who are in a clinical condition good enough to tolerate this intervention because it stops progression of neuropathy by removing the main source of mutant TTR. Recently, orally administered tafamidis meglumine has been approved by European authorities for treatment of FAP. The substance has been shown to stabilize the TTR tetramer, thereby improving the outcome of patients with TTR-FAP. Various other strategies have been studied in vitro to prevent TTR amyloidosis, including gene therapy, immunization, dissolution of TTR aggregates, and free radical scavengers, but none of them is ready for clinical use so far.
Collapse
Affiliation(s)
- Ernst Hund
- Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Su Y, Jono H, Torikai M, Hosoi A, Soejima K, Guo J, Tasaki M, Misumi Y, Ueda M, Shinriki S, Shono M, Obayashi K, Nakashima T, Sugawara K, Ando Y. Antibody therapy for familial amyloidotic polyneuropathy. Amyloid 2012; 19 Suppl 1:45-6. [PMID: 22506915 DOI: 10.3109/13506129.2012.674075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although it is believed that altered conformations exposing cryptic regions are intermediary and critical steps in the mechanism of transthyretin (TTR) amyloid formation, no effective therapy targeting this step is available. In this study, to establish the antibody therapy for familial amyloidotic polyneuropathy (FAP), we generated a monoclonal anti-TTR antibody, which specifically reacts with surface epitopes of TTR (MAb ATTR) and evaluated its binding affinity and specificity for TTR amyloid fibrils. MAb ATTR showed specific binding affinity for TTR amyloid fibrils, but not for native form of TTR. Moreover, MAb ATTR indeed showed the high consistency with Congo red positive areas in tissue specimens from FAP ATTR V30M patients, indicating that MAb ATTR showed binding affinity and specificity for TTR amyloid fibrils in vitro and in vivo. MAb ATTR may have a potential to suppress TTR amyloid deposition and become a candidate for the antibody therapy for FAP.
Collapse
Affiliation(s)
- Yu Su
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Oliveira SM, Cardoso I, Saraiva MJ. Transthyretin: roles in the nervous system beyond thyroxine and retinol transport. Expert Rev Endocrinol Metab 2012; 7:181-189. [PMID: 30764010 DOI: 10.1586/eem.12.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transthyretin (TTR) is a plasma- and cerebrospinal fluid-circulating protein. Besides the primordially attributed systemic role as a transporter molecule of thyroxine (T4) and retinol (through the binding to retinol-binding protein [RBP]), TTR has been recognized as a protein with important functions in several aspects of the nervous system physiology. TTR has been shown to play an important role in behavior, cognition, amidated neuropeptide processing and nerve regeneration. Furthermore, it has been proposed that TTR is neuroprotective in Alzheimer's disease and cerebral ischemia. Mutations in TTR are a well-known cause of familial amyloidotic polyneuropathy, an autosomal dominant neurodegenerative disorder characterized by systemic deposition of TTR amyloid fibrils, particularly in the peripheral nervous system. The purpose of this review is to highlight the roles of TTR in the nervous system, beyond its systemic role as a transporter molecule of T4 and RBP-retinol.
Collapse
Affiliation(s)
- Sandra Marisa Oliveira
- a Molecular Neurobiology, IBMC- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Isabel Cardoso
- a Molecular Neurobiology, IBMC- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
- b Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | - Maria João Saraiva
- a Molecular Neurobiology, IBMC- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
- c ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.
| |
Collapse
|
21
|
Cyclodextrin, a novel therapeutic tool for suppressing amyloidogenic transthyretin misfolding in transthyretin-related amyloidosis. Biochem J 2011; 437:35-42. [PMID: 21668413 DOI: 10.1042/bj20110041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
TTR (transthyretin), a β-sheet-rich protein, is the precursor protein of familial amyloidotic polyneuropathy and senile systemic amyloidosis. Although it has been widely accepted that protein misfolding of the monomeric form of TTR is a rate-limiting step for amyloid formation, no effective therapy targeting this misfolding step is available. In the present study, we focused on CyDs (cyclodextrins), cyclic oligosaccharides composed of glucose units, and reported the inhibitory effect of CyDs on TTR amyloid formation. Of various branched β-CyDs, GUG-β-CyD [6-O-α-(4-O-α-D-glucuronyl)-D-glucosyl-β-CyD] showed potent inhibition of TTR amyloid formation. Far-UV CD spectra analysis showed that GUG-β-CyD reduced the conformational change of TTR in the process of amyloid formation. In addition, tryptophan fluorescence and 1H-NMR spectroscopy analyses indicated that GUG-β-CyD stabilized the TTR conformation via interaction with the hydrophobic amino acids of TTR, especially tryptophan. Moreover, GUG-β-CyD exerted its inhibitory effect by reducing TTR deposition in transgenic rats possessing a human variant TTR gene in vivo. Collectively, these results indicate that GUG-β-CyD may inhibit TTR misfolding by stabilizing its conformation, which, in turn, suppresses TTR amyloid formation.
Collapse
|
22
|
Koike H, Hashimoto R, Tomita M, Kawagashira Y, Iijima M, Tanaka F, Sobue G. Diagnosis of sporadic transthyretin Val30Met familial amyloid polyneuropathy: a practical analysis. Amyloid 2011; 18:53-62. [PMID: 21463231 DOI: 10.3109/13506129.2011.565524] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transthyretin (TTR) Val30Met-associated familial amyloid polyneuropathy (FAP ATTR Val30Met) is the most common form of FAP and is now prevalent in areas other than those seen within conventional endemic foci. We investigated 15 patients with FAP ATTR Val30Met without a family history of FAP who were referred for sural nerve biopsy. Initial symptoms included somatic neuropathy in all patients, while sensory dissociation and autonomic symptoms were apparent only in two and seven patients, respectively. Nonspecific neuropathic features and slight abnormalities in cerebrospinal fluid protein levels and in electrophysiological indices related to nerve conduction led clinicians to initially suspect chronic inflammatory demyelinating polyneuropathy (CIDP) in some patients. Small-fiber predominant loss was observed in a minority of patients. In terms of cardiac involvement, findings suggestive of subclinical cardiomyopathy due to amyloid deposition, such as cardiomegaly on chest X-ray, thickening of the interventricular septum, and granular sparkling echo on echocardiography, were seen alone or in combination in 11 of 14 examined patients. In conclusion, clinicians should consider the possibility of FAP ATTR Val30Met in patients presenting with neuropathy of undetermined etiology to avoid misdiagnosis. Detecting subclinical cardiac involvement may help to diagnose late-onset FAP ATTR Val30Met in those without a family history of the disease.
Collapse
Affiliation(s)
- Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Koike H, Ando Y, Ueda M, Kawagashira Y, Iijima M, Fujitake J, Hayashi M, Yamamoto M, Mukai E, Nakamura T, Katsuno M, Hattori N, Sobue G. Distinct characteristics of amyloid deposits in early- and late-onset transthyretin Val30Met familial amyloid polyneuropathy. J Neurol Sci 2009; 287:178-84. [PMID: 19709674 DOI: 10.1016/j.jns.2009.07.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 02/01/2023]
Abstract
Late-onset transthyretin Val30Met-associated familial amyloid polyneuropathy (FAP ATTR Val30Met) cases unrelated to endemic foci in Japan show different clinicopathological features from the conventional early-onset cases in endemic foci. We compared the characteristics of amyloid deposits in early-onset FAP ATTR Val30Met cases in endemic foci and late-onset cases in non-endemic areas. Amyloid deposits in three early-onset cases from endemic foci and five late-onset cases from non-endemic areas were systematically examined post-mortem. Amyloid deposits in early-onset cases were highly congophilic and showed strong apple-green birefringence with Congo red staining and had long, parallel fibrils in most organs. On the other hand, those in late-onset cases were generally weakly congophilic and showed faint apple-green birefringence with Congo red staining and had short, haphazard fibrils. In the renal glomus and adrenal gland of early-onset cases, the characteristics of amyloid deposits were similar to those observed in late-onset cases. Analysis of cardiac amyloid using surface enhanced desorption/ionization time-of-flight mass spectrometry indicated that most transthyretin (TTR) was variant in early-onset cases, while more than half was composed of wild-type TTR in late-onset cases. Although characteristics of amyloid deposits may differ among individual organs of respective cases, especially in early-onset cases, the pattern was distinct between early- and late-onset cases. Amyloid deposition in late-onset cases may be similar to that observed in senile systemic amyloidosis with wild-type TTR deposition, suggesting that aging may play an important role in these cases.
Collapse
Affiliation(s)
- Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Koike H, Morozumi S, Kawagashira Y, Iijima M, Yamamoto M, Hattori N, Tanaka F, Nakamura T, Hirayama M, Ando Y, Ikeda SI, Sobue G. The significance of carpal tunnel syndrome in transthyretin Val30Met familial amyloid polyneuropathy. Amyloid 2009; 16:142-8. [PMID: 19626479 DOI: 10.1080/13506120903094074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carpal tunnel syndrome (CTS) is frequently reported in association with amyloidosis. We determined the significance of CTS in transthyretin Val30Met-associated familial amyloid polyneuropathy (FAP ATTR Val30Met) by comparing the electrophysiological indices of the median and ulnar nerves in 58 patients. As a whole, sensory nerve conduction velocity (SCV) was slowed and distal motor latency (DML) was prolonged to a similar extent in the median and ulnar nerves in these patients. The extent of abnormalities in the median nerve was almost similar to that in the ulnar nerve in both early-onset cases from endemic foci and late-onset cases from non-endemic areas. In age-matched idiopathic patients with CTS (20 patients, 27 hands), the slowing of SCV and the prolongation of DML in the median nerve were significant, while the slowing of motor conduction velocity was much less compared to FAP ATTR Val30Met patients. Although concomitant lesions in the ulnar nerve entrapment site at the wrist cannot be excluded, these findings indicate that CTS is not the sole distinctive feature in the majority of FAP ATTR Val30Met patients. The electrophysiological abnormality at the distal portion of the median nerve may be a consequence of polyneuropathy rather than an entrapment injury.
Collapse
Affiliation(s)
- Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Koike H, Kawagashira Y, Iijima M, Yamamoto M, Hattori N, Tanaka F, Hirayama M, Ando Y, Ikeda SI, Sobue G. Electrophysiological features of late-onset transthyretin Met30 familial amyloid polyneuropathy unrelated to endemic foci. J Neurol 2008; 255:1526-33. [DOI: 10.1007/s00415-008-0962-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/18/2008] [Accepted: 04/03/2008] [Indexed: 10/21/2022]
|
26
|
Inoue S, Ohta M, Li Z, Zhao G, Takaoka Y, Sakashita N, Miyakawa K, Takada K, Tei H, Suzuki M, Masuoka M, Sakaki Y, Takahashi K, Yamamura KI. Specific pathogen free conditions prevent transthyretin amyloidosis in mouse models. Transgenic Res 2008; 17:817-26. [DOI: 10.1007/s11248-008-9180-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
27
|
Macedo B, Batista AR, do Amaral JB, Saraiva MJ. Biomarkers in the assessment of therapies for familial amyloidotic polyneuropathy. Mol Med 2008; 13:584-91. [PMID: 17932549 DOI: 10.2119/2007-00068.macedo] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/14/2007] [Indexed: 11/06/2022] Open
Abstract
The identification of specific biomarkers provides opportunities to develop early diagnostic parameters, monitor disease progression, and test drug efficiency in clinical trials. We previously demonstrated that in familial amyloidotic polyneuropathy (FAP) related to the abnormal extracellular tissue deposition of mutant transthyretin (TTR), inflammatory and apoptotic pathways are triggered in the presymptomatic stages of the disease, when nonfibrillar TTR deposits are present. In the present work, to better define biomarkers for future assessment of prophylactic and therapeutic drugs in the treatment of FAP, we extended the search for oxidative stress and apoptotic biomarkers to clinical samples and animal models presenting nonfibrillar and fibrillar TTR. We found that lipid peroxidation measured by hydroxynonenal, oxidative DNA damage measured by 8-hydroxy-2'-deoxyguanosine, and cellular redox homeostasis measured by glutaredoxin 1 were consistently increased in biopsy specimens from FAP patients and in tissues from transgenic mouse models presenting nonfibrillar TTR deposition. Death-receptor Fas, caspase-8, and Bax were also found to be increased, indicative of the involvement of death receptors in the observed apoptosis process. Removal of TTR deposition by an immunization protocol resulted in significant decreases of the selected markers we describe, corroborating the relationship between TTR deposition, oxidative stress, and apoptosis. Taken together, our results provide a robust biomarker profile for initial experimental animal studies and clinical trials to assess the application of the selected markers in therapies aimed at removal and/or inhibition of TTR polymerization.
Collapse
Affiliation(s)
- Bárbara Macedo
- Molecular Neurobiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | | | | | | |
Collapse
|
28
|
Santos SD, Cardoso I, Magalhães J, Saraiva MJ. Impairment of the ubiquitin-proteasome system associated with extracellular transthyretin aggregates in familial amyloidotic polyneuropathy. J Pathol 2007; 213:200-9. [PMID: 17724793 DOI: 10.1002/path.2224] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) has been associated with neurodegenerative disorders of intracellular protein aggregation. We have studied the UPS in familial amyloidotic polyneuropathy (FAP), a neurodegenerative disorder caused by extracellular deposition of mutant transthyretin (TTR). The studies were conducted in TTR-synthesizing and non-synthesizing tissues from affected individuals, in transgenic mouse models for FAP, and in neuronal or Schwannoma cell lines cultured with TTR aggregates. In human FAP tissues presenting extracellular TTR aggregates, ubiquitin-protein conjugates were up-regulated, the proteasome levels were decreased and parkin and alpha-synuclein expression were both decreased. A similar response was detected in mouse models for TTR V30M or L55P. On the other hand, the liver, which normally synthesizes variant TTR V30M, did not show this response. Furthermore, transgenic mice immunized to decrease TTR deposition showed a significant reduction in ubiquitin levels and an increase in parkin and alpha-synuclein levels in comparison to control mice. Studies performed in cell lines with aggregates in the medium resulted in increased ubiquitin and decreased parkin levels. The overall results are indicative of TTR deposition as an external stimulus to an intracellular UPS response in FAP.
Collapse
Affiliation(s)
- S D Santos
- Molecular Neurobiology Unit, Institute of Molecular and Cell Biology, University of Porto, Portugal
| | | | | | | |
Collapse
|
29
|
Abstract
Historically, the amyloidoses have been associated with inflammation and the immune response. From Virchow's original description in human pathologic inflammatory states through their identification in horses used to produce antitoxin to their frequent occurrence in the course of multiple myeloma and a somewhat abortive designation as 'gammaloid', the disorders were felt to have an inflammatory origin. These presumptive associations antedated the availability of a reliable method for tissue extraction that would allow chemical analysis of the major deposited molecules. With the identification of the multiple precursors and the realization that most were not intrinsic elements of immune/inflammatory pathways, the investigative emphasis shifted to the analysis of the biophysical events involved in aggregation and fibril formation. As more in vivo models and better tools for examination of tissues have become available, it appears as if inflammation may participate as both a response to, and an amplifier of, the effects of the fibrillar aggregates. Hence, while only a limited number of amyloid protein precursors are involved in immunity and inflammation per se, host defense, in its broadest sense, is likely to be involved in the clinically relevant amyloidoses. Further it now appears that harnessing the immune response in an appropriate fashion may be able to play a role in treatment.
Collapse
Affiliation(s)
- J Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|